
Progressive Verification:

The Case of Message Authentication

(Extended Abstract)

Marc Fischlin?

Department of Computer Science & Engineering,
University of California, San Diego, USA

mfischlin@ cs.ucsd.edu

http://www-cse.ucsd.edu/∼ mfischlin/

Abstract. We introduce the concept of progressive verification for cryp-
tographic primitives like message authentication codes, signatures and
identification. This principle overcomes the traditional property that the
verifier remains oblivious about the validity of the verified instance until
the full verification procedure is completed. Progressive verification ba-
sically says that the more work the verifier invests, the better can the
verifier approximate the decision.

In this work we focus on message authentication. We present a com-
prehensive formal framework and describe several constructions of such
message authentication codes, called pv-MACs (for progressively verifi-
able MACs). We briefly discuss implications to other areas like signatures
and identification but leave it as an open problem to find satisfactory so-
lutions for these primitives.

1 Introduction

Cryptographic primitives like signatures, message authentication codes or iden-
tification involve verification procedures that assure the verifier of the validity of
the input. This means that the verifier performs a certain number of verification
steps and finally outputs a reliable decision; the error probability of this decision
is usually negligible.

Consider the following experiment. We start the verification algorithm on
some instance. After some t steps, e.g., after half of the full verification, we stop
the algorithm and ask for a decision about the correctness of the given instance.
In this case, most verification procedures cannot predict the result better than
before the start when t = 0. We call this all-or-nothing verification: in order
to give a reliable decision one must either run the full verification procedure or
need not start at all. The situation is given in the left part of Figure 1.

? This work was supported by the Emmy Noether Programme Fi 940/1-1 of the Ger-
man Research Foundation (DFG).

The idea of progressive verification, as displayed in the right part of Figure 1,
is to relate the error probability of the decision to the running time of the verifier.
Namely, progressive verification ensures that the confidence grows with the work
the verifier invests. Put differently,

The error probability of the verifier’s decision decreases nontrivially with
the number of performed steps of the verification procedure.

Note that the aim of progressive verification in general is to save time for both

valid and invalid inputs. Specifically, the verifier can choose a confidence level
at the outset, prematurely terminate the verification according to this level, and
can finally decide about validity of the given input. Also, the concept is not
limited to message authentication (on which we focus here) but rather applies

to verification procedures in general.
Assuming that the verifier never rejects correct inputs we can reconceive

progressive verification as a method to spot flawed inputs prematurely. Specif-
ically, to turn such an error detection procedure into a progressive verification
algorithm let the verifier, if asked at some point during the verification, simply
predict authenticity of the input if no error has been found yet. Viewed this
way the paradigm then says: the likeliness of rejecting fallacious inputs grows
nontrivially with the performed work. Indeed we will usually adopt this more
convenient viewpoint.

end of
verification

error probability
of decision

verification
steps

end of
verification

verification
steps

error probability
of decision

all−or−nothing verification progressive verification

Fig. 1. Idea of Progressive Verification

In this work we introduce the concept of progressive verification by virtue of
message authentication codes. Nowadays, all popular constructions of MACs first
divide the message into blocks, then apply a pseudorandom or universal hash
function to each block (possibly inserting the result from one evaluation into
the input of another), and finally combine the result to a short MAC. Examples
include XOR MAC [3], UMAC [5], XCBC MAC [6] and PMAC [7].

In case of such block-oriented MACs, verification progress can refer to the
number of message blocks that have been inspected and for which the block

function has been applied. Progressive verification then says that it suffices to
look at, say, 75% of the blocks, and still be able to detect incorrect inputs
quite often. Here, however, the limitations of progressive verification show. If
the adversary changes only a single block then it is likely that the verifier will
not be able to notice errors quite early. This is particularly true if the adversary
controls the order of blocks in which the verifier receives them (for example, if
the adversary delays the corresponding IP package until all other blocks have
been received).

Still, the aim of progressive verification of MACs is not to spot errors with
overwhelming probabilty instantaneously. It suffice to reduce the number of pro-
cessed blocks for an accurate or fallacious input on the average —as long as
the additional effort for the progressive verifiability does not outweigh this. In
particular, the size of MACs should not increase too much and the extra work
to compute and verify the progressively verifiable MAC should not grow signif-
icantly compared to an ordinary MAC. For example, doubling the number of
block cipher invocations in order to reduce the workload for incorrect inputs by
50% is arguable.

Obviously, the overhead for progressive verification does not pay off for short
messages of a few blocks only. Therefore progressive verification aims at applica-
tions where large messages are involved (like for authentication of large files); in
such cases a few additional block ciphers calls merely add neglectable overhead,
and doubling or tripling the short MAC of a few bits is usually not critical.

Our Results. We provide a formal framework for progressively verifiable MACs.
This includes stringent definitions and discussions. Then we present two con-
structions of progressively verifiable MACs; a third one has been omitted for
space reasons. One of these solutions will serve as an example to get acquainted
to this field. The other one provides a reasonably good solution, allowing to spot
errors after about 50% − 55% of the message while increasing the MAC size by
a factor of roughly three. Note that 50% is a lower bound for such algorithms if
the adversary inserts a single incorrect block only in a valid message-MAC pair:
the verifier will access this block and be able to detect the error only after 50%
on the average. However, if the adversary is supposed to tamper more blocks
then one can go below this bound. We will touch this issue and implications to
other areas like signatures at the end.

Related Work. Partially checking the validity of signatures or MACs has already
been used in the context of incremental cryptography [1, 2]. Although the pri-
mary interest there is the fast computation of signatures and MACs of related
messages, local checks turned out to be useful countermeasure against so-called
substitution attacks. However, the results in [9, 10] indicate that checking the
local validity of signatures or MACs by accessing only a few blocks yields im-
practically large checksums. Indeed, the idea here is similar to the incremental
case: try to detect errors by inspecting only a part of the message blocks. Luck-
ily, our aim is to detect messages as soon as possible with some (possibly small,

yet) noticeable probability. By this, we can somewhat bypass the results in [9,
10] which do not give useful lower bounds for such cases.

Interestingly, some identification systems already have the property of being
progressively verifiable. Namely, if the protocol proceeds in sequential rounds
and in each round a cheating prover will be caught with some small probabil-
ity, say, 1/2. Then there is some chance that the verifier will not have to run
the whole protocol when communicating with an adversary. For instance, some
identification protocols like [8] use this technique of repeating atomic protocols
in order to reduce the soundness error. However, such protocols are most times
superseded by identification schemes running in a single round and providing the
same soundness level, like [12, 14]. Although the latter schemes are not known
to support progressive verification their superior running time characteristics
certainly beat the benefits of the progressive verifiability of the former schemes.

Progressive verification also raises the issue of timing attacks [13]. That is, the
adversary may submit messages with fake MACs or signatures and deduce useful
information from the verifier’s respond time (e.g., how many blocks have been
processed). Such attacks must be treated with care. In fact, we can easily extend
our model such that the adversary actually learns the number of accessed blocks
before rejection. Alternatively, one can try to avoid such attacks completely, i.e.,
by replying to the sender only after a predetermined amount of time, independent
whether an error has been detected early or not.

Finally, in a related paper [11] we show how to improve the verification
time for hash chains via progressive verification. In that example, the verifier
determines a variable security bound at the beginning of the verification and
then merely performs a corresponding fraction of the hash function evaluations,
for both valid and input inputs.

Organization. In Section 2 we define progressive verifiable (pv) MACs. In Sec-
tion 3 we present two constructions of such pv-MACs. In Section 4 we discuss
extensions of our model as well as applications of the concept to other areas like
signature schemes.

2 Definition

The definition of progressive verification mimics the one of adaptive chosen-
message attacks on MAC schemes. The basic difference is how the verification
proceeds and what the adversary’s success goal is. Before dipping into the tech-
nical details we give a brief overview and then fill in the details.

Overview. For the definition we will modify the well-known adaptive chosen-
message attacks scenario on message authentication codes. Let A be an adversary
mounting such a chosen-message attack, i.e., A has access to oracles mac and vf
producing, respectively, verifying MACs with some secret key. Here we substitute
the oracle vf by a so-called progressive verification step which we specify below.

Upon termination, in classical forgeability attacks the adversary’s task is
to come up with a new message and a valid MAC for this message. As for

progressive verification, the adversary A now aborts the experimental phase and
engages in another final progressive verification for a new message. We call this
the adversary’s attempt.

For the attempt we measure the probability that the verifier accesses at most
m of n blocks of the adversarial message before detecting an error, i.e., after a
fraction p = m

n of all blocks. We will denote this probability by ∆order

A (p). The
superscript order indicates the order of accesses, i.e., if determined by the verifier,
at random or by the adversary. Note that, in this sense, 1 − ∆order

A (1) denotes
the probability of A forging a MAC for a new message.

For a progressively verifiable MAC we will demand that the detection prob-
ability is positive for some p < 1. This should hold for any adversary A bounded
by a certain running time and query complexity. This means that for any such
bounded adversary the verifer sometimes spots incorrect inputs before reading
the whole message. Note that this definition is quite liberal: it suffices for exam-
ple to identify incorrect inputs at the second to last block with some very small
probability. However, the higher the probability for small fractions, the better
of course.

Progressive Verification Protocol. We now specify the progressive verification
procedure. We define it as an interactive protocol between A and a verifier
V involving a third party T . This party T is considered to be trustworthy,
i.e., follows its prescribed program and does not cooperate maliciously with the
adversary. We note that T is a virtual party introduced for definitional reasons

only; the actual progressive verification is of course carried out locally at the

verifier’s site.

Instructively, one may think of T as the communication channel from the
adversary’s output chain to the verifier’s memory. In particular, the order in
which the verifier is able to process the message blocks can depend on:

– the verifier’s choice, e.g., if the verifier loads the whole message into the
memory and then decides on the order. Here, the verifier’s choice may be
fixed in advance (nonadaptive) or depend on intermediate results (adaptive).
We denote these orders by V.nonad and V.adapt, respectively.

– on random delays, say, depending on the transportation over the Internet.
We denote this order by T.rnd where we presume that the distribution is
clear from the context. If not stated differently, then we assume the uniform
distribution on the set of all orders (although we do not claim that this is
the appropriate description of delays of Internet packages).

– the adversary’s decision, e.g., if the adversary delays the packages maliciously
according to a nonadaptive behavior (A.nonad). Concerning adaptive choices
of the adversary we refer for the discussion following the formal description
of progressive verification steps.

The fully specified progressive verification protocol is given in Figure 2. At
the beginning of the procedure A commits to a message M ∗ = m∗

1|| . . . ||m
∗
n of

n blocks (each block, possibly except for the final one, consisting of B bits). A
also sends a putative MAC τ∗ to T who forwards τ∗ and the length |M∗| of the

message to V . Then, in each of the n rounds, T delivers one of the message blocks
to the verifier. The order of the blocks is determined accoding to the parameter
order, i.e., chosen by the verifier, the adversary or at random by T . At the end
of each round V can return a reject notification to T . Party T then hands the
final decision to the adversary.

Progressive Verification for order ∈ {V.nonad, V.adapt, T.rnd, A.nonad}

– A submits message M∗ = m∗
1|| . . . ||m

∗
n of n blocks and putative MAC τ ∗ to T

– T forwards |M∗| and τ∗ to V
– V may send reject to T and stop; T then sends reject to A

– // determine order for nonadaptive and random orders:
if order = V.nonad then V sends a permutation π to T
if order = A.nonad then A sends a permutation π to T
if order = T.rnd then T generates a random permutation π

– for j = 1 to n do // let Πc
j−1 = {1, . . . , n} − {π(1), . . . , π(j − 1)}

• // determine next block for adaptive order:
if order = V.adapt then V submits π(j) ∈ Πc

j−1 to T

• T forwards (π(j), m∗
π(j)) to V

• V may send reject to T and stop; T then forwards reject to A

– if V has not stopped yet then V sends accept to T who sends accept to A

Fig. 2. Progressive Verification Protocol

There are numerous variations to the progressive verification protocol (which
we do not investigate in detail in this extended abstract here). For example, one
could let T not pass the length |M∗| of the message to V at the outset. Also
note that one could demand that V determines the order of accesses before even
seeing the MAC τ∗; indeed, in two of our solutions V actually bases the order on
τ∗. Also, to capture timing attacks, one may let T forward the decision together
with the round number j to the adversary upon rejection.

Furthermore, in each loop A could be informed by T about the block number
sent to V . In this case, one could for example let the adversary at the end of each
round decide to alter message blocks that have not been delivered yet. Depending
on whether the message length is given to V in advance one could then also let
the adaptive adversary decide to change the length of the message during the
rounds (but such that the length never drops below a previously delivered block
number). Or, instead of letting the adversary decide maliciously where to put
incorrect message blocks, those message blocks can be disturbed accidently.

Restrictions on the Attempt. We restrict the input that the adversary can use
in her final attempt after the experimental phase. Namely, we demand that the
adversary’s message M∗ has not been submitted to mac earlier. This is the
classical restriction from unforgeability definitions of MACs. Here, this allows to
measure how well the progressive verifcation works for tampered inputs.

Detection Probabilities. Let Q [0,1] := Q∩[0, 1]. For p ∈ Q [0,1] denote by ∆order

A (p)
the probability that V outputs reject after having accessed m = bpnc blocks
in the attempt with adversary A. Obviously ∆order

A (0) = 0. Moreover, ∆order

A (1)
equals the probability that the adversary will be caught at all. We call ∆order

A (p)
the cumulative detection probability as it describes the probability of finding
errors with a fraction of p or even less blocks.

The cumulative detection probability ∆order

A is defined with respect to a spe-
cific adversary A. To extend this defintion to sets of adversaries we parameterize
adversaries by a vector (t, q, b) describing the running time t of the adversary (in
some fixed computational model), the number of queries q = (qmac, qV) to mac
and V , and the maximum number of blocks b = (bmac, bV) in each submission.
Such an adversary is called (t, q, b)-bounded.

We let ∆order

(t,q,b)(p) be a function such that for any (t, q, b)-bounded adversary
A we have

∆order

(t,q,b)(p) ≤ ∆order

A (p) for all p ∈ Q [0,1].

Note that with ∆order

(t,q,b)(p) the function ∆order

(t,q,b)(p)/2 for example is also an ap-
propriate function. Of course, we usually seek the best security bound. It is
also straightforward to derive a classical asymptotic definition relating the ad-
versary’s parameters polynomially to a security parameter.

We remark that there are some subtle points in the definition here. For
example, if we consider an adversary A that always outputs a message of two
blocks in her attempt, then ∆order

A (p) = 0 for p < 0.5 because bnpc = 0 for such
values n = 2, p < 0.5. Therefore this bound carries over to the set of adversaries
and ∆order

(t,q,b)(p) = 0 for p < 0.5 . Thus, usually some restriction on the length
of the message blocks applies, say, the progressive verification procedure is only
run on messages of n ≥ 100 blocks to provide a sufficient granularity of 1%.
Since our solutions build on top of an ordinary MAC we can simply run the
basic verification procedure if n < 100 and invoke the progressive verification for
n ≥ 100.

Formally, we can include a lower bound bL
V of the number of blocks for pro-

gressive verification runs in the bound (t, q, b) on the adversary. Then we can
“adjust” the small error caused by the granularity by subtracting 1/bL

V from
∆order

(t,q,b)(p).

Defining Progressively Verifiable MACs. Each “ordinary” MAC can be consid-
ered as a pv-MAC with ∆order

(t,q,b)(p) = 0 for p < 1. We thus rule out such trivial
solutions in the following definition; yet, we merely demand that premature error
detection may happen sometimes:

Definition 1. Let order ∈ {V.nonad, V.adapt, T.rnd, A.nonad}. Then a message

authentication code is (t, q, b)-progressively verifiable with respect to order if there

is a function ∆order

(t,q,b) with

∆order

(t,q,b)(p) > 0

for some p < 1.

It is again easy to infer an asymptotic definition.

We sometimes call a MAC which is (t, q, b)-progressively verifiable with re-
spect to some order simply a pv-MAC, prescinding the bound on the running
time as well as the type of order. Accordingly, we sometimes write ∆order(p) or
even ∆(p) etc. if the details are irrelevant or clear from the context.

From the cumulative detection probability ∆(p) one can deduce the corre-
sponding density function δ(p) describing the detection probability after reading
exactly m = pn of n blocks. This also allows to define the average number of
blocks the verifier accesses. We provide the formal definitions in the full version.

3 Constructions of pv-MACs

We start with a straightforward approach to warm up. We then move on to a
more sophisticated approach in Section 3.2. Interestingly, our solutions below
do not exclude each other: in fact, all solutions can be combined easily to provide
improved detection performance. All solutions work for a nonadaptively chosen
order by the verifier.

3.1 Divide-and-Conquer Construction

The divide-and-conquer method works as follows. Assume that we are given some
secure MAC scheme. For a message of n blocks (where we assume for simplicity
that n is always even), instead of MACing all n blocks together, we individually
compute a MAC for the first n/2 blocks and then for the remaining n/2 blocks
where we prepend the fixed-length MAC of the first half to the message (possibly
padded to block length). This is done with independent keys for each part. The
complete MAC is given by the concatenation of both individual MACs.

We assume that the verifier determines the order of block accesses. That is,
the verifier tosses a coin and, depending on the outcome, first starts to read all
the blocks of the left or right half of the message. The verifier then checks the
MAC of this part (by prepending the putative MAC of the left half if the right
half is checked). If this MAC is valid then the verifier continues with the other
half and verifies the other MAC. V accepts if and only if both tests succeed.

It is not hard to see that the verifier will detect errors after reading half of
the input with probability 0.5, except if the adversary A manages to forge a
MAC of the underlying scheme which happens with some small probability εA
only. We omit a formal proof in this version.

Altogether, the cumulative detection function ∆V.nonad

A (p) for this progressive
verification with nonadaptively chosen order is given by:

∆V.nonad

A (p) =

0 if 0 ≤ p < 0.5

0.5 − 2εA − 1
bL

V

if 0.5 ≤ p < 1

1 − 2εA − 1
bL

V

if p = 1

Neglecting εA and the lower bound 1
bL

V

on the block number the verifier therefore

reads on the average 75% of the blocks.
There are several drawbacks nested in the divide-and-conquer approach. The

main drawback is that the expected number of inspected blocks for fallacious
inputs is quite large: about 75% of the input have to be processed on the average.
Also, the cumulative detection function is constant in the intervals [0, 0.5) and
[0.5, 1). This is even true if the adversary tampers more than a single block in
a given message-MAC pair. Then the verifier still needs to process at least 50%
of the input —even if the adversary submits a random message with a random
value as MAC. It is preferrable of course to be able to detect such completely
faulty inputs earlier.

There are some advantages to the divide-and-conquer method, though. First,
it works with any underlying MAC scheme. Second, the probabilistic verifier
decides upon the order at random for each new progressive verification run.
Hence, even if the adversary, in a timing attack, gets to know the number of
processed blocks in previous runs, the error in the attempt will be found with
probability approximately 0.5 after half of the blocks.

Certain variations to the basic scheme apply, of course. For instance one
can divide the message into three equally large parts and output three MACs
allowing to spot incorrect inputs after 66.66% of the blocks and so on. However,
we are still left with the problem of a mainly constant cumulative detection
probability.

3.2 Partial-Intermediate-Result Construction

In this section we address a solution where the cumulative detection probability
is roughly proportional to the work. For this we first recall some basics about
CBC-MACs before describing our partial-intermediate-result construction.

Preliminaries. To build a MAC we essentially compute an XCBC-MAC [6] of
the message, using a block cipher EK : {0, 1}B → {0, 1}B and keys K ∈ {0, 1}k,
K2, K3 ∈ {0, 1}B for input/output length B. Specifically, the XCBC-MAC of a
message M = m1|| . . . ||mn of B-bit blocks m1, . . . , mn (with |mn| ≤ B) is given
by:

– if |mn| = B then let K∗ = K2

else if |mn| < B then let K∗ = K3 and pad M with 10j for j = B−1−|mn|
– set C0 = 0B and for j = 1 to n − 1 compute Cj = EK(Cj−1 ⊕ mi)

– return C = EK(K∗ ⊕ Cn−1 ⊕ mn) where mn has possibly been padded

That is, one pads the message only if necessary and, depending on this padding,
one inserts the key K2 or K3 in the final step of the CBC-MAC computations.1

Outline. Instead of starting the XCBC-computation with the first message block
here we start at a random bit position start ∈ {0, 1, . . . , |M | − 1} of the (un-
padded) message M . That is, we run the XCBC-MAC computation for the
rotated message with offset start, and we also prepend start (padded to B bits)
to this rotated message. The value start will later be appended in encrypted form
to the original MAC as well.

During the MAC computation we write down the least significant bits of the
intermediate results Cbj·widthc+1 for width = n

1+B/2 . We call the corresponding

message blocks check blocks.2 By the choice of the value width we get B/2 extra
bits lsb which can then be encrypted as a single block together with the B/2
bits representing the value start. We assume a lower bound of bL

V ≥ 1 + B/2 on
the block length of progressively verified messages to ensure that all check blocks
are distinct. Figure 3 shows the computation of the XCBC-MAC in our case.

EK

1m

+

EK EK EK

+

EK

+ + +

EK

EK

+

+

2m

start

least significant bits

...

m4 mn−1 mnm3

K or K32

Fig. 3. Progressively Verifiable PIR-XCBC-MAC computation

In addition we compute another (CBC-)MAC σ for the XCBC-MAC C, the
encryption e of lsb||start and the bit length of the message. In this case, a CBC-
MAC suffices as we apply this MAC computation only to fixed length inputs of
three blocks. Our complete MAC is given by (C, e, σ).

To verify the MAC (C, e, σ) progressively, first check the CBC-MAC σ. If it is
valid then decrypt lsb||start and start re-computing the XCBC-MAC beginning

1 We remark that any (reasonable) kind of CBC-MAC works for our construction here;
we use the XCBC-MAC instead of the CBC-MAC in order to deal with variable input
length right away.

2 The reason for taking the blocks with number bj · widthc + 1 instead of bj · widthc
is that we have prepended the value start as the new first block.

at the random position start. Each time after processing a further check block
compare the least significant bit of this check block with the decrypted value; if
they match then continue, else stop with output reject. The formal description
of our construction PIR-XCBC-MAC (for partial intermediate results) appears
in Figure 4.

PIR-XCBC-MAC for V.nonad order

– Key Generation: pick k-bit keys K and B-bit keys K2, K3, Kenc, KCBC

– Compute MAC for message M of n blocks:
• pick random value start ∈ {0, 1, . . . , |M | − 1}, encode with B/2 bits
• rotate M by offset start and prepend block 0B/2||start to get Mstart of n + 1

blocks
• compute XCBC-MAC C of Mstart with keys K, K2, K3

• let lsbj be least significant bit of intermediate value Cbj·widthc+1

of XCBC-MAC computation, j = 1, 2, . . . , B/2; let lsb = lsb1|| . . . ||lsbB/2

• compute e := EK(Kenc ⊕ C) ⊕ lsb||start
• compute CBC-MAC σ for C||e|| |M | with function EK(KCBC ⊕ ·),

where |M | is encoded as B bit string
• return (C, e, σ)

– Progressive Verification of M and putative MAC (C, e, σ):
• verify CBC-MAC σ for message C||e|| |M | with function EK(KCBC ⊕ ·);

if verification fails then return reject
• compute lsb||start := EK(Kenc ⊕ C) ⊕ e
• compute Mstart from M as for MAC computation, using offset start

• verify MAC:
∗ compute XCBC-MAC of Mstart with keys K, K2, K3

∗ if during this computation the least significant bit of some intermediate
value Cbj·widthc+1 does not match the previously decrypted value lsbj

then stop and output reject
∗ finally verify that the computed XCBC-MAC matches the given one C;

if not then output reject

Fig. 4. Progressively verifiable XCBC-MAC

Design Principle. The idea of the construction is as follows. Using a CBC-type
of MAC for M ensures that, if the adversary tampers a single block for a valid
massage-MAC pair, then after this incorrect block is processed, all subsequent
intermediate results will be essentially independent of the previously computed
values. This is also referred to as the error propagation property of CBC-like
MACs. In particular, this means that the least significant bits of these interme-
diate results are likely to be independent from the encoded ones. Hence, soon

after we process a fallacious block we will find the error with probability 50%,
and with probability 25% after an additional check block and so on.

Starting at a random position with the computation and verification ensures
that the adversary remains oblivious about the order of the blocks and thus
cannot deliberately tamper the block which will be processed last. MACing the
length of the message together with C and e basically prevents attacks in which
the adversary appends an extra block to messages, e.g., if the adversary ap-
pends a block 11 . . . 1 to the message m = 11 . . .1|| . . . ||11 . . .1 such that the
verifier will not access a truly tampered block during computations. Similarly,
prepending the value start to the rotated message prevents that two cyclically
shifted messages (say, 00 . . .0||11 . . .1 and 11 . . . 1||00 . . .0) of the same length
are accidently rotated to the same message (e.g., to 00 . . . 0||11 . . .1).

The following theorem says that the cumulative detection probability grows
linear with the number of accessed blocks. Hence, the detection probability is
roughly uniformly distributed. Furthermore, the proof of the theorem also shows
that the MAC is unforgeable in the classical sense.

Theorem 1. PIR-XCBC-MAC is a (t, q, b)-progressively verifiable MAC with

respect to order V.nonad. The cumulative detection probability is given by

∆V.nonad

(t,q,b) (p) = p −
4

B
− bad

where

bad ≤ Adv
prp

(t′,q′) +
18.5(qmac + qV)2 + 6(qmac + qV)2(bmac + bV + 5)2

2B
+

1

bL
V

for the advantage Adv
prp

(t′,q′) of any adversary running in time t′ = t + O (BS)

and making at most q′ = qmac(bmac + 5) + qV(bV + 5) queries to distinguish the

block cipher E from a truly random permutation.

The bound ∆V.nonad

(t,q,b) (p) essentially stems from the fact that the adversary is
oblivious about our random start position. Hence, the verification algorithm usu-
ally approaches an incorrect block after processing a fraction of m

n blocks. Then
it takes a few more check blocks to detect the error, namely, 2 on the average
which are processed after another fraction of 2width

n ≈ 4
B blocks. The amount

bad originates from the (in)security of the deployed cryptographic schemes. Con-
clusively, the average number of blocks is roughly 50% + 4/B. The verifier thus
reads on the average about 53% of an invalid submission for B ≥ 128.

The proof as well as an alternative construction is omitted for space reasons.

4 Discussion

Our solutions show that progressive verification can be achieved. We have fo-
cused on message authentication and presented reasonable constructions of pv-
MACs. Yet, some open problems remain, both in the field of MACs and other
cryptographic primitives. In this section we give some possible future directions.

Improved Solutions for pv-MACs. We have already observed that our model of
progressive verification can be varied, say, by allowing the adversary to adap-
tively decide upon the message based on the verifier’s order. Finding good so-
lutions for such cases is still open. Similarly, all our constructions rely on (non-
adaptively) chosen orders by the verifier. Coming up with nontrivial solutions
for random or adversarial orders is a challenging task.

Another interesting extension is to investigate the relationship between the
number of incorrect and accessed blocks. For example, in our model the quality of
the progressive verification procedure is measured against adversaries that need
to tamper only a single block in a given message. This immmediately yields
a lower bound of 50% for the average number of block accesses. It would be
interesting to see

– how our constructions perform in the case that there are more incorrect
blocks, possibly distributed over the message according to some specific dis-
tribution, and

– if better solutions can be found if the number of fallacious blocks must exceed
a certain lower bound; this may be especially interesting for parallelizable
computations of MACs where the “avalanche” effect of CBC-MACs disap-
pears.

Progressive Verification for other Primitives. Concerning other cryptographic
primitives we remark that one can transfer the solutions to the hash-and-sign
principle. Namely, assume that an iterated hash functions like SHA or RIPEMD
is applied to the message. These hash functions process the message similarly
to CBC-MACs, and we can output the least significant bits of check blocks in
addition the hash value. Then we sign the actual hash value as well as the extra
output, e.g., with a number-theoretic signature function. The complete signature
is given by the output of the signature function and the additional vector.

What is the advantage of the constructions in this case? Assume that the
message is large such that the signing time is dominated by the hash evaluation.
Say that the adversary is supposed to change one of the first blocks. Then the
adversary can in fact bias the intermediate values by choosing the message blocks
adaptively. In fact, she will be able to find a message such that the progressive
verification procedure has to re-compute at least most parts of the hash compu-
tation. Nevertheless, in order to fool the verifier drastically the adversary has to
invest some work first. This leads to a more balanced workload between the ad-
versary and the verifier. For example, this may have applications for protection
against denial-of-service attacks.

Finally, we remark that it would also be interesting to find nontrivial sig-
nature schemes in which the underlying number-theoretic function is somewhat
progressively verifiable.

Acknowledgment

We thank the anonymous reviewers for their comments.

References

1. M. Bellare, O. Goldreich, S. Goldwasser: Incremental Cryptography:
The Case of Hashing and Signing, Advances in Cryptology — Proceedings of
Crypto ’94, Lecture Notes in Computer Science, Vol. 839, pp. 216–233, Springer-
Verlag, 1994.

2. M. Bellare, O. Goldreich, S. Goldwasser: Incremental Cryptography and
Application to Virus Protection, Proceedings of the 27th ACM Symposium on
Theory of Computing (STOC), pp. 45–56, 1995.

3. M. Bellare, R. Guerin, P. Rogaway: XOR MACs: New Methods for Message
Authentication Using Finite Pseudorandom Funtions, Advances in Cryptology —
Proceedings of Crypto ’95, Lecture Notes in Computer Science, Vol. 963, pp. 15–
29, Springer-Verlag, 1995.

4. M. Bellare, J. Kilian, P. Rogaway: The Security of Cipher Block Chain-
ing Message Authentication Code, Advances in Cryptology — Proceedings of
Crypto ’94, Lecture Notes in Computer Science, Vol. 839, pp. 341–358, Springer-
Verlag, 1994.

5. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, P. Rogaway: UMAC:
Fast and Secure Message Authentication, Advances in Cryptology — Proceed-
ings Crypto ’99, Lecture Notes in Computer Science, vol. 1666, pp. 216–233,
Springer-Verlag, 1999.

6. J. Black, P. Rogaway: CBC MACs for Arbitrary-Length Messages: The Three-
Key Construction, Advances in Cryptology — Proceedings of Crypto 2000, Lecture
Notes in Computer Science, Vol. 1880, pp. 197–215, Springer-Verlag, 2000.

7. J. Black, P. Rogaway: A Block-Cipher Mode of Operation for Paralleliz-
able Message Authentication, Advances in Cryptology — Proceedings of Euro-
crypt 2002, Lecture Notes in Computer Science, Vol. 2332, pp. 384–397, Springer-
Verlag, 2002.

8. U. Feige, A. Fiat, A. Shamir: Zero Knowledge Proofs of Identity, Journal of
Cryptology, Vol. 1, pp. 77–94, Springer-Verlag, 1988.

9. M. Fischlin: Incremental Cryptography and Memory Checkers, Advances in
Cryptology — Proceedings of Eurocrypt ’97, Lecture Notes in Computer Science,
Vol. 1233, pp. 393–408, Springer-Verlag, 1997.

10. M. Fischlin: Lower Bounds for the Signature Size of Incremental Schemes,
Proceedings of the 38th IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 438–447, IEEE Computer Society Press, 1997.

11. M. Fischlin: Fast Verification of Hash Chains, to appear in RSA Security
2004 Cryptographer’s Track, Lecture Notes in Computer Science, Springer-Verlag,
2004.

12. L.C. Guillou, J.-J. Quisquater: A Practical Zero-Knowledge Protocol Fit-
ted to Security Microprocessors Minimizing Both Transmission and Memory, Ad-
vances in Cryptology — Proceedings of Eurocrypt ’88, Lecture Notes in Computer
Science, Vol. 330, pp. 123–128, Springer-Verlag, 1988.

13. P.C. Kocher: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems, Advances in Cryptology — Proceedings of Crypto ’96, Lecture
Notes in Computer Science, Vol. 1109, pp. 104–113, Springer-Verlag, 1996.

14. C.P. Schnorr: Efficient Signature Generation by Smart Cards, Journal of Cryp-
tology, Vol. 4, pp. 161–174, 1991.

