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Abstract

We assume wlog. that every learning algorithm with membership and equivalence
queries proceeds in rounds. In each round it puts in parallel a polynomial number
of queries and after receiving the answers, it performs internal computations before
starting the next round. The query depth is defined by the number of rounds. In this
paper we show that, assuming the existence of cryptographic one-way functions, for
any fixed polynomial d(n) there exists a concept class that is efficiently and exactly
learnable with membership queries in query depth d(n) + 1, but cannot be weakly
predicted with membership and equivalence queries in depth d(n). Hence, concern-
ing the query depth, efficient learning algorithms for this concept class cannot be
parallelized. We also discuss applications to random-self-reductions and coherent
sets.

1 Introduction

A fundamental problem in computer science is the question if and how sequen-
tial algorithms can be parallelized. This is an intrinsic problem in computa-
tional learning theory, too. Parallelizing PAC algorithms [30] is only a matter
of parallelizing the internal computations if the complexity of the target con-
cept is known in advance, because a sufficient number of random examples
can be generated in a single concurrent step [12,31,11]. For learning algo-
rithms with membership and equivalence queries [1,2] this problem also de-
pends on the grade of adaptiveness of the queries. A quantitative formalization
of the adaptiveness is via the query depth of a learning algorithm: We assume
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wlog. that the learning algorithm proceeds in rounds. In each round it is al-
lowed to put in parallel a polynomial number of membership and equivalence
queries. After receiving the answers, it performs internal computation and then
starts the next round. The query depth (as a function of complexity parameter
n) is the maximal number of rounds, where the maximum is taken over all
target concepts of complexity n. Bshouty and Cleve [10,9] prove that exact
learning with membership and equivalence queries e.g. of read-once Boolean
functions and monotone DNF formulas in n variables requires a query depth
of Ω(n/ log n). Balcázar et al. [5] show that DFA with n states can be learned
exactly with membership and equivalence queries in depth O(n/ log n). More-
over, they prove that this bound is optimal as there cannot exist a learning
algorithm that learns DFA exactly in query depth o(n/ log n). These negative
results are not tight in the sense that it remains open if there is a concept
class where allowing a single additional round helps. Also, these lower bounds
are sublinear and hold for exact learning exclusively. In this paper, we show
that for any given polynomial d(n) there is a concept class such that the class
cannot be weakly predicted with membership and equivalence queries in query
depth d(n), though there exists a polynomial-time algorithm that learns every
target concept in query depth d(n) + 1 exactly with membership queries. We
emphasize that, adding a single level of adaptiveness, we can learn this class
exactly, while any learning algorithm with depth d(n) miserably fails, i.e.,
cannot satisfy a potentially weaker requirement than PAC-learnability (with
queries). While our impossibility result as well as the lower bound of [5] only
hold for polynomial-time algorithms, the result of Bshouty and Cleve is also
valid for computationally unbounded parallel learners — as long as the num-
ber of queries is polynomially bounded. In contrast to [10,5,9], who deal with
“natural” concept classes, our class is somewhat artificial and tailor made to
prove the desired result.

The intractability of our concept class is based on a cryptographic assump-
tion, namely the existence of one-way functions. These are functions that are
easy to evaluate but hard to invert on a random value. Despite complex-
ity based impossibility results (see for example [26]) several negative results
for learning algorithms have been based on cryptographic primitives. Angluin
and Kharitonov [3] use one-way functions to show that membership queries
do not add any power to PAC-algorithms when learning DNF formulas. Sim-
ilarly, Kearns and Valiant [23] and Kharitonov [24] show that polynomial-size
Boolean formulas are not efficiently PAC-learnable with membership queries
if one-way functions exist. Rivest and Yin [28] present a concept class based
on the existence of one-way functions where self-directed learning is inferior
to teacher-directed learning. We exploit their idea to define our concept class
using so-called collections of pseudorandom functions. Loosely speaking, a
collection of pseudorandom functions is a sequence (Fn)n∈N of function sets
Fn ⊂ {g : {0, 1}n → {0, 1}n} with the following two properties: Each set Fn
contains 2n (not necessarily distinct) functions, where every function f ∈ Fn is
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described by a key k ∈ {0, 1}n such that one can efficiently compute f(x) given
k and x; second, Fn preserves the randomness property, i.e., if we uniformly
choose a key k ∈ {0, 1}n then the function described by this key “looks” like
a uniformly chosen function from the set {g : {0, 1}n → {0, 1}n}. Note that
most of the functions in the set of all 2n2n functions g : {0, 1}n → {0, 1}n must
have exponential description size. This means that there cannot exist an algo-
rithm that evaluates each function in polynomial time in n given the identifier
of the function and the value as input. In contrast, pseudorandom functions
have this property but still look sufficiently random. It is well-known that
collections of pseudorandom functions exist if and only if one-way functions
exist [20,19]. Furthermore, the existence of cryptographic one-way functions
implies P 6= NP though it is not known if the converse holds (see [18] for
a discussion). Given any collection of pseudorandom functions we define the
concepts of complexity n by the keys of Fn and such that a particular query
sequence of depth d(n)+1 yields the key of the function resp. the name of the
target concept. Hence, we can easily learn the target concept in depth d(n)+1.
On the other hand, there cannot exist any probabilistic polynomial-time al-
gorithm that, after experimenting using membership and equivalence queries
in query depth d(n), classifies a random example correctly with probability at
least 1/2 + 1/p(n) for an arbitrary positive polynomial p(n) and all but finite
n ∈ N. Otherwise we derive a contradiction to the pseudorandomness of the
underlying collection.

We stress that the impossibility of learning our concept class in depth d(n)
does not rely on any universal bound on the width of the queries. Though, the
number of queries in each round is polynomially bounded since the impossibil-
ity result holds for polynomial-time learning algorithms only. But this specific
bound depends on the running time of the algorithm in question. If we also
bound the width by some fixed polynomial w(n) for any learning algorithm,
then we restrict the total number of queries by t(n) = d(n)w(n). In this case,
using polynomials over finite fields, we can easily construct a concept class
that cannot be weakly predicted with queries in depth d(n) and width w(n),
though it can be learned exactly with n · (t(n) + 1) nonadaptive membership
queries (which, of course, can be arbitrarily distributed on any number of
rounds). The negative result for depth- and width-bounded algorithms does
not involve any unproven assumption and even holds for computationally un-
bounded learning algorithms. Details are given in Appendix A.

We apply our result on the non-parallelizability of the queries to so-called
random-self-reductions [8]. Informally, a language L is self-reducible [29] if,
for any x, we can compute the characteristic function χL of L at x from
values χL(y1), . . . , χL(ym), where |y1|, . . . , |ym| < |x|. In other words, L is
self-reducible if membership can be decided by querying the oracle χL for
smaller values. A classic example of a self-reducible language is SAT. An in-
teresting special case of self-reductions are random-self-reductions, where each
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query yi is a random value distributed independently of x (but not necessar-
ily independently of the other queries). For an overview about applications
of random-self-reductions we refer to [14,17]. Unlike self-reductions, random-
self-reductions do not require that the queries are smaller; if the length of the
queries equals the length of x then the reduction is called length-preserving.
The query depth of a random-self-reduction is defined analogously to the query
depth of a learning algorithm. Feigenbaum et al. [16] show that adaptive (more
specifically, query depth |x|) random-self-reductions are more powerful than
nonadaptive ones. Combining our result with [16] we establish the following
hierarchy: Let β(n) be an unbounded, nondecreasing function β(n) such that
nβ(n) is time-constructible (e.g., β(n) = log∗ n) and let d(n) be a fixed polyno-
mial. If one-way functions exist, there is a language in DSPACE(nβ(n)) such
that there is a random-self-reduction with query depth d(n) + 1, while ev-
ery length-preserving random-self-reduction of depth d(n) fails. We also show
slight extensions of this result, for example to coherent sets, i.e., sets L where
membership of any x can be decided efficiently with help of the oracle χL−{x}.

The paper is organized as follows. In Section 2 we introduce notations and defi-
nitions of learning theory, cryptography and random-self-reductions and coher-
ence. In Section 3 we define our concept class and prove the positive resp. neg-
ative result about learnability. The issue of depth- and width-bounded algo-
rithms appears in Appendix A. In Section 4, we apply the results of Section 3
to random-self-reductions as well as coherent sets.

2 Preliminaries

We introduce some basic notations. For a finite set S let y ∈R S denote a
uniformly chosen element y from S. We write πj(y) ∈ {0, 1} for the projection
onto the j-th bit of y ∈ {0, 1}n, where n is understood from the context
and j ∈ {1, . . . , n}. For notational convenience, we sometimes switch between
natural numbers and their binary representations.

2.1 Computational Learning Theory

We briefly recall notations and definitions of learning theory. Let X = (Xn)n∈N
denote the domain, where Xn ⊆ {0, 1}p(n) for some polynomial p(n). For
k ∈ {0, 1}n, a concept ck is a subset of Xn. We call k the name of ck. Let
Cn = {ck | k ∈ {0, 1}n} and define the concept class by C = (Cn)n∈N. We
usually view ck as a Boolean function; that is, ck(x) = 1 if x ∈ ck and ck(x) = 0
otherwise. Let D = (Dn)n∈N be a sequence of distributions Dn on Xn. We
say that D is efficiently sampleable if there is a probabilistic polynomial-time
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algorithm such that for input 1n the output of the algorithm is identically
distributed to Dn.

Following Kharitonov [24] we define a prediction with membership and equiv-
alence queries algorithm (pwme-algorithm). Let C be a concept class and
D be an efficiently sampleable distribution. The error parameter function
ε : N → Q

+ determines the accuracy of the learning algorithm. A pwme-
algorithm L is a probabilistic algorithm that gets inputs n and ε(n) and, after
a target concept ck ∈ C has been chosen, may make in addition to internal
computations

• membership queries, i.e., query the oracle ck for arbitrary x ∈ Xn

• equivalence queries, i.e., give k′ ∈ {0, 1}n to the oracle and receive the
answer “yes” if ck = ck′ resp. a counterexample x ∈ Xn with ck(x) 6= ck′(x)
• exactly one challenge query, where an example z ∈ Xn is randomly gener-

ated according to the distribution Dn and returned to L; algorithm L then
outputs a guess for ck(z) and stops

We say that L successfully predicts C with respect to D and ε iff, for all n ∈ N
and ck ∈ Cn, the probability that L’s guess is correct, i.e., equals ck(z), is at
least 1 − ε(n). We call C efficiently predictable with respect to D and ε iff
there is a pwme-alogithm L that successfully predicts C with respect to D
and ε and runs in polynomial time in n and 1/ε(n). We say that C is weakly
predictable with respect to D iff it is efficiently predictable with respect to D
and ε(n) = 1/2− 1/p(n) for some polynomial p : N→ Q

+ and all but finitely
many n ∈ N. We call a pwme-algorithm L a pwm-algorithm if L does not put
equivalence queries.

Note that C and D are fixed and therefore known by L. Note also that L does
not need randomly generated examples (as in case of PAC algorithms), because
we only consider efficiently sampleable distributions. Thus, L can generate an
example by itself and then put a membership query for this example. Moreover,
we remark that unpredictability implies impossibility of PAC-learnability with
queries (see the discussion in [24]).

Next, we define the query depth of a pwme-algorithm. We assume wlog. that
any pwme-algorithm L proceeds in rounds. At the beginning of each round, L
puts in parallel membership and equivalence queries and receives the answers.
Then it performs internal computations and starts the next round. After fin-
ishing the last round, it is allowed additional computations and finally gives
its output. The pwme-algorithm has query depth d(n) if it takes at most d(n)
rounds for inputs n, ε(n) and all target concepts of complexity n. A concept
class C is weakly predictable in query depth d(n) with respect to D if it is
weakly predictable by a pwme-algorithm with query depth d(n).

As for the positive result on the learnability of our concept class, we say that
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a concept class C is exactly learnable with membership queries iff there exists
a polynomial-time algorithm L such that for all n ∈ N and ck ∈ Cn, algorithm
L with oracle access to ck outputs a name k′ ∈ {0, 1}n such that ck = ck′ .
The query depth of such an algorithm is defined analogously to the depth of a
pwme-algorithm. If this depth is bounded by d(n), we call C exactly learnable
with membership queries in query depth d(n).

2.2 Cryptography

In this section we introduce the cryptographic background. A function δ : N→
R

+ is called negligible iff it vanishes faster than any polynomial fraction, i.e., iff
for any polynomial p : N → R

+ there exists n0 ∈ N such that δ(n) < 1/p(n)
for all n ≥ n0. For instance, δ(n) = 2−n is negligible. For the rest of the
paper, we abbreviate “there exists n0 such that . . . for all n ≥ n0” by “for all
sufficiently large n”. In the sequel we use the following facts about negligble
functions: Let f(n) ≥ 1/p0(n) for some positive polynomial p0 and infinitely
many n and let δ(n) be a negligible function; then f(n)− δ(n) ≥ 1/2p0(n) for
infinitely many n. Additionally, it is easy to see that p(n) · δ(n) is negligible
for any positive polynomial p(n) if and only if δ(n) is negligible.

A collection F = (Fn)n∈N of functions is a sequence of functions Fn : {0, 1}n×
{0, 1}n → {0, 1}n. The first argument is called the key and usually denoted
by k ∈ {0, 1}n. If it is fixed and n is understood, we write Fk(·) for the func-
tion Fn(k, ·). As explained in the introduction, a collection F of functions is
pseudorandom if, roughly speaking, a randomly chosen function from F looks
like a uniformly drawn function from the set {g : {0, 1}n → {0, 1}n}. In this
paper, we use a different formalization which fits better in our scenario. Yet,
this definition is equivalent to the one usually used in the literature (cf. [19]).

Consider the following experiment. Let D be a probabilistic polynomial-time
algorithm. At the beginning, a random key k ∈R {0, 1}n is chosen and kept
secret from D. D is given 1n (n in unary) as input and is allowed to adaptively
query the oracle Fk(·) for values of its choice. Then D outputs a challenge
y ∈ {0, 1}n such that y has not been queried previously and D is disconnected
from the oracle. A bit b ∈R {0, 1} is chosen at random as well as a random
string r ∈R {0, 1}n and D is given (Q0, Q1) where Qb = Fk(y) and Q1−b = r.
That is, D receives the value of Fk at y and a random string in random order.
Finally, algorithm D outputs a guess g ∈ {0, 1} for b. The distinguishing
advantage of D is the probability (over the choice of k and the coin tosses
of D) that D’s guess is correct minus the pure guessing probability: AdvFD =
|Prob[ b = g]− 1/2|. Note that AdvFD is a function of n ∈ N, the input of D.
Roughly speaking, F is pseudorandom if any distinguisher D cannot predict
b essentially better than with probability 1/2 for sufficiently large n.
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Definition 1 A collection F = (Fn)n∈N of functions Fn : {0, 1}n × {0, 1}n →
{0, 1}n is called a collection of pseudorandom functions iff

• there exists a polynomial-time algorithm F such that F(k, x) = Fn(k, x) for
any k, x ∈ {0, 1}n and all n ∈ N

• the distinguishing advantage AdvFD(n) of any probabilistic polynomial-time
algorithm D is negligible

Note that the first property means that (Fn)n∈N is computable in polynomial
time in n. It is well-known that collections of pseudorandom functions exists
if and only if one-way functions exist [19,20]. One-way functions are believed
to be the weakest assumption for non-trivial cryptography [22,25].

We say that a collection F of pseudorandom functions is non-uniformly se-
cure if it even holds that the distinguishing advantage of any polynomial-size
circuit family D is negligible. Non-uniformly secure collections of pseudoran-
dom functions can be derived from non-uniformly secure one-way functions,
i.e., one-way functions that remain hard to invert on random values even for
polynomial-size circuit families. We remark that security of one-way functions
against non-uniform algorithms is also a widely accepted assumption in cryp-
tography.

In the sequel we will use the following fact about pseudorandom functions.
Consider the variation of the experiment above, where D, after querying the
oracle Fk(·), outputs a pair (y, z) such that y has not been passed to the
oracle yet. The prediction probability PredFD(n) of D (as a function of n) is
the probability that Fk(y) = z. That is, the prediction probability denotes the
probability that D is able predict the function value at y without having seen
it. The probability is taken over the random choice of the key and the coin
tosses of D. The proof of the following fact can be found in [19]:

Fact 2 Let F be a collection of pseudorandom functions. Then the predic-
tion probability PredFD(n) of any probabilistic polynomial-time algorithm D is
negligible.

Intuitively, for a collection of pseudorandom functions the prediction probabil-
ity is negligible because if one was be able to predict a value then it would also
be easy to distinguish it from a random string. The converse of Fact 2 does not
hold: Consider for example the collection G = (Gn)n∈N of functions defined by
Gn(k, x) = (Fn(k, x), x) for a collection F of pseudorandom functions. Clearly,
this collection achieves negligible prediction probability (because one must be
able to predict the left half, i.e., the output of the pseudorandom function).
It is, however, not a collection of pseudorandom functions as the argument
x is appended to the output, enabling us to distinguish function values from
random strings.
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Again, there is the non-uniform counterpart of Fact 2. That is, the prediction
probability of any polynomial-size circuit family D is negligble if F a non-
uniformly secure collection of pseudorandom functions.

2.3 Random-Self-Reducible and Coherent Sets

In this section we introduce the notions of random-self-reductions [8] and co-
herent sets [32]. The definition of the query depth of the corresponding prim-
itive is a straightforward extension of the definition for learning algorithms.
At the end of this section, we briefly recall the definitions of the complexity
classes that we deal with in this paper.

A deterministic algorithm defines a random variable if we choose some part
of the input of the algorithm at random. For instance, we write A(x) for the
random variable that describes the output distribution of algorithm A for
input (x, r) if we choose r at random and x is fixed. Also, the omitted input r
in A(x) will be clear from the context. The following definition is taken from
[16]:

Definition 3 A function f : {0, 1}∗ → {0, 1}∗ is called nonadaptively k(n)-
random-self-reducible if there exist polynomial-time algorithms φ, σ and a poly-
nomial p(n) such that for all x we have

f(x) = φ
(
x, r, f

(
σ(1, x, r)

)
, . . . , f

(
σ(k(|x|), x, r)

))
with probability at least 2/3 over the choice of r ∈R {0, 1}p(|x|). Additionally,
for all x, y ∈ {0, 1}n the random variables σ(i, x) and σ(i, y) are identically
distributed.

From the definition it immediately follows that a single value σ(i, x, r) does
not yield any information about x. Yet, σ(i, x) and σ(j, x) are dependent
in general and may therefore reveal x. More generally, we consider adaptive
random-self-reductions where σ(i, x, r) may also depend on the previous an-
swers f(σ(1, x, r)), . . . , f(σ(i − 1, x, r)) for i = 1, . . . , k(|x|). It is easy to see
that the error probability 1/3 can be decreased to 2−q(n) for any polynomial
q(n) by standard techniques for both adaptive and nonadaptive reductions.
In particular, lowering the error probability by majority decision preserves
the query depth. We remark that the notion of the query depth of random-
self-reductions has been mentioned implicitely in [15] though, to best of our
knowledge, it has not been investigated further — except for the special cases
of adaptive and nonadaptive reductions.

A random-self-reduction is oblivious if the queries σ(1, x, r), . . . , σ(k(|x|), x, r)
do not depend on x, i.e., σ(i, x, r) = σ(i, 1n, r) for i = 1, . . . , k(|x|). It is called
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deterministic if the queries do not depend on r. In contrast to ordinary self-
reductions we do not restrict the queries σ(i, x, r) to be smaller than the input,
but allow queries with arbitrary length. We say that a random-self-reduction is
length-preserving if |σ(i, x, r)| = |x| for all i, x, r. It is called length-monotone
if |σ(i, x, r)| ≤ |x|. We say that a set L is random-self-reducible if χL is.

Closely related to random-self-reducible sets are so-called coherent sets, which
we define next. Let f : {0, 1}∗ → {0, 1} be a Boolean function. An examiner
for f is a probabilistic polynomial-time oracle Turing machine E that, on input
x, never queries the oracle f for x. Let Ef (x) denote the random variable that
describes the output.

Definition 4 A set L is called coherent if there exists an examiner E such
that EχL(x) = χL(x) with probability at least 2/3 for all x.

Again, the error probability can be decreased to 2−q(n) while preserving the
query depth. We say that L is deterministic coherent if E is (deterministic)
polynomial-time. L is called weakly coherent if E is a polynomial-size circuit
family. In this case, we say that E is a weak examiner. If L is not coherent it
is called incoherent.

It is easy to see (for example [7]) that for every language L the set L⊕L =
{0x | x ∈ L}∪{1x | x ∈ L} is coherent. Additionally, Beigel and Feigenbaum
[7] show that every random-self-reducible set is also weakly coherent, though it
is not known whether this result also extends to uniform examiners. The con-
verse is unlikely to hold, as every NP-complete set is coherent but, unless the
polynomial hierarchy collapses at the third level, is not random-self-reducible
in query depth O(log n). See [15] for details.

As our results involve some complexity classes, we give a brief overview about
these classes. We refer the reader to [4] for a comprehensive treatment of
structural complexity. A language L is in DSPACE(f(n)) if there exist a de-
terministic Turing machine deciding membership in L with bounded work
space O (f(n)). It is in NE if there exist a nondeterministic Turing machine
computing χL with running time at most 2O(n). Similarly, L ∈ BPE if there is a
probabilistic Turing machine that decides membership in L with bounded er-
ror in time 2O(n). We say that L ∈ NEEE if there is a nondeterministic Turing

machine that computes χL with time bound 222O(n)

. Membership in the class
BPEEE is defined accordingly. Finally, we remark that a function f(n) is time-
constructible if it can be computed inO(f(n)) steps, i.e., if a deterministic Tur-
ing machine computes 1f(n) on input 1n in time O(f(n)). Time-constructible
functions are very important for diagonalization techniques (cf. [4]).
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3 Limitations on Parallelizing Queries

In this section we define our concept class based on any collection of pseudoran-
dom functions. We show that this class cannot be predicted with membership
queries in depth d(n), though it can be learned exactly in depth d(n) + 1.
Finally, we discuss that prediction remains hard even if we add equivalence
queries.

3.1 Definition and Positive Result

Let F = (Fn)n∈N be a collection of pseudorandom functions and let d(n) be a
fixed polynomial. The basic idea is to define a concept ck ∈ Cn for each function
Fn(k, ·) ∈ Fn such that querying this concept for a specific sequence of values
in depth d(n) + 1 always yields the key, but such that any algorithm with
depth d(n) essentially faces a pseudorandom function which in turn implies
weak unpredictability. To this end, we modify F to a collection F ∗ which then
allows us to construct the desired concept class.

For a function Fk(·) = Fn(k, ·) and i = 0, . . . , d(n) define

y
(i)
k =

0n if i = 0

Fk
(
y

(i−1)
k

)
else

That is, y
(i)
k is obtained by iterating i times Fk(·) at 0n. For each k ∈ {0, 1}n

alter Fk(·) to a function F ′k(·) by setting

F ′k(x) =

k if x = y
(d(n))
k

Fk(x) else

Thus, the only difference between F ′k and Fk is that F ′k reveals the key if it is

evaluated at y
(d(n))
k . Do we always obtain the key k when iterating F ′k(·) exactly

d(n) times at 0n? Not necessarily. The reason is that if y
(i)
k = y

(d(n))
k for some

i ∈ {0, . . . , d(n)− 1} then by definition F ′k(y
(i)
k ) equals k instead of y

(i+1)
k and

hence F ′k(· · · (F ′k(0n))) does not necessarily yield k. This means that we might
not be able to learn this class exactly in depth d(n) + 1, because we cannot
verify errorless that we have in fact obtained a key k′ with F ′k(·) = F ′k′(·). To
overcome this problem we change F ′ to another collection F ∗. We first show
that for the collection F of pseudorandom functions collisions y

(i)
k = y

(j)
k occur

only with very small probability:

Lemma 5 The probability (over the choice of the key k) that y
(i)
k = y

(j)
k for

some i < j with i, j ∈ {0, . . . , d(n)} is negligible.
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Intuitively, this is clear because it obviously holds for truly random functions
and pseudorandom functions have a similar randomness property.

PROOF. We prove that otherwise there exist a polynomial-time algorithm
D that contradicts the unpredictability of the collection F of pseudorandom
functions. Specifically, we show that in this case D successfully predicts the
value Fk(y) for an appropriate y with probability at least 1/p(n) for a poly-
nomial p(n) and infinitely many n ∈ N, where Fk is the randomly chosen
function D is given oracle access to.

Assume that the probability that there exist i, j as in the claim is not neg-
ligible. More precisely, let this probability be greater than 1/q(n) for a poly-
nomial q and infinitely many n. For a fixed key k we call a pair (i, j) bad if

0 ≤ i < j ≤ d(n) and y
(i)
k = y

(j)
k . If a bad pair exist then there is also a mini-

mal bad pair (i0, j0), i.e., such that there does not exist another bad pair (i, j)
with j < j0. We construct D as follows. D tries to guess (i0, j0) by choosing
J ∈R {1, . . . , d(n)} and I ∈R {0, . . . , J − 1} at random. Then D computes

y
(0)
k , . . . , y

(J−1)
k by querying the oracle Fk(·). If y

(J−1)
k 6= y

(0)
k , . . . , y

(J−2)
k then D

outputs (y
(J−1)
k , y

(I)
k ). Else D gives an arbitrary output. If there exist a (min-

imal) bad pair (i0, j0) then (I, J) = (i0, j0) with probability at least 1/d2(n).

In this case, y
(J−1)
k 6= y

(0)
k , . . . , y

(J−2)
k because (i0, j0) is minimal. Additionally,

Fk(y
(J−1)
k ) = y

(J)
k = y

(I)
k . Hence, the prediction of D is correct with probability

at least 1/d2(n)q(n) infinitely often, which is not negligible. This contradicts
the unpredictability of F . 2

In the sequel we denote by Kn ⊆ {0, 1}n the set of keys k ∈ {0, 1}n for which

y
(0)
k , . . . , y

(d(n))
k are distinct and, for technical reasons, we also demand that

k 6= 0n. Then the set Kn contains all but a negligible fraction of the keys
k ∈ {0, 1}n by Lemma 5 and since excluding the single key 0n from each
Kn does not affect this asymptotic property. Change each function F ′k(·) to a
function F ∗k (·) according to

F ∗k (x) =

F ′k(x) if k ∈ Kn

0n else

That is, if there is a collision y
(i)
k = y

(j)
k or k = 0n then we reset the func-

tion for key k to a trivial function. Moreover, we now have that iterating
F ∗k (· · · (F ∗k (0n))) for d(n) times always reveals a key k′ such that F ∗k′(·) = F ∗k (·).
Futhermore, for all keys k in Kn we have F ∗k (·) = F ′k(·), i.e, for all but a negligi-
ble fraction of the keys, F ∗k (·) equals the pseudorandom function Fk(·) (except

for the value at y
(d(n))
k ). Thus, F ∗ is the collection we are looking for: On one

hand, it is easy to obtain a key in depth d(n)+1 by querying for y
(0)
k , . . . , y

(d(n))
k .

11



On the other hand, it is hard to predict a function value if one does not query
for y

(d(n))
k , which any learning algorithm with depth d(n) cannot, unless it can

already guess one of the values y
(i)
k without having seen y

(i−1)
k .

Define the concept class C = (Cn)n∈N by Cn = {ck | k ∈ {0, 1}n}, where

ck =
{

(x, j) ∈ {0, 1}n+dlogne
∣∣∣ πj(F ∗k (x)) = 1

}
Recall that πj(F

∗
k (x)) is the projection of F ∗k (x) onto bit j. The distribution

Dn on {0, 1}n+dlogne is described by picking x ∈R {0, 1}n and j ∈R {1, . . . , n}
independently. Obviously, D is efficiently sampleable. At the end of this section
we discuss that any sufficiently “smooth” and sampleable distribution works,
too.

Lemma 6 The concept class C is exactly learnable with membership queries
in query depth d(n) + 1.

PROOF. Let ck be the target concept. In each round i = 1, . . . , d(n) + 1
query in parallel the oracle ck for (y(i−1), 1), . . . , (y(i−1), n), where y(0) = 0n

and y(i) is the concatenation of the answers in round i. Since iterating d(n)
times F ∗k at 0n reveals a key k′ with F ∗k′(·) = F ∗k (·), we finally obtain a name
k′ of a concept such that ck′ = ck. 2

3.2 Impossibility of Learning with Membership Queries

We prove the impossibility result. In this part, we restrict ourself to learning
algorithm with membership queries only.

Lemma 7 C is not weakly predictable with membership queries in query depth
d(n) with respect to D.

The outline of the proof is as follows. If C was weakly predictable then this
would also hold if we choose the target concept at random, namely select
k ∈R {0, 1} and let ck be the target concept. Since the query depth of the

learning algorithm is bounded by d(n), it cannot query for y
(d(n))
k and therefore

obtain the key k, unless it can guess at least one of the values y
(1)
k , . . . , y

(d(n))
k

— or if k /∈ Kn. But since the latter event occurs with negligible probability
only, this would contradict the unpredictability of the pseudorandom function.
Hence, as the learning algorithm cannot obtain the key for almost all choices
of k, predicting a random example is almost as hard as distinguishing between
the value of the pseudorandom function and a random string.

12



PROOF. Assume that there exists a pwm-algorithm L that weakly predicts
C with respect to D. Let p(n) denote the polynomial such that L predicts
correctly with probability at least 1/2 + 1/p(n) for infinitely many n ∈ N. 1

Since L predicts Cn for all target concepts ck, it also predicts Cn if we choose
k ∈R {0, 1}n and thus ck at random. From L we construct a successful distin-
guisher D for the collection of pseudorandom functions F = (Fn)n∈N. The dis-
tinguisher D is given oracle access to a function Fk(·) in Fn, where k ∈R {0, 1}n
is chosen at random. D is allowed to query the oracle Fk(·) about values of
its choice. Then D is supposed to distinguish a random string from the value
Fk(y) without having queried about y (or, as in the variation, D is supposed
to predict the value Fk(y) for some new y). Basically, D simulates L answer-
ing L’s queries using the oracle Fk(·). Let us describe the simulation in more
detail. D runs L until L outputs a membership query (x, j) or, more generally,
a sequence of queries. D then passes x to the oracle and receives the answer
z = Fk(x) resp. proceeds each query of the sequence sequentially in the same
way. D extracts the j-th bit from z, returns it to L, and continues to run
algorithm L.

We first show that the probability that the learning algorithm L queries
(y

(d(n))
k , j) for some j or that k /∈ Kn is negligible. If L does not query

(y
(d(n))
k , j) for any j and if k ∈ Kn then D is able to answer all queries

of L using its oracle Fk(·). This is possible as ck(x, j) = πj(Fk(x)) except

for x = y
(d(n))
k or k /∈ Kn. If L queries about (y

(d(n))
k , j) for some j and

k ∈ Kn then D is supposed to return the j-th bit of the key k to L, be-
cause ck(y

(d(n))
k , j) = πj(F

∗
k (y

(d(n))
k )) = πj(k). But D does not know the secret

key k. Hence, if L queries about y
(d(n))
k then the simulation fails. 2 The simu-

lation also fails if k /∈ Kn because F ∗k (x) = 0n for such k while it is unlikely
that the same holds for the oracle Fk(·). Fortunately, the probability that any
of these events happens is negligible and, given that the simulation succeeds,
it then follows that L cannot weakly predict the concept class.

Claim 8 The probability that L queries
(
y

(d(n))
k , j

)
for some j ∈ {1, . . . , n} or

that k /∈ Kn is negligible.

PROOF. First note that for any events A,B we have

Prob[A∨B] ≤ Prob[A | ¬ B ] + Prob[B]

1 Note that we only demand that L predicts correctly infinitely often. Weak pre-
dictability actually requires L to predict correctly for all sufficiently large n. This
even strengthens our result.
2 D might be able to guess some bits of the secret key k, but we even assume that
D cannot guess any of the bits. So we say that the simulation fails if y(d(n))

k appears
in any of L’s queries.
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Let A be the event that L queries y
(d(n))
k and B that k /∈ Kn. We conclude

that if the probability Prob[A∨B] were not negligible, then from Lemma 5
(i.e., Prob[B] is negligible) it follows that Prob[A | ¬ B ] cannot be negligible.
So suppose, towards contradiction, that given k ∈ Kn algorithm L asks a
membership query for (y(d(n)), j) for some j with probability at least 1/q(n)
for a polynomial q and infinitely many n ∈ N. We show how to derive a
predictor D′ for F with prediction probability 1/q′(n) for a polynomial q′ and
infinitely many n.

Recall that the query depth of L is d(n). Thus, given that L queries y
(d(n))
k and

that y
(0)
k , . . . , y

(d(n))
k are pairwise different, there exist i, r ∈ {1, . . . , d(n)} such

that L queries y
(i)
k in round r without having queried y

(i−1)
k in the proceding

r−1 rounds. Since D′ does not necessarily know i and r it tries to guess these
values by picking I, R ∈R {1, . . . , d(n)} uniformly at random. D′ computes

y
(1)
k , . . . , y

(I−1)
k via the function oracle and then simulates L until L has output

the membership queries for round R. Note that we have F ∗k (·) = F ′k(·) by
assumption k ∈ Kn. Let pL(n) denote the polynomial that bounds the running
time of L and thus the number of queries in each round. D′ uniformly picks
a query (y, j) of the at most pL(n) queries. The value y will be the guess

for y
(I)
k = Fk

(
y

(I−1)
k

)
. If y

(I−1)
k has not been among L’s queries in the previous

rounds, D′ outputs the pair (y
(I−1)
k , y). With probability at least 1/d2(n)pL(n),

more specifically, if I = i and R = r and y = y
(I)
k , the value y

(I)
k has not

been queried previously. If y
(I−1)
k has already been queried, D′ outputs an

arbitrary pair. Assume that y
(I−1)
k has not appeared among the queries. Then

D′ predicts Fk(y
(I−1)
k ) correctly with probability at least 1/d2(n)pL(n)q(n) for

infinitely many n, which is not negligble. The claim follows. 2

We conclude that with probability at least 1− 1/8p(n) (for all large n) algo-

rithm L does not query
(
y

(d(n))
k , j

)
for any j and that k ∈ Kn. In this case,

D is able to answer all queries correctly. After L has stopped and asked for
a challenge, D generates a random challenge distributed according to Dn by
picking x ∈R {0, 1}n and j ∈R {1, . . . , n}. With probability 1−(pL(n)+1)·2−n
(which is greater than 1−1/8p(n) for all large n) we have x 6= y

(d(n))
k and x has

not been queried by L previously. We call such x fresh. Let x be D’s challenge,
i.e., D is given Fk(x) and r ∈R {0, 1}n in random order (Q0, Q1). Let ` denote
L’s prediction for ck(x, j). D outputs a guess g ∈ {0, 1} as follows:

• if πj(Q0) = πj(Q1) then g is chosen at random
• if πj(Q0) 6= πj(Q1) then define g such that πj(Qg) = `

We remark that each case occurs with probability 1/2, depending only on the
choice of r, since πj(r) is a random bit. In the former case, D is successful
with probability 1/2. In the latter case, D’s guess is correct if and only if ` is.
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It remains to analyze D’s success probability. Denote by correct(`) the event
that L classifies random examples correctly, and by SimOK the event that L
does not query for (y

(d(n))
k , j), that k ∈ Kn and that x is fresh. By assump-

tion, we have Prob[ correct(`)] ≥ 1/2 + 1/p(n) for infinitely many n, where
the probability is taken over the choice of the target concept, the random
challenge and the coin tosses of L. In our case, we require that L predicts
correctly given that the simulation is good. This implies, for instance, that
we need to consider L’s success probability for keys k ∈ Kn. More generally,
we are interested in the conditional probability Prob[ correct(`) | SimOK ]. As
we will show this probability is only slightly smaller than Prob[ correct(`)].
This also captures the intuition: If L predicts correctly with probabilility
1/2 + 1/p(n), then the fact that the simulation fails cannot contribute sig-
nificantly to this success probability, because this event is very unlikely. First
observe that Prob[¬ SimOK] ≤ 1/4p(n) for all but finite many n by the union

bound, since the probability that L queries for y
(d(n))
k or that k /∈ Kn and the

probability that x is not fresh are both negligible and therefore each less than
1/8p(n). It follows that

Prob[ correct(`) | SimOK ] ≥ Prob[ correct(`)]− Prob[¬ SimOK] ≥ 1

2
+

1

2p(n)

infinitely often. Now we are ready to calculate the advantage of D. Let case1
and case2 denote the events that the first case (πj(Q0) = πj(Q1)) resp. the
other case (πj(Q0) 6= πj(Q1)) occurs. Recall that the events case1, case2 are
independent of SimOK and correct(`). Then

Prob[ b = g]

≥ Prob[ b = g ∧ SimOK]

= Prob[ b = g ∧ SimOK∧ case1] + Prob[ b = g ∧ SimOK∧ case2]

≥ Prob[ b = g | SimOK∧ case1 ] · Prob[ SimOK] · Prob[ case1]

+ Prob[ b = g | SimOK∧ case2 ] · Prob[ SimOK] · Prob[ case2]

= Prob[ b = g | SimOK∧ case1 ] · Prob[ SimOK] · Prob[ case1]

+ Prob[ correct(`) | SimOK∧ case2 ] · Prob[ SimOK] · Prob[ case2]

≥ 1

2
·
(

1− 1

4p(n)

)
· 1

2
+

(
1

2
+

1

2p(n)

)
·
(

1− 1

4p(n)

)
· 1

2

≥ 1

2
+

1

16p(n)

for infinitely many n ∈ N. That is, we obtain a distinguisher with distinguish-
ing advantage that is not negligible. This contradicts the pseudorandomness
of F and concludes the proof of Lemma 7. 2

We obtain:
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Theorem 9 If one-way functions exist, then for any polynomial d(n) there is
a concept class C and a distribution D such that C is not weakly predictable
with membership queries in query depth d(n) with respect to D, but can be
learned exactly with membership queries in query depth d(n) + 1.

3.3 Impossibility of Learning with Membership and Equivalence Queries

It remains to show that adding equivalence queries does not help learning in
query depth d(n). The idea is similar to Angluin’s well-known technique [1]
replacing an equivalence query by a polynomial number of parallel membership
queries. In our case this is even much simpler than in general. Assume that
L puts an equivalence query for k′ ∈ {0, 1}n. Then, for a randomly chosen
x ∈R {0, 1}n, we have F ∗k (x) 6= F ∗k′(x) with probability at least 1 − 1/q(n) ≥
1/2 for every polynomial q and sufficiently large n. Otherwise we could use
L to construct a successful predictor for pseudorandom functions, because
guessing the key is even harder than predicting a single value. Thus, with
probability at least 1/2n it holds πj(F

∗
k (x)) 6= πj(F

∗
k′(x)) for j ∈R {1, . . . , n}.

If we execute 2n2 such membership queries in parallel then with probability at
least 1−e−n we find a counterexample. Summing over all (at most polynomial)
equivalence queries we find counterexamples for all queries with probability
at least 1 − poly(n) · e−n. Hence, this simulation only fails with negligible
probability and we can therefore apply the argument of the previous theorem.

Theorem 10 If one-way functions exist, then for any polynomial d(n) there
is a concept class C and a distribution D such that C is not weakly predictable
with membership and equivalence queries in query depth d(n) with respect to
D, but can be learned exactly with membership queries in query depth d(n)+1.

The proof of Lemma 7 shows that we do not require D to be uniform over
{0, 1}n+dlogne. It suffices that the x-part of the random challenge (x, j) appears
only with negligible probability among the queries of the learning algorithm
(so that x is fresh according to the terminology of the proof of Lemma 7). To
formalize this requirement let ‖Xn‖ = max {Prob[X = x] | x ∈ {0, 1}n} de-
note the infinity norm of a random variable Xn over {0, 1}n. For a distribution
Dn over {0, 1}n+dlogne define a random variable Xx

n by

Prob[Xx
n = x] =

n∑
j=1

Prob[ (Xn, Jn) = (x, j)] ,

where (Xn, Jn) is distributed according toDn. Denote the distribution ofXx
n by

Dxn. Then the results of Theorem 10 also holds for any sampleable distribution
D such that δ(n) = ‖Dxn‖ is negligible in n. We remark that for the uniform
distribution we have δ(n) = 2−n. Also note that we do not presume anything
about the distribution of the j-part.
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4 Applications to Random-Self-Reductions and Coherent Sets

Feigenbaum et al. [16] present a set L in DSPACE(nβ(n)) for any unbounded,
nondecreasing function β(n) (with nβ(n) time-constructible) such that L is
adaptively random-self-reducible, while nonadaptive random-self-reductions
do not exist. This results holds unconditionally. Assuming NEEE 6⊆ BPEEE,
they show that there exist such sets in NP. This assumption has been reduced
to NE 6⊆ BPE by Hemaspaandra et al. [21]. Combining the idea of Feigenbaum
et al. [16] with our result for learning algorithms we obtain the following:

Proposition 11 Let β(n) be an unbounded, nondecreasing function such that
nβ(n) is time-constructible and nβ(n) ·2−n is negligible. Let d(n) be a fixed poly-
nomial. If one-way functions exist, there is a language L in DSPACE(nβ(n))
such that there is no length-preserving random-self-reduction of query depth
d(n) for L, though there exists a deterministic, oblivious, length-preserving
random-self-reduction of query depth d(n) + 1.

We remark that nβ(n) · 2−n is negligible if, for instance, β(n) · log n < n/2 for
sufficiently large n. This is true for β(n) = log∗ n.

PROOF. The proof is similar to the proof given in [16]. We view a random-
self-reduction given by algorithms σ and φ as a single Turing machine M .
The choice of β(n) ensures that nβ(n) > p(n) for any polynomial p(n). We
can therefore diagonalize against the length-preserving random-self-reductions
M1,M2, . . . of query depth d(n). See [4] for more background about diagonal-
ization. The language L will consist of tuples (x, j) ∈ {0, 1}n+dlogne such that
πj(F

∗
k (x)) = 1 for appropriate key k ∈ {0, 1}n. This key of length n will be

determined by the diagonalization technique.

We enumerate the length-preserving random-self-reductionsM1,M2, . . . of query
depth d(n) such that we consider every Mi in connexion with infinitely many
complexity parameters n ∈ N. We call such n related to Mi and denote the
set of such n by Ni. For appropriate enumerations of M1,M2, . . . the sets
N1, N2, . . . form a partition of N; in fact, standard enumeration techniques
work. Assume for the moment thatMi correctly predicts πj(F

∗
k (x)) with proba-

bility at least 2/3 for all k ∈ {0, 1}n and all (x, j) ∈ {0, 1}n+dlogne for infinitely
many related n’s. Mi’s running time and therefore the number of queries is
bounded above by nβ(n). Additionally, any query σ(j, x) of Mi is distributed
independently of x. Thus, if we choose a random input (x, j) ∈R {0, 1}n+dlogne

and let Mi run on that input, then with probability at most nβ(n) · 2−n the
value (x, j) appears among the queries. By assumption, nβ(n) ·2−n is negligible.
Hence, given that Mi decides membership correctly with probability 2/3 for
all inputs (x, j) and all keys k, it does so without querying about the input and
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with probability at least 5/8 for uniformly chosen and sufficiently large input
and all keys (of related length n). Similar to the negative result on the learn-
ability of our concept class, we conclude that we can turn Mi into a successful
distinguisher for the underlying collection of pseudorandom functions. This
follows by choosing a random (x, j) and then simulating Mi with the help of
the pseudorandom function oracle. Here we exploit the fact that the reduction
is length-preserving so that Mi’s queries fall within the domain of the oracle of
the distinguisher. From this contradiction we derive that for every sufficiently
large n (related to Mi) there exists some key k0 and input (x0, j0) such that
Mi fails to predict πj0(F ∗k0

(x0)) with probability more than 1/3. Clearly, we

can determine such a key k0 in space O
(
nβ(n)

)
by exhaustive search. Call the

lexicographically smallest of such keys hard for i, n. Add exactly those (x, j)
with πj(F

∗
k0

(x)) = 1 to L:

L =
⋃
i∈N

⋃
n∈Ni

{
(x, j)

∣∣∣ πj(F ∗k0
(x0)) = 1 and k0 is hard for i, n

}

Since each length-preserving random-self-reduction of query depth d(n) ap-
pears at some point in the enumeration, the language L is not randomly
self-reducible in query depth d(n).

The fact that this language is obliviously random-self-reducible is straightfor-
ward as we can determine the key k0 in depth d(n) + 1. Then we can easily
decide whether the input (x, j) is in L by computing πj(F

∗
k0

(x)). 2

Presuming non-uniformly secure pseudorandom functions we immediately ob-
tain:

Corollary 12 Let β(n) be an unbounded, nondecreasing function and assume
that nβ(n) is time-constructible and that nβ(n) · 2−n is negligible. Let d(n) be a
fixed polynomial. If non-uniformly secure one-way functions exist, there is a
language L in DSPACE(nβ(n)) such that there is no length-monotone random-
self-reduction of query depth d(n) for L, though there is a deterministic, obliv-
ious, length-preserving random-self-reduction of query depth d(n) + 1.

PROOF. The proof is a straightforward extension of the proof of Proposition
11. Again, if there was a length-monotone random-self-reduction we could
construct a polynomial-size circuit family with distinguishing advantage that
is not negligible. To answer queries that have smaller length we give the circuit
that simulates the random-self-reduction for inputs of length n + dlog ne the
first n − 1 keys determined by L for complexity parameters 1, . . . , n − 1 as
nonuniform advice. 2
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Beigel and Feigenbaum [7] prove that every random-self-reducible language
is weakly coherent. Analyzing their proof it is easy to see that their trans-
formation of a random-self-reduction to a weak examiner preserves the query
depth. The negative result for examiners follows as in Proposition 11 because
the examiner is not allowed to query about the given input.

Corollary 13 Let β(n) be an unbounded, nondecreasing function. Assume
that nβ(n) is time-constructible and that nβ(n) · 2−n is negligible. Let d(n)
be a fixed polynomial. If one-way functions exist, there is a language L in
DSPACE(nβ(n)) that is incoherent for length-preserving examiners of query
depth d(n), though there exists a weak, length-preserving examiner of query
depth d(n) + 1.

Again, this conclusion can be extended to length-monotone examiners as-
suming non-uniformly secure one-way functions. Unfortunately, we do not
know whether the positive result of Corollary 13 also holds for probabilistic
polynomial-time examiners instead of weak examiners. But we achieve this
using a somewhat stronger assumption, namely the existence of one-way per-
mutations:

Proposition 14 Let β(n) be an unbounded, nondecreasing function and as-
sume that nβ(n) is time-constructible and that nβ(n) · 2−n is negligible. Let
d(n) be a fixed polynomial. If one-way permutations exist, there is a language
L in DSPACE(nβ(n)) that is incoherent for length-preserving examiners of
query depth d(n), though there is a deterministic, length-preserving examiner
of query depth d(n) + 1.

PROOF. Given a one-way permutation we can construct a collection of pseu-
dorandom functions such that Fn(k, 1n) 6= Fn(k′, 1n) for k 6= k′; see [13]. Simi-

lar to the proof of Lemma 5 in Section 3 we conclude that y
(1)
k , . . . , y

(d(n))
k 6= 1n

for all but a negligible fraction of the keys k ∈ Kn. Hence, the impossibility
result remains valid if we restrict ourself to such keys. Now it also suffices
to show the positive result for those keys. Assume that the examiner E is
given (x, j) as input. If x /∈

{
y

(0)
k , . . . , y

(d(n))
k

}
then E can compute k in depth

d(n) + 1 without querying for (x, j) and decide whether (x, j) ∈ L by com-

puting πj(F
∗
k (x)) in polynomial time. Suppose that x = y

(i)
k for some i. Then

the examiner cannot query for (y
(i)
k , j). Fortunately, there are only two possi-

bilities, namely (x, j) ∈ L or (x, j) /∈ L. E tries both possibilities in parallel
and also asks for Fk(1

n) in a single concurrent step. This is possible as 1n is

different from y
(0)
k , . . . , y

(d(n))
k by assumption about k. Thus E derives two keys

k0 and k1 and the value Fk(1
n) in query depth d(n) + 1. It determines the cor-

rect key by computing Fk0(1n) and Fk1(1n) in polynomial time and comparing
it to the value obtained for Fk(1

n). Given the key k the examiner can decide
whether (x, j) ∈ L. 2

19



Assuming non-uniformly secure one-way permutations we can extend the neg-
ative result to length-monotone examiners. An interesting open problem is the
question if one can generalize the negative results about random-self-reducible
and coherent sets to arbitrary reductions and examiners instead of length--
monotone ones. Also, we leave it as an open problem to establish similar
results for languages in the polynomial hierarchy.
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A Bounding the Query Depth and Width

In this section we consider learning algorithms where the query depth and
the query width are bounded by fixed polynomials d(n) and w(n), respec-
tively. Thus, the total number of queries is bounded by t(n) = d(n)w(n). The
concept class that we define is based on well-known techniques using poly-
nomials and interpolation. Feigenbaum et al. [16] also take this approach to
separate nonadaptively (t(n) + 1)-random-self-reducible functions from adap-
tive t(n)-random-self-reductions. We first give an informal overview. Each
concept c ∈ Cn of our concept class corresponds to a polynomial P (ξ) of
degree t(n) over the finite field GF(2n); a pair (x, j) is in the concept c if
the j-th bit of P (x) equals 1. Every polynomial P (ξ) ∈ GF(2n) [ξ] of de-
gree t(n) can be uniquely identified by t(n) + 1 values P (xi) at distinct ele-
ments x0, . . . , xt(n) ∈ GF(2n). Hence, every polynomial resp. concept can be
learned exactly with n · (t(n) + 1) membership queries. On the other hand,
t(n) or less values P (x1), . . . , P (xt(n)) reveal no information about P (y) for
any y 6= x1, . . . , xt(n), i.e., there are |GF(2n)| = 2n polynomials of degree t(n)
that are consistent with the values P (xi). Therefore, any learning algorithm
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making at most t(n) queries is only able to classify a random example (x, j)
correctly if it either guesses the classification or if x has been queried. The
latter event happens with negligible probability, so any learning algorithm can
only be correct with probability close to 1/2.

For the moment we only consider algorithms with membership queries. We
show afterwards how to replace equivalance queries by membership queries.

Proposition 15 For any polynomial t(n) there is a concept class C and a dis-
tribution D such that C is not weakly predictable with t(n) membership queries
with respect to D, but can be learned exactly with n · (t(n) + 1) membership
queries.

PROOF. We start by showing the negative result. Consider the polynomials
of degree t(n) over GF(2n) [ξ]. The name of each polynomial

Pp0,...,pt(n)
(ξ) =

t(n)∑
i=0

piξ
i

is the concatenation of its t(n) + 1 coefficients p0, . . . , pt(n) ∈ GF(2n). Thus,
the length of the name is polynomially in n. In the sequel, we sometimes write
P (ξ) instead of Pp0,...,pt(n)

(ξ) if the coefficients are clear from the context. Define
the concept class C = (Cn)n∈N by

Cn =
{
cp0,...,pt(n)

∣∣∣ p0, . . . , pt(n) ∈ GF(2n)
}

where

cp0,...,pt(n)
=
{

(x, j)
∣∣∣ x ∈ GF(2n) and πj(Pp0,...,pt(n)

(x)) = 1
}

The distribution Dn is described by picking x ∈R GF(2n) and j ∈R {1, . . . , n}.

Why is this concept class not weakly predictable with t(n) queries, even for
computationally unbounded learning algorithms? Let cp0,...,pt(n)

∈ Cn be the
target concept. In advantage of the learning algorithm L we suppose that
any of L’s queries (x, j) is answered by the full value Pp0,...,pt(n)

(x) instead of
the j-th bit. After posing at most t(n) queries, a random challenge (x, j) is
generated. Given that the x-part of this challenge has not been among the
queries, for every value y ∈ GF(2n) there is exactly one polynomial P y(ξ) of
degree t(n) which is consistent with the (modified) answers to the queries, i.e.,
which might be the target polynomial, and such that P y(x) = y. Hence, if x
has not been queried then the learning algorithm cannot decide whether x lies
in the target concept or not with probability more than 1/2. We obtain that
the prediction probability of L is at most 1/2 + t(n) · 2−n.
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To learn this class with n·(t(n)+1) queries, we query about the values (x, j) for
x = 0, . . . , t(n) and j = 1, . . . , n. Then we can reconstruct the target concept
by Lagrange interpolation and output the name of the concept. The overall
running time is polynomially in n. 2

It remains to show that adding equivalence queries does not help. Again,
we apply Angluin’s standard argument and replace each equivalence query
by a single membership query. If the learning algorithm L depth puts an
equivalence query p∗0, . . . , p

∗
t(n), then we answer this query as follows: Let

P ∗(ξ) = Pp∗0,...,p∗t(n)
(ξ).

• If there has already been a membership query about (x, j) with answer b
and it holds that πj(P

∗(x)) 6= b then return (x, j) as a counterexample.
• If P ∗(ξ) is consistent with the previous membership queries, then we can

find some x ∈ GF(2n) that L has not queried yet (e.g., taking the smallest
number between 0 and t(n)), and return the counterexample (x, 1).

Note that the total number of queries remains unchanged. After having an-
swered t(n) queries in this way, for every value y ∈ GF(2n) there is still a
polynomial P y(ξ) that is consistent with the simulated answers and therefore
the desired result follows.
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