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Abstract. The proposed European system for electronic identities, authentication, and

trust services (eIDAS) enables remote authentication of an identity card (and selected

data of the card) to an eID service. The core system has already been running on the

German identity card since 2010. We analyze an extension proposed by Bundesdruckerei

that enables the protocol to authenticate further transaction data such as phone numbers

or PGP keys. In particular we prove cryptographically that the extension provides strong

authenticity guarantees. We also discuss privacy aspects of the solution, preventing the

card and the service provider of the eIDAS system to learn the actual transaction data.

1 Introduction

With Regulation EU No 910/2014 about electronic identification, authentication, and trust
services for electronic transactions (eIDAS) in 2014, the European parliament has paved the
way for a common electronic identity system for Europe. Driven by German and French IT
security offices, namely BSI and ANSSI, the first technical proposal for such eIDAS tokens
has been put forward in [2] in February 2015. The proposal extends a previous specification
for the new German identity cards [1], and as the cards have been issued since November
2010, this means that the basic eIDAS system proposal is already effectively running at this
point.

1.1 The basic eIDAS system

The system of the German identity card adopted early the idea to use the identity card
securely for internet services. The basic steps of the protocol are outlined in Figure 1.
The identity card is securely connected to a local card reader at the user’s computer via
the password-authenticated connection establishment (PACE) protocol. The reader itself
is equipped with a small tamper-proof display and is connected (through an application
interface on the user’s computer) with a service running the eID server. The connection from
the computer to the server may be secured through TLS.
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The ID card and the eID server then execute the extended access control (EAC) protocol
which consists of a terminal authentication (TA) and a chip authentication (CA). In the TA
step the eID server authenticates and transmits the credentials for accessing some fields on
the ID card, such as for age verification or the address. The human user confirms access
to the fields via the reader, by verifying the request on the reader’s display. Then the card
authenticates itself and the requested data through the CA step.

Figure 1: Extended Access Control (EAC) for online services, consisting of the terminal
authentication (TA) step and the chip authentication (CA) step.

1.2 Securing transactions through the eID system

Based on a proposal by Bundesdruckerei [3], we discuss how to use the German identity
card system (and consequently, the anticipated European eIDAS system) to secure further
transaction data. As an example assume that the eID system is used in an online banking
service, and that the bank would also like to authenticate the mobile phone number of
the user (e.g., for establishing a reliable communication channel for authentication of bank
transactions). This phone number is not present on the identity card and thus cannot, per
se, be authenticated through the eID system.

The idea of building a transaction system on top of the eID system is to use the auxiliary-
data field, originally provisioned for refinements in the data authentication (e.g., the eID
server has to commit to the current date for age verification). In order to show that one
can securely use this entry for authenticating data like the phone number one needs to show
that (a) the solution really validates the transaction, and that (b) it is indeed possible to
smoothly extend the existing system to incorporate such checks. The feasibility has already
been reported in [3], and we briefly revisit the details at the end of the work, such that it
remains to show that the scheme is indeed secure.

We therefore first present a cryptographic description of the transaction system of Bun-
desdruckerei, called eIDAS transaction system here. The idea is depicted in Figure 2 and
consists of the following steps. (1) The card holder and the service provider first agree upon
the transaction T. (2) Then the service provider initiates the eID server for a hash value
H(T) of the transaction. (3) The card holder also forwards the transaction in clear to the
reader. (4) The original eID components run the TA step, including H(T) as auxiliary data.
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(5) The reader verifies T against H(T), and the user verifies the transaction via the reader’s
display. (6) To approve the transaction the user initiates chip authentication. (7) The eID
server reports back approval of the transaction if chip authentication terminates successfully.

Figure 2: The eIDAS transaction system

Our contribution is to put the security of the eIDAS transaction system on formal grounds.
To this end we first discuss a security model which ensures that a transaction system satis-
fying the requirements in the model provides strong authenticity properties of transactions.
The model basically guarantees that both parties, card holder and service provider, can have
confidence that they agree on the same transaction with the intended partner in a certain
session. By this the security model captures for example replay attacks or cloning of trans-
actions across executions, such that the secure transaction system remains immune against
such attacks.

An extra feature of the eIDAS transaction system is that the transaction data can be
hidden from the underlying eID service. That is, instead of passing the transaction in clear
to the service, one can forward a hashed (or committed) version to the service. Our other
contribution is to analyze, too, the privacy guarantees given through such a step formally.

We note again that [3] presents an implementation of the above protocol which requires
only minor modifications on the reader’s side, but is otherwise based on the existing software
and hardware for the German identity card. We report on this briefly in Section 5.
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1.3 Related Work

Since we model transactions as digital data, the authenticity problem of transaction systems
at the core resembles the authenticity problem in secure channels. Therefore, it is no surprise
that previous approaches for modeling secure channels such as [4, 9, 17, 16] can serve as a
starting point to model security for the transaction system. There are, nonetheless, significant
differences.

On one hand, we face a simpler problem in the sense that transactions are atomic and we
do not have to deal for example with the order of channel transmissions. On the other hand,
a transaction in our sense should be authenticated mutually : both parties should be ensured
that the transaction is authentic. In contrast, most channel protocols and models consider
unidirectional message transfers, where the message is sent and authenticated by one party
only. This in principle allows for mutual authentication by “mirroring” the message back.

In fact, a secure transaction system could be implemented straightforwardly in princi-
ple via signatures: have both parties exchange nonces and then have each party sign the
transaction and the nonces under its certified key. The nonces would prevent replay attacks.
The point of the solution in [3], however, is to build upon an existing system with reliable
hardware components such as the identity card and the card reader, without or with minimal
interference with the underlying system.

The protocols of the German identity card and (some of) the eIDAS extensions have been
analyzed in a series of works [7, 11, 15, 10, 5, 6, 13, 8, 12]. In fact, supporting the protocols
by security arguments in form of cryptographic proofs has been a key point in the marketing
strategy. We do not directly rely on these results, but we draw on the EAC analysis in [11]
for showing that the CA ensures transaction authenticity for the service provider.

2 The eIDAS transaction system

We first define transaction systems abstractly, and then present the eIDAS transaction system
of Bundesdruckerei in our notation.

2.1 Transaction Systems

A transaction system T S is given by an interactive protocol between one type of parties,
called card holders (or clients) and another type of parties, denoted as service providers
(or servers). This is formally specified through a pair of (stateful) algorithms ΠC ,ΠS which
describe the next message the corresponding party sends upon receiving a message from the
other partner. In addition to the interactive protocol the system also comprises key generation
algorithms KGC and KGS for both types of parties. The key generation algorithms generate
key pairs (sk, pk) for the corresponding party, together with a certificate cert.

We assume uniqueness of the certificates and it is convenient to view some unique identifier
in a certificate, such as the serial number, as the party’s (administrative) identity id. We
often use cert interchangeably as the identifier id. The certification process is prepared by
a general Setup algorithm which creates public parameters such as the root key pkCVCA
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for verification of certificate chains, as well as secret parameters for certificate generation,
typically signing keys.

The interactive protocol execution between a card holder and service provider starts with
both parties receiving their keys and certificate as input. Both parties also get the public data
of the Setup algorithm as additional input. Each party usually also receives a transaction T
as input which it tries to authenticate. A party may abort the execution at any time; it may
also accept and terminate. We assume the usual completeness requirement that, if running
on genuine parameters and the same transaction, both parties accept.

A preportioned transaction system does not hand over the transaction T to the parties
in clear. Instead, it uses another algorithm H (as a mnemonic for a hash function) to first
compute H(T) before handing the value to the party. The parameters of this algorithm can
be specified through the Setup algorithm, and it may be even be a probabilistic algorithm:
H(T; r) for random string r.1 We nonetheless often simply refer to H(T) instead of H(T; r), as
the difference becomes relevant only for the privacy setting. Note that the actual transaction
system can then only ensure validity of H(T) and that this extends to T must be checked
by some other mean, e.g., as in the eIDAS transaction system providing the card reader also
with T, r and having it check these values against the hash value used in the underlying
transaction system.

2.2 The eIDAS transaction system

The eIDAS transaction system basically consists of the EAC system where we use the aux-
iliary data field AT to transport the (hidden) transaction H(T). Since our goal is to build
upon the existing scheme, we do not argue about the specific choices of the EAC system
here but instead refer to [1, 2] for information about the design ratio. In more detail, both
parties first execute the so-called Terminal Authentication (TA) steps of the extended access
control.2 In this step, the terminal picks a fresh ephemeral key pair (eskT , epkT ) for the
domain parameters DC describing the elliptic curve, sends over its certificate for the long-
term key pkT (which is also included in certT ) and a compressed version Compr(epkT ) of the
ephemeral public key. The compression function can be for example the projection onto the
x-coordinate of the elliptic curve point. For our analysis we merely assume that Compr is
R-regular, meaning that each image has exactly R pre-images.

The chip replies with a random nonce rC and the terminal then signs this nonce, together
with Compr(epkT ). In this step, the eID server of the service provider augments the signature
step by the hash value H(T) it has received from the web server. This assumes that the
forwarding of H(T) to the eID server is carried out securely; else it is easy to replace the
otherwise unprotected transaction T in the communication with the card holder. Note that
in the TA protocol both parties also use some chip identifier idC , not to be confused with
our administrative identifier id, for signature generation and verification. Since this value is

1In combination with the yet-to-be-specified security properties this makes the algorithm rather a com-
mitment algorithm but which, in turn, can be implemented via a hash function.

2We skip the card holder’s internal execution of the PACE protocol and assume a trustworthy reader and
a secure connection between ID card and reader. This is justified by the fact that PACE has been shown
to be a secure password-authenticated key exchange protocol [7] and that we anyhow require a trustworthy
display for the user to check the transaction in clear.
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irrelevant for our security analysis we do not comment further on this value. The chip finally
verifies the signature.

Upon successful completion of the TA step, the reader verifies that the given transaction
T matches the augmented data H(T) from the TA step and then displays the transaction to
the user. Upon confirmation of the user, the reader initiates the Chip Authentication (CA)
step between the card and the eID server. In this step the chip sends its certificate certC and
public key pkC , and the terminal replies with its ephemeral public key epkT (in clear).

Finally, both parties compute the Diffie-Hellman key of pkC and epkT with the corre-
sponding secret key they hold, and derive an encryption key Kenc (which is irrelevant here)
and the MAC key Kmac with the help of the corresponding key derivation functions KDFEnc
and KDFM. This step again involves a random nonce r′C of the chip. The chip computes the
MAC over epkT and sends it to the terminal. If this phase is completed successfully then the
eID server reports to the web server that the transaction has been confirmed. This, again,
must be done in a secure way.

The protocol details of the TA and CA phase are depicted in Figure 3. For administrative
purposes in light of the security model it is convenient to also specify a point in time in the
execution in which a session identifier sid is set. This session identifier can be thought of as a
quasi unique, purely administrative value, although the parties can determine the identifier
easily themselves. Note that both parties output the identifier sid at different points of the
execution, due to the sequential order of the authentication steps.

Analogously, we let the protocol specify a partner identifier, pid, which should represent
the identity of the intended partner. Since we assume a one-to-one correspondence between
certificates and administrative identities, we extract the correct identity out of the certifi-
cate. Completeness requires that both session identifier and partner identifier are set upon
acceptance, that session identifiers are identical for both parties in genuine executions, and
that the partner identifiers correctly point to the corresponding parties.

3 Unforgeability of Transactions

In this section we provide our security analysis of the eIDAS transaction system. For this
we first introduce a demanding security model for unforgeability, then we discuss that the
eIDAS transaction system achieves this property.

3.1 Defining Unforgeability

Attack Model. We assume that all parties, divided exclusively into card holders from set
C and service providers from a set S, receive their (certified) key pairs as initial input at the
outset of the attack. We furthermore presume security of the certification in the sense that
parties will only accept certified keys. This follows from the unforgeability of the underlying
signature scheme used to create certificate, or even certificate chains, but we omit this here
for sake of simplicity.

In the attack model the network is fully controlled by the adversary, implying that the
adversary decides when to deliver messages to sessions and if to modify transmissions or
even to inject new messages. We even assume that the adversary decides when to start new
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Chip : Terminal :
key pair skC , pkC key pair skT , pkT
certificate certC for pkC certificate certT for pkT
card identifier idC card identifier idC

auxiliary data [AT ]

Setup: domain parameters DC , certification key pkCVCA

Terminal Authentication (TA)

certT←−−−−−−−−−−−−−−
check certT with pkCVCA

abort if certT invalid
extract pkT from certT generate (eskT , epkT ) for domain DC

Compr(epkT )
←−−−−−−−−−−−−−−

pick rC ← {0, 1}n
rC−−−−−−−−−−−−−−→ sT ← Sig(skT , idC ||rC ||Compr(epkT ) [|| AT ] )

sT [, AT ]
←−−−−−−−−−−−−−−

abort if SVf(pkT , sT , idC ||rC ||Compr(epkT ) [||AT ] ) = 0

sid = (Compr(epkT ), rC [, AT ] )

Chip Authentication (CA)

pkC , certC , DC−−−−−−−−−−−−−−→ check pkC , certC with pkCVCA

abort if invalid
epkT←−−−−−−−−−−−−−−

check epkT against Compr(epkT )
abort if invalid
pick r′C ← {0, 1}n
K = DHDC

(skC , epkT )
Kenc = KDFEnc(K, r

′
C)

Kmac = KDFM(K, r′C)

τ =M(Kmac, epkT )
τ, r′C−−−−−−−−−−−−−−→ K = DHDC

(pkC , eskT )
Kenc = KDFEnc(K, r

′
C)

Kmac = KDFM(K, r′C)
abort if MVf(Kmac, τ, epkT ) = 0

sid = (Compr(epkT ), rC [, AT ] )

pid = id in certT pid = id in certC
accept accept

Figure 3: EAC protocol, consisting of Terminal Authentication (TA) and Chip Authentica-
tion (CA). All operations are modulo q resp. over the elliptic curve. The gray part shows the
(in EAC optional) auxiliary data field, which we deploy here for securing the transaction.

sessions at either party, possibly as a pair of synchronized sessions for the same transaction.
Formally, this is captures by giving the adversary access to the following oracles:

• Init: The adversary can initiate new card holder or service provider sessions by calling
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Init(id,T) for some identity id ∈ C ∪ S and some chosen transaction T. Upon such
a call we spawn a new session of the party for transaction T (and possibly a freshly
chosen random string r in case of probabilistic hash functions) and assign it a unique
label ` for administrative purposes. The label ` is returned to the adversary and we
write `← Init(id,T).

In the case of a probabilistic hash function we need to give the adversary the ability to
initiate sessions with the same random value r. Hence, slightly overloading the notation
we allow the adversary to also pass triples (id, id′,T) to the Init oracle for id ∈ C and
id′ ∈ S, upon which the oracle initializes a new session for card holder id as well as a
new session for service provider id′. This time, however, each protocol party receives
the same random string r as additional input. The adversary receives both labels (`, `′)
of the two sessions.

• Send: The adversary can send any protocol message m to a session with label `
via the Send(`,m) command. If the session has not been initialized before, then
oracle immediately returns ⊥. Else, it makes the corresponding party compute the
next protocol message and this message is returned to the adversary (potentially also
returning ⊥ to express rejection). In case the execution is successfully completed, the
adversary is informed that the party has accepted. From then on, we assume that the
adversary no longer sends commands to that session.

• Corrupt: The adversary can corrupt a party with identity id via the command
Corrupt(id). It receives the party’s secret key in return, as well as all internal states
of running sessions, and we put id in the (initially empty) set Corrupt of corrupt parties.
From now on, we assume that the adversary does not send further commands to that
session.

It is often convenient to augment the session identifier sid, output by the execution of
some honest party, by the transaction T it has been initialized with. In this case we write
tsid = (T, sid) for the augmented identifier (but omitting the random string r potentially
used for computing the probabilistic hash value).

We also use the following self-explanatory notation. We write TSID(`) for the value tsid
of the session with label `, where potentially TSID(`) = ⊥ if the session identifier has not
been set by the session yet. Analogously, we write ACC(`) for the acceptance status of the
session (true or false), ID(`) for the identity id of the session owner, and PID(`) for the
intended partner pid, possibly pid = ⊥ at this point.

Session-definite unforgeability. We define a very strong notion of unforgeability: if some
(honest) card holder accepts a transaction in some execution, then there must be an execution
in which a service provider has issued that transaction. Furthermore, this execution of the
service provider points to a single card-holder session only. Note that this straightforwardly
implies other desirable notions of unforgeability, such as plain unforgeability—if a card holder
accepts some transaction then it must have been issued by some service provider—or replay
resistance—that no card holder accepts a transaction twice. The latter follows from the fact
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Experiment SessUnfT SA (n)

1 : foreach i ∈ C ∪ S do

2 : if i ∈ C then (ski, pki, certi)← KGC(1
n) fi

3 : if i ∈ S then (ski, pki, certi)← KGS(1n) fi

4 : endforeach

5 : pks← {(pki, certi) | i ∈ C ∪ S }
6 : AInit(·,·),Send(·,·),Corrupt(·)(1n, pks)

7 : b← SessUnfPred // evaluate predicate SessUnfPred on execution state

8 : return b // where b = NOT(b)

Figure 4: Session-definite unforgeabilty of transaction system.

that there is a one-to-one correspondence between service-provider sessions and card-holder
sessions. We call our notion session-definite unforgeability.

More formally, we say that the adversary A wins the session-definite unforgeability game
in Figure 4 if during the execution an honest card-holder party id ∈ C \ Corrupt accepts a
transaction T under some session identifier tsid but such that there the partner id pid is not
pointing to a corrupt provider and that provider has not set their local identifier to sid at that
point. The latter corresponds to the fact that the service provider has issued the transaction.
By symmetry, we demand the same for accepting sessions of honest service providers, i.e.,
that there must be a corresponding card-holder session.

In addition, we assume that session identifiers only appear in matching pairs on the sides.
This implies that there cannot be session-identifier collisions on the card-holder side, nor on
the service-provider side. This also means that it suffices to demand for the first property
above that every accepting session has a matching partner; together with collision-freeness
of session identifiers on one side the matching session must be on the other party’s side.
The formal predicate capturing these requirements is depicted in Figure 5 and called as a
subroutine in the attack game.

Definition 3.1 (Session-definite unforgeability) A transaction system T S is session-
definite unforgeable if for any efficient adversary A we have that

Prob
[
SessUnf T SA (n) = 1

]
≈ 0

is negligible.

Note that we let the adversaryA decide when to stop the execution and to start evaluating
the predicate. Hence, if it is advantageous and the adversary already detects a winning
situation, it may end the execution immediately (instead of messing up the winning state by,
say, corrupting another party). In our case this is easy to spot since all the data required to
evaluate the predicate are known to the adversary.
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Predicate SessUnfPred on execution state

1 : p← true

2 : // any accepting party must have honest partner with same tsid (or corrupt partner)

3 : foreach ` ∈ {` | ACC(`) = true ∧ ID(`) /∈ Corrupt} do

4 : p← p ∧ [PID(`) ∈ Corrupt ∨ ∃`′ 6= ` : (TSID(`′) = TSID(`) 6= ⊥ ∧ PID(`) = ID(`′))]

5 : endforeach

6 : // Collisions among identifiers only between opposite partners

7 : foreach (`, `′) ∈ {(`, `′) | ` 6= `′ ∧ ID(`), ID(`′) /∈ Corrupt ∧ TSID(`) = TSID(`′) 6= ⊥} do

8 : p← p ∧ [(ID(`), ID(`′)) ∈ C × S ∪ S × C]
9 : endforeach

10 : return p // where we identify true = 1 and false = 0

Figure 5: Security predicate SessUnfPred for session-definite unforgeability

3.2 Security of the eIDAS transaction system

Before proving the eIDAS transaction system unforgeable we need to make some assumptions
about the underlying cryptographic primitives. As in [11] we model the key derivation
function KDFM as a random oracle. We furthermore assume that the H function used to
hide the actual transaction is collision-resistance in the sense that the probability Advcoll

B,H(n)
of B outputting such a collision is negligible for every efficient adversary B.

We also assume that forging signatures is infeasible, i.e., for any efficient adversary B the
probability Advunf

B,SIG(n) of breaking the terminal’s signature scheme given through SIG =
(KGS ,Sig, SVf) in an adaptive chosen-message attack (see [14] for a formal definition) is
negligible. We analogously demand that forging MACs for the scheme given throughMAC =
(KDFM,MAC,MVf) is infeasible, i.e., Advunf

B,MAC(n) is negligible for any efficient adversary
B against the MAC scheme.

Finally, as in [11] we assume that the Gap-Diffie-Hellman problem in the group specified
by DC is hard. That is, consider an efficient adversary B which receives (in multiplicative
notation) ga, gb for generator g and hidden random a, b and which gets access to an oracle
which for adversarially chosen group elements Y, Z verifies for the adversary whether Y a = Z
or not. The adversary’s task it to output DH(ga, gb) = gab. We now require that for no
efficient adversary the probability AdvGapDH

B,DC
(n) of computing that DH value is negligible.

Theorem 3.2 (Session-definite Unforgeability) The eIDAS transaction system in Sec-
tion 2 is session-definite unforgeable in the random oracle model, assuming collision resistance
of H, unforgeability of the signature and MAC scheme, and the GapDH assumption. More
precisely, for any efficient adversary A there exists efficient adversaries B1,B2,B3,B4 such
that

Prob
[
SessUnf T SA (n) = 1

]
≤

(
s

2

)
·
(

2−n + R
q

)
+ AdvcollB1,H(n) + S ·AdvunfB2,SIG(n)

+S ·AdvunfB3,MAC(n) + C · S ·AdvGapDH
B4,DC

(n)
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where we assume that Compr is a R-regular function, q is the group size specified by DC , the
adversary initiates at most s sessions, and there are at most C cards and S service providers.

Moreover, adversaries B1, . . . ,B4 have roughly the same running time A plus the time to
carry out the other steps in the experiment.

Proof. We given the proof only for the case of a deterministic hash H(T) and single initial-
izations through Init; for probabilistic hashes and synchronous initializations the proof can
be adapted easily.

Assume that an adversary A mounts an attack against session-definite unforgeability. In
order to win the adversary must either create a collision in two honest card-holder sessions,
or in two honest service-provider sessions, or make one of the two types of parties accept
such that there is no matching session (with a party of the other type, either corrupt or not
having the same tsid).

The idea of ruling out the above attack possibility is that: sessions among honest card
holders or among honest service providers do not collide because each session identifier sid
contains fresh random values rC resp. epkT of both sides. The other property follows since the
adversary, unless it forges signatures, cannot make a card holder accept without having an
honest provider sign and output the session identifier sid. Since the session identifier includes
the collision-resistant hash of transaction T this argument extends to the fully augmented
identifiers tsid, as required by the security definition.

The final step is to note that, analogously to the signature case, an adversary making
an honest provider accept without having an honest card-holder partner also requires the
adversary to forge MACs. The latter argument is a bit more involved, but can be seen to
follow from the proof that TA together CA is a secure key exchange protocol [11]. Here we
nonetheless give a self-contained and “stripped-off” version of the proof for our case.

Collision-freeness of session identifiers. We first note that the (augmented) session
identifiers contain a fresh random nonce rC of the card holder, such that a collision among the
at most s honest card-holder sessions is bounded by the birthday bound

(
s
2

)
·2−n. Analogously,

the same holds for the random ephemeral key epkT on the service provider side, yielding a
collision probability for honest servers of at most

(
s
2

)
· Rq for the size q of the underlying group

and the compression regularity factor R. We may therefore from now on assume there can
be only collisions between at most one pair of honest card holder and service provider.

For sake of concreteness we can also assume that no collisions in the hashed transactions
H(T) occur during the execution, i.e., there are no T 6= T′ used in some initialization step
such that H(T) = H(T′). We can assume that this holds because of the collision resistance
of the underlying hash function such that the probability can be bounded by the advantage
to find collisions. Also note that both parties ensure that the hash value is correct, the card
holder by having the card reader check correctness, and the provider by computing the hash
itself. In particular, we can from now assume that equality sid = sid′ (including the hashed
transactions) on some session identifiers of honest parties also implies that tsid = tsid′ for
these parties, i.e., equality also holds for transactions. Otherwise we would have found a
collision for the hash values of these transactions.
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Unforgeability on the card holder’s side. Next assume that some card-holder session `
accepts with identifier tsid. Since the card holder verifies the service provider’s certificate cert
it will only accept a public key under some eligible service provider identity. If the provider
behind this identity is corrupt then the requirement of having a corrupt partner is satisfied.
Else, if the provider is honest, then the fact that the provider with certificate cert has not
output tsid yet in any session implies that it has not signed sid in any session yet. (Here we
use that sid uniquely determines tsid in the experiment.)

Since the card holder also verifies the signature it must be that the adversary provided
a valid forgery to make the card holder accept. If an adversary would trigger this event
with non-negligible probability then this can be easily transformed via a reduction into an
existential forgery against the service provider’s underlying signature scheme, by simply
guessing the right key among the S service providers. This shows that honest card holders
only accept transactions from honest providers if the providers have output tsid and if the
partner identifier matches.

Unforgeability on the provider’s side. Finally, assume that an honest service provider
session ` accepts for (augmented) identifier tsid and partner identifier pid. If this partner
identifier points to a corrupt card holder, then we are done. So we may assume that the
intended partner is an honest card holder but which has not output tsid.

We first show via a reduction to the GapDH problem that the probability that the
adversary asks the random oracle KDFM about the Diffie-Hellman key of pkC and epkT
of that session is negligible. Otherwise we build a DH solver (with a DDH decision oracle)
as follows: The solver receives (in multiplicative notation) ga, gb in DC as input. It initially
picks one of the at most C card holders and one of the at most S provider sessions at random
and starts A’s attack. For the predicted card holder it uses ga as public key pkC , and for
the predicted provider session it uses gb as the ephemeral key epkT . It picks all the other
keys according to the protocol description and follows the honest parties steps, exploiting
knowledge of all secret keys.

The only exception lies in the way our solver treats queries to the random oracle KDFM.
Our algorithm keeps two lists to emulate the random oracle: one containing entries ((K, rC), y)
which represent “regular” queries to and answers from the random oracle, and the other one
containing tuples ((A,B, r′C), y) where the solver is not (yet) able to compute the Diffie-
Hellman key of A and B. Both lists are initially empty.

If a simulated honest party or the adversary makes a query (K, r′C) to KDFM then our
solver checks

• if there already exists an entry ((K, r′C), y) in the first list, then return y;

• else, if there is already an entry ((A,B, r′C), y) in the second list such that DH(A,B) =
K—which can be checked via the decision oracle— then store ((K, r′C), y) in the first
list and return y;

• else, pick a random y in the range of KDFM, store ((K, r′C), y) in the first list and
return y.
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If the user instance for which we have set pkC = ga for the unknown a is supposed to
compute DH(pkC , epkT ) for deriving the MAC in some session with random string r′C and
(potentially maliciously chosen) ephemeral key epkT —where the solver may not be able to
compute the DH key— then our solver instead checks:

• If there exists already an entry ((K, r′C), y) in the first list where K = DH(pkC , epkT ),
then it returns y;

• else, if there exists already an entry ((pkC , epkT , r
′
C), y) in the second list, it uses y;

• else, it picks a fresh y, stores ((pkC , epkT , r
′
C), y) in the second list and returns y.

In any case the solver uses the returned value y to compute the subsequent MAC. At the end
the solver checks if there is an entry ((K, r′C), y) in the first list with DH(ga, gb) = K and, if
so, outputs K.

Note that the above simulation of the random oracle is perfectly indistinguishable from the
actual random oracle, fromA’s point of view. The reason is that we only store pairs (ga, epkT )
in the second list for different values for epkT . Each of these entries can only correspond
to at most one entry in the first list, and our solver checks for consistency with the first
list. There cannot be any inconsistency in the second list itself, e.g., entries ((A,B, r′C), y),
((A′, B′, r′C), y′) with DH(A,B) = DH(A′, B′) but y 6= y′, since all pairs (ga, epkT ) for the
identical vale ga and varying epkT map to different DH keys.

By assumption, the adversary against transaction unforgeability at some point queries
the random oracle KDFM in the original game about DH(pkC , epkT ) with non-negligible
probability for honest parties holding pkC resp. epkT . If our solver picks the right indices for
pkC = ga and epkT = gb then the otherwise sound simulation yields an entry for DH(ga, gb) in
the first list with non-negligible probability. In this case the solver would break the GapDH
problem with non-negligible probability, losing a factor C · S in the reduction for guessing
the right sessions.

The final step is to note now that, unless we break the GapDH problem with non-negligible
probability, the adversary against transaction unforgeability needs to forge the final MAC in
a key only attack. For this assume that there is a session of an honest provider with tsid,
including pkC of an honest card holder and epkT chosen by the provider itself. Then, if the
card holder has also output sid and thus tsid, then this does not violate unforgeability. Else
this means that the card’s MAC has not been computed yet, implying that the adversary
has neither learned the key Kmac yet (by the previous consideration), nor seen a MAC under
that key. Hence, it needs to produce a MAC forgery in a key-only attack to make the service
provider accept. By a similar argument as in case of the provider’s signature scheme one can
show that can be formally reduced to the unforgeability of the MAC scheme, with a loss of
factor S in the security for guessing the right session on the provider’s side. �

4 Transaction Privacy

Analogous to the case of unforgeability we first describe the general security requirements
and then discuss that the eIDAS transaction system meets these requirements.
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Experiment TPrivT SA (n)

1 : b← {0, 1}
2 : foreach i ∈ C ∪ S do

3 : if i ∈ C then (ski, pki, certi)← KGC(1
n) fi

4 : if i ∈ S then (ski, pki, certi)← KGS(1n) fi

5 : endforeach

6 : pks← {(pki, certi) | i ∈ C ∪ S }
7 : a← AInit(·,·),Send(·,·),Corrupt(·),Chall(b,··· )(1n, pks)

8 : return a = b

Figure 6: Transaction privacy experiment

4.1 Defining Privacy

Transaction privacy refers to the inability for the eID service to determine the transaction,
even though it operates on the hash value. We use an indistinguishability-based approach
here in which a privacy-adversary can initiate (multiple) executions on a random choice of
one of two adversarially-chosen transactions T0,T1. This of course assumes that transactions
are augmented by sufficient entropy, or else the adversary can easily determine the choice of
the transaction used in the hash value.

The attack model is as in case of unforgeability. The only difference is now that the
adversary now also gets a challenge oracle Chall, which is initialized with a secret bit
b← {0, 1}. If called about identities id ∈ C, id′ ∈ S, as well as two transactions T0,T1, then
the challenge oracle executes ` ← Init(id, id′,Tb) to initialize both parties, and it returns
the session lables (`, `′) to the adversary. From then on the adversary can communicate with
the card-holder and service provider sessions via the Send oracle for the corresponding label
(and in particular learn the hashed transaction). The adversary eventually should predict
the bit b.

We next define privacy with the experiment in Figure 6.

Definition 4.1 (Transaction Privacy) A transaction system T S is transaction private if
for any efficient adversary A we have that

Prob
[
TPrivT SA (n) = 1

]
≤ 1

2 + negl(n)

is negligibly close to 1
2 .

Conceivably, any transaction-private system needs to be preportioned.

4.2 Privacy of the eIDAS transaction system

The privacy of the eIDAS transaction system now relies on the hiding property of the hash
function, namely, that the probability of being able to distinguish H(T0, r0) from H(T1, r1)
for chosen T0,T1 and random r0, r1 is infeasible for any efficient adversary B. We note that
this is straightforward to formalize in terms of the hiding property of commitment schemes
(see again [14]), such that for the advantage Advhide

B,H (n) distinguishing the two cases it holds:
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Theorem 4.2 (Transaction Privacy of the eIDAS transaction system) The eIDAS
transaction system provides transaction privacy. More precisely, for any efficient adversary
A making at most Q challenge queries there exists an efficient adversary B such that

Prob
[
TPrivT SA (n) = 1

]
≤ 1

2 +Q ·AdvhideB,H (n).

Moreover, the running time of B is essentially the one of A, plus the time to execute the
other steps of the privacy experiment.

Proof. Each call of A to the Chall oracle creates another fresh “commitment” of either
the left or the right transaction. Then all parties work on the hashed value only. It follows
that A’s success probability is bounded by the probability of distinguishing at most Q left
commitments from Q right commitments. Since a standard hybrid argument for commit-
ments shows that such Q commitments (for adaptively chosen pairs) can only increase the
distinguishing advantage compared to a single commitment by a factor Q, the claim now
follows. �

Figure 7: Prototype implementation on a card reader. In this example the identity card
has already been connected to the card reader, and the user is now asked via the (mock-up)
software on the computer to authenticate the e-mail address and PGP fingerprint on the
reader.
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5 Implementation

As mentioned before, the eIDAS transaction system has been successfully integrated in a test
bed for the German identity card, involving the Reiner SCT cyberJack reader. Recall that
the user places the card in (or near) the reader and initiates a service through the software on
its computer. The software application then requests the user to verify the transaction data
(see Figure 7). The transaction data is encoded into an admissible format for the auxiliary
data of the eID service under an unused object identifier such that the card, upon receiving
the data, authenticates them through the protocol but ignores its semantics. In contrast, the
reader has been modified to interpret these data accordingly.

From the user’s perspective the steps to authenticate transaction data integrate smoothly
with the other eID steps (see Figure 8). In the first step, where the regular eID system and
the transaction system differ slightly, the user now checks the transaction data on the card
reader, e.g., the mobile phone number in Figure 8. Then the user proceeds as for the regular
eID service, confirming the card data the eID service can access (step 2 in Figure 8), and
finally entering the card’s PIN (step 3).

Figure 8: Immigration of transaction verification (left) into data access confirmation (middle)
and PIN entering (right) of eID service.

Overall, implementing the eIDAS transaction system requires minimal changes to the
underlying system —only the reader’s software needs to be adapted slightly— and to provide
corresponding software applications.

6 Conclusion

The eIDAS transaction system is an easy and practical method to authenticate transactions
via the eIDAS infrastructure. The work here demonstrates that, cryptographically, it also
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provides strong unforgeability guarantees, thwarting for example replay attacks. Further-
more, it also allows to hide the actual transaction data from the underyling infrastructure,
again in a very strong sense.
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