
Merging the Cryptographic Security Analysis
and the Algebraic-Logic Security Proof of PACE

Lassaad Cheikhrouhou1, Werner Stephan1,
Özgür Dagdelen2, Marc Fischlin2, Markus Ullmann3

1German Research Center for Artificial Intelligence (DFKI GmbH)
{lassaad,stephan}@dfki.de

2Technische Universität Darmstadt
marc.fischlin@gmail.com oezguer.dagdelen@cased.de

3Federal Office for Information Security (BSI)
markus.ullmann@bsi.bund.de

Abstract: In this paper we report on recent results about the merge of the cryp-
tographic security proof for the Password Authenticated Connection Establishment
(PACE), used within the German identity cards, with the algebraic-logic symbolic
proof for the same protocol. Both proofs have initially been carried out individually,
but have now been combined to get “the best of both worlds”: an automated, error-
resistant analysis with strong cryptographic security guarantees.

1 Introduction

The cryptographic protocol PACE (Password Authenticated Connection Establishment) is
designed by the BSI for the establishment of authenticated radio frequency connections
between contactless cards and readers [UKN+]. PACE is deployed in the German (elec-
tronic) identity card and should be used instead of the BAC (Basic Access Control) proto-
col in the inspection procedure of machine readable travel documents (ePassports) [EAC].
The protocol realizes a password-authenticated Diffie-Hellman (DH) key agreement be-
tween an RF-chip and a terminal. A successful run yields a fresh session key that is used
by the reader to establish a secure connection to the RF-chip.

Two Views on the Security: The security of PACE has been analyzed by following two
state-of-the-art approaches. A (symbolic) algebraic-logic security proof of PACE [CS10],
in the Dolev-Yao (DY) model has been carried out in the Verification Support Environment
(VSE) tool, yielding a machine generated proof of all its security properties. The DY
model is based on a message algebra given by cryptographic operations and equations.
The operations define the syntax of protocol messages while the equations in an abstract
way formalize the computations that are necessary for the honest participants to execute
the protocol. A subset of these operations is available for the adversary to analyze observed
messages and to synthesize new ones. This attacker model is very powerful with respect
to an unrestricted access (of the adversary) to the communication lines. On the other hand,

it limits the abilities of the adversary in attacking cryptography by assuming that exactly
the algebraic (or symbolic) computations can be carried out by the adversary.

Concurrently, a cryptographic security analysis of PACE [BFK09] has been carried out
based on the Bellare Rogaway (BR) security model, yielding a pencil-and-paper proof of
the confidentiality and authenticity of the session key. The cryptographic proof follows
the common complexity-theoretic approach to show that any security breach of the key
exchange protocol within the security model can be used to refute any of the underlying
assumptions and primitives. Vice versa, if the underlying primitives of the protocol are
secure, then the proof shows – in terms of the complexity of the algorithms and concrete
probabilities – how secure the PACE protocol is. Here, the adversary can be arbitrary
(Turing) machines whose abilities to communicate with the system are determined by
the model. Security proofs in the BR model consider strong adversaries who control the
network, i.e., eavesdrop, modify and inject messages, and may learn leaked session keys
or long-term keys of users.

Merging the Views: In this paper we describe an approach to merge the cryptographic
security analysis in [BFK09] and the algebraic-logic security proof in [CS10], aiming at
a reliability improvement in the security of PACE. Our merging approach is based on an
adequate formalization of the BR model used within PACE that allows us to attribute
public bit strings (values) to symbolic expressions for corresponding applications of the
cryptographic functions. Sequences of alternating intruder queries and protocol oracle
responses (BR traces) are attributed this way a symbolic structure that allows us to define
DY computations in the BR model.

The main result is the theorem that symbolic traces of DY computations in the BR model
are equivalent to symbolic traces in the algebraic-logic security proof. Equivalence is
defined wrt. the capabilities and the knowledge of the adversary. This means that the
algebraic-logic security proof of PACE in VSE provides us with a machine generated proof
for the confidentiality of the session key in the BR-model, though for Turing machines
restricted to DY computations.

Apart from that, our formalization of the BR model for PACE provides us with the formal
means to define computational problems arbitrary adversary machines are confronted with
(relative to the protocol model). The ultimate goal is an axiom-based formal proof of
PACE’s security in the BR model relative to an exhaustive listing of formally defined
computational problems. In the paper we describe only the formalization of PACE’s BR
model (Sec. 4) and the equivalence of DY computations both in the BR and the DY model
(Sec. 5). Prior to that we introduce PACE (Sec. 2) and we review its cryptographic security
analysis and its algebraic-logic security proof (Sec. 3).

Related Work about Proof Integrations: Abadi and Rogaway [AR02, AR07] were
the first to aim at bridging the gap between the two views on cryptography, the formal
or symbolic view, and the complexity-based or computational view, through linking the
two worlds explicitly. Their soundness theorem for encryption schemes is accomplished
by mapping symbolic expressions to (probabilistic) cryptographic ensembles. Since then
further works aimed at closing the gap between the two worlds in the same spirit (e.g.,
[BPW03, IK03, MW04a, MW04b, CLC08]).

A supportive approach towards linking the cryptographic and the symbolic world is given
by the reactive simulatability (RSIM) framework of Pfitzmann and Waidner [PW00, PW01]
and Canetti’s concurrently proposed and similar-in-spirit universal composition (UC) frame-
work [Can01]. The idea of the frameworks is to analyze cryptographic protocols in pres-
ence of ideal functionalities, similar to idealized primitives in the DY setting. So-called
composition theorems then allow to conclude security of the combined protocol when the
ideal functionalities are replaced by secure sub protocols. Hence, this allows to decompose
the analysis of complex, potentially multi-session protocols into analysis of more handy
single-session sub protocols. A series of soundness results [BPW04, CH06, Pat05, MH07,
BU08] for these frameworks shows that any symbolically secure protocol (in a symbolic
version of the RSIM/UC framework) is also secure in the computational framework; often
such formal analysis have also been carried out explicitly. However, in order to be secure
in the RSIM/UC frameworks, protocols need to satisfy very strong security guarantees in
the first place. This rules out numerous protocols, especially quite a number of practical
protocols. This means that the method is not applicable to a large class of protocols, and
it is, in particular, unknown whether it applies to PACE.1

While computer-aided verification of cryptographic protocols is a well-established disci-
pline, computer-aided verification of cryptographic proofs (in the computational model)
is a quite new approach to combine the benefits of automated, error-free verification and
the flexibility of cryptographic proofs to consider arbitrary adversaries strategies and to
reason about the security of a protocol in terms of reduction to primitives (instead of ideal-
izing the primitives). There are several approaches to build systems along this line, among
which the recently proposed framework EasyCrypt [BGHB11] stands out. Our approach
follows the same idea of verifying game-based proofs for the PACE protocol with the help
of automated tools. Here, we used the available cryptographic proof for PACE [BFK09]
and the previous efforts for the formal analysis for PACE in VSE [CS10] to merge the
cryptographic reasoning with the symbolic analysis.

2 The PACE Protocol

PACE is a password-based key agreement protocol with mutual entity authentication. It
takes place between the RF-chip (A) of a contactless smart card and an (inspection) termi-
nal (B). After a successful run of PACE, an RF-chip and a terminal share a fresh session
key, and the terminal can establish a secure connection to the RF-chip of the smart card
using the established session key.

We have to point out that a successful PACE protocol run between an RF-chip A and a
terminal B is only possible if the terminal has learned the appropriate password pwd(A)
of the RF-chip A at the outset, e.g., if the user typed it in at the terminal, or if it is read off
the machine-readable zone in passports. This password pwd(A) is stored on the RF-chip
in secure memory and the way it is utilized in PACE guarantees that the chip originates

1Note that the cryptographic analysis of PACE has indeed been carried out in the game-based BPR security
model, not in the UC framework.

from the smart card at hand.

2.1 Cryptographic Functions

PACE messages are computed out of passwords, random values (nonces), and basic gen-
erators for the underlying elliptic curve group, using the following (abstract) functions:

• enc(·, ·), dec(·, ·) for (symmetric) encryption and decryption, respectively,

• dh(·, ·) for the computation of Diffie-Hellman values, and

• mac(·, ·), gen(·, ·) for the computation of mac values and (fresh) generators, respec-
tively.

The algebraic properties that are necessary to run the protocol are expressed by three equa-
tions:

• For encryption and decryption we have

dec(m0, enc(m0,m1)) = m1 and enc(m0, dec(m0,m1)) = m1.

The second equation guarantees the absolute indistinguishability of failed and suc-
cessful decrypting attempts. This property is necessary to obtain the resistance
against offline password testing (see section 3.2).

• For the computation of a common DH key we have

dh(dh(m0,m1),m2) = dh(dh(m0,m2),m1).

2.2 PACE Steps

To run the protocol with an RF-chip A, the terminal B does not only have to learn the
password pwd(A). It also has to access (in a protocol pre-phase) the domain parameters
that include a static generator g for DH exchange in steps 2+3.

In the description of the protocol steps below we additionally make use of the meta-
operator % to separate the sender’s view (the left-hand side of %) from the receiver’s
view (the right-hand side of %). Unstructured messages in steps 1-5 below means that the
receiver accepts any message without practically any check. Compare this with steps 6
and 7 below. Here, the respective receiver sees a message that can be compared with an
expression determined from the own knowledge (the right-hand side of %).

1. A −→ B : enc(pwd(A), sA) % z

2. B −→ A : dh(g, x1) % X1

3. A −→ B : dh(g, y1) % Y 1

4. B −→ A : dh(gen(dh(g, dec(pwd(A), z)), dh(Y 1, x1)), x2) % X2

5. A −→ B : dh(gen(dh(g, sA), dh(X1, y1)), y2) % Y 2

6. B −→ A : mac(dh(Y 2, x2), Y 2)
% mac(dh(X2, y2), dh(gen(dh(g, sA), dh(X1, y1)), y2))

7. A −→ B : mac(dh(X2, y2), X2)
% mac(dh(Y 2, x2), dh(gen(dh(g, dec(pwd(A), z)), dh(Y 1, x1)), x2))

A starts the protocol by sending a nonce sA encrypted with the own password pwd(A)
to B. The decryption of this message z by B with the password that B can determine
while B is connected with A results in sA, provided this password equals pwd(A). The
first DH exchange in steps 2+3 establishes a first DH value that is used with sA and the
static generator g in the computation of a fresh generator for the subsequent DH exchange
in steps 4+5. The composition of these parameters by gen guarantees that the resulting
generator is cryptographically as strong as g and binds this generator with the intermediate
of sA to the password pwd(A). Thus, the DH value established in steps 4+5 can be
determined only by participants that know the password. Its use in steps 6+7 to compute
the mac authenticates the sender for the receiver. Each mac can be created only by a
communication partner who has participated in the DH exchange of steps 4+5 after using
the password.

3 The Cryptographic and Symbolic Security Analyses

3.1 The Cryptographic Proof

The PACE protocol is accompanied by a cryptographic security proof [BFK09]. The
cryptographic proof follows the classical paper-and-pencil approach of defining a security
model, describing the adversary’s capabilities and goals, specifying a set of underlying
cryptographic assumptions, and a mathematical proof that the adversary cannot succeed
within the model under the assumptions.

As for the model, the authors in [BFK09] used the widely-deployed BR model [BR94]
for authenticated key exchange (or, to be precise, the variations of Bellare-Pointcheval-
Rogaway [BPR00] and of Abdalla et al. [AFP06] for the password-based case).The BR
model defines a game between the adversary and a challenger oracle in which the pow-
erful adversary can: (a) observe interactions between honest participants (i.e., RF-chips
and terminals), (b) inject or modify transmissions in such communications, or even take
over the side of one of the parties, (c) corrupt players, and (d) learn the derived DH key
in executions. We note that the model considers multi-session executions, which may run
concurrently. The adversary’s goal is now to distinguish derived fresh DH keys from in-
dependent random strings in so-called test sessions, the idea being that good keys must
still look random to the adversary. The model now demands that the adversary cannot dis-
tinguish the two cases, defined within the usual cryptographic notion of having negligible
advantage over distinguishing the two cases by pure guessing with probability 1

2 .

The cryptographic proof now defines a set of assumptions, such as the hardness of the
so-called PACE-DH number-theoretic problem (which is related to the DH problem), the
security of the underlying message authentication code, and idealizing the deployed cipher
and the hash function as a random oracle. Under these assumptions, it is shown (mathe-
matically) that the PACE protocol is secure. The caveat here is that the proof takes into
account the fact that the protocol is password-based, i.e., relies on low-entropy secrets,
which can, in principle, be guessed by the adversary. The security claim shows that the –
trivial and inevitable – on-line guessing of passwords, where the adversary tries to predict
the password and then tests its guess in an execution with an honest party, is (essentially)
the best adversarial strategy. In other words, PACE achieves optimal security.

The proof itself is carried out with the common technique of game hopping. That is, one
starts with the actual attack and gradually eliminates success strategies of the adversary in
each game hop, e.g., the ability to forge MACs. In the final game, the adversary provably
cannot distinguish the DH keys from random keys anymore. One then accounts for the
loss in the adversary’s success probabilities and sums up all the losses for the hops. This
sum gives an upper bound on the adversary’s advantage.

The next theorem states the cryptographic security of the PACE protocol (for more general
cases where the first Diffie-Hellman key exchange is substituted by a canonical protocol
Map2Point). It obviously relates the adversary’s characteristics like running time and
success probability to the ones for the underlying primitives and assumptions. The theo-
rem roughly shows that the best strategy for the adversary (unless it can break one of the
primitives) is to guess the password (with probability 1/N among all passwords) and to
mount a test run for this guess. Since there can be in total qe executions the overall success
probability is roughly qe/N .

Theorem 3.1 ([BFK09]) Let Map2Point be canonical and assume that the password is
chosen from a dictionary of size N . In the random oracle model and the ideal cipher
model we have

Advake
PACE(t, Q) ≤ qe

N
+ qe · AdvgPACE−DH

Map2Point (t∗, N, qh)

+qe · Advforge
mac (t∗, 2qe) +

2qeN2 + 8q2eN + qcqe
min{q, |Range(H)}

The resources of an adversary are captured by the time t∗ = t + O(Q2) and number of
oracle queries Q = (qe, qc, qh) where qe denotes the number of key exchanges, qc the
queries to the cipher oracle and qh the queries to the random oracle. The theorem says
that the advantage Advake

PACE(t, Q) of any adversary having resources (t∗, Q) breaking
the security of PACE is bounded by the pure guessing strategy qe/N , the advantage of
forging a MAC Advforge

mac (t∗, 2qe), and the DH related hard problem gPACE-DH, denoted
by AdvgPACE−DH

Map2Point (t∗, N, qh) plus some negligible term. In short, an adversary is merely
as successful as blind guessing whenever a secure MAC scheme is used in PACE.

The security reduction of PACE does not consider explicitly the hardness of the (ideal)
block cipher. Instead, the security of the underlying block cipher is implicitly captured in
the hardness of gPACE-DH problem and modeled as an ideal cipher.

3.2 The Algebraic-Logic Proof

The symbolic analysis of PACE has been carried out in the VSE tool, [CS10]. The resulting
algebraic-logic proof handles explicitly the standard security properties (mutual authenti-
cation and confidentiality of session keys) and the following three properties, which are
typical for password protocols:

• forward secrecy of session keys, i.e. that a successfully guessed password does not
help to reveal the session keys that had been generated in previous runs,

• resistance against offline password testing, i.e. that the obtained protocol messages
by an active intruder cannot be exploited offline to determine a correct password
from a given list of candidate passwords, and

• forward secrecy of passwords, i.e. a stronger form of the resistance property where
the intruder may use disclosed session keys in addition to protocol messages.

We note that these properties are implied by the BR model. They have been verified in the
VSE tool where the protocol model consists of a set TPACE of (finite) sequences (traces)
tr = 〈e0, . . . , en−1〉 of (protocol-) events. The main events are of the form says(a, b,m)
where a protocol participant a sends a (symbolic) message m to some other participant b.

The set TPACE is defined inductively by using predicates (rules) R(tr, e) that describe
the conditions for a given trace tr to be extended by a new event e. There is a predicate
Ri for each line i of the protocol and an additional predicate Rf for the fake case. We
have Rf (tr, says(spy, b,m)) for an arbitrary participant b iff the intruder (named spy) is
able to derive m out of the observable messages in tr. We denote the set of (immediately)
observable messages by spies(tr) and the set of derivable messages (from spies(tr)) by
DY (spies(tr)). The latter is an extension of spies(tr) given by the reasoning capabilities
of a DY intruder, i.e. by the application of the functions and the equations in Sec. 2.1.

In this algebraic-logic model, PACE properties are formalized on arbitrary traces from
TPACE and the corresponding machine-proofs are by induction on these event traces.

4 A Symbolic Formalization of the BR-Model

The global structure of the BR model, as depicted in Fig. 1, consists of two components: a
PPT adversary machine and the oracleO that reacts on queries from the adversary by sim-
ulating steps of a given protocol. The most important query is of the form send(adr,m)
where m is a protocol message that has to be answered by a certain participant in a cer-
tain session, both given by adr, according to the protocol rules and the execution state
which is part of the overall oracle state. The response value may depend on the appli-
cation of cryptographic primitives where idealized functions are realized by probabilistic
choices of the oracle. The adversary uses these responses to generate subsequent queries

by possibly guessing (sub-) messages and/or performing computations that are not neces-
sarily included in the message algebra used in the DY model (see Sec. 2.1). To break the
protocol, after termination of a particular session the adversary has to distinguish the
session key stored in the oracle state from a ran-

Figure 1: The BR Model

dom value with a considerably high probability.
The test item is presented by the oracle as a reac-
tion to a special query.

In [CSDF10] we formalize the BR model by spec-
ifyingO as a state transition system and by defin-
ing computation trees Comp(O ‖ A), see Fig. 2,
generated by the joint execution of the oracle and
an arbitrary but fixed adversary A.

Let SO be the set of oracle states, TA be the set of states of the adversary, QA the set of
queries that can be generated by the adversary, and RO the set of possible responses of the
oracle. As mentioned above queries may contain protocol messages to be processed by
the oracle.

Nodes of computation trees are quadruples (s, t, r, p) and (s, t, q, p), where s ∈ SO, t ∈
TA, r ∈ RO, and q ∈ QA. The probability p ∈ [0, 1] captures probabilistic choices of O
and A, respectively.

Starting from the initial states s0 ∈ SO and t0 ∈ TA the computation tree grows by
alternating transition steps of the adversary A (•→•) and the oracle O (•→•). Steps of
the adversary depend on the current state t ∈

Figure 2: A computation tree Comp(O ‖ A)

TA and the current response r ∈ RO. The state
of the adversary which is not explicitly given
can be thought of (among others) as represent-
ing past responses of the oracle. Outcomes of
steps of the adversary consist of a new state
t′ ∈ TA and a query q ∈ QA. Since the
adversary is given by a probabilistic machine,
there is a finite set (or list) of outcomes, each
equipped with a probability. Similarly, steps of
the oracle depend on its current internal state
s ∈ SO and the current query q ∈ QA. Out-
comes of computations of the oracle consist of
a new state s′ ∈ SO and a response r ∈ RO. Again, idealized (cryptographic) functions
modeled by random choices lead to several possible outcomes.

The behavior of the combined system is given by two functions

stepO : SO×QA → (SO×RO×[0, 1])+ and stepA : TA×RO → (TA×QA×[0, 1])∗.

We specify the function stepO for PACE by transition rules that are similar to the rules
R(tr, e) in the inductive definition of the set TPACE of (DY) traces (see Sec. 3.2). In
particular, we use symbolic expressions to represent the control part of the session states as
part of s ∈ SO. The symbolic expressions are interpreted by an operator [.] that evaluates

symbols. For instance, [pwd(i)] is evaluated to the password (value) π ∈ PWD of the i-
th participant acting in role A (i.e. A[i]) and [nonce(l)] to the l-th nonce (value) randomly
chosen from a set RND.

Probabilistic values are generated using the oracle by certain additional state components.
For example, the first PACE message is generated by a participant (A[i]) with password
π = [pwd(i)] as follows. We consider all choices for a nonce sA = [nonce(l)] from the
setRND. For each sA we check whether the state component orC(s) ⊆ PWD×RND×
RND already contains a triple (π, sA, z) in which case, we generate the response value as
[enc](π, sA) = z. Otherwise, we consider all choices of z from a set of n possible values
(i.e. from a subset of RND given by orC(s)) to obtain z = [enc](π, sA) after (π, sA, z)
was inserted into orC(s′). The probability of the alternative transition steps generated
this way is determined by the the cardinality |RND| and n. Obviously, the same visible
response z might lead to different successor states hidden in the oracle. In the control
component of the oracle, we keep enc(pwd(i), nonce(l)) as the last successful step of this
session. In this way, the control states and the responses of the oracle exhibit the same
structure as traces in the symbolic (DY) model.

Computation paths end by situations where A halts, given by an empty image of stepA.

Without further analyzing computation paths in the tree the only knowledge about the
probabilities p in the outcomes of stepA is that their sum is one.

5 Analyzing (BR) Computation Trees

In this section, we describe the analysis of attacks based on computation trees. Attacks are
given by paths where the final problem is solved, i.e. the adversary distinguishes a session
key (by an honest participant) from a random value. Every success computation path
contains a terminated session by an honest participant where the responses are computed
as reaction on send queries generated by the adversary. The messages in these queries
have to be accepted by the honest participant as simulated by the oracle according to the
protocol rules. In general, the adversary has to solve the problem of generating a correct
protocol message by using knowledge obtained from all previously observed responses.
The main question is whether there can be an adversary A that is able to solve all these
problems including the final problem with a considerably high probability.

First we consider the adversary machines that are restricted to DY reasoning. We de-
fine this kind of machines relative to computation trees: (a) In a DY-computation tree
Comp(O ‖ A), the steps of A are deterministic, i.e. every red node may not have more
than a child node. This must not be confused with the fact that there are different strate-
gies for adversaries. (b) Each value in a query must be associated a symbolic expression
ε ∈ DY (ε), where the list ε contains the symbolic expressions associated to the corre-
sponding directly observable (message) values.

The following theorem allows us to exploit the algebraic-logic proof as a VSE proof for the
security of PACE (in the BR model) against DY restricted adversary machines. Note that
DY adversaries cannot be removed by complexity considerations, since DY computations

are feasible.

Theorem 5.1 ([CSDF10]) Let Comp(O ‖ A) be a (PACE) DY-computation tree. For all
list ε of the symbolic expressions associated to the public values on a computation path in
Comp(O ‖ A) there exists a protocol trace tr in the DY model of PACE such that

∀ε : ε ∈ DY (ε)⇔ ε ∈ DY (spies(tr)).

This theorem is proved by induction on computation paths, [Neu11].

Regarding arbitrary adversary machines, the success to break the protocol shall be traced
back to a complete list of local computation problems that are induced, as explained above,
by protocol rules and that fit to the (partly idealized) assumptions on the cryptographic
operations. This is work in progress. Up to now, we identified systematically a list of
local (sub-) problems that we formally defined owing to notions given by computation
trees, [CSDF10, Neu11]. Each local problem is defined by an input-output relation which
is specified by input computation paths (in Comp(O ‖ A)) and by correct outputs defined
relative to associated states s ∈ SO. Further work will be an axiomatic system that can be
used to prove the completeness of the identified problem list.

6 Conclusion

In spite of well-developed frameworks which guarantee soundness of algebraic-logic secu-
rity proofs with respect to cryptographic security, their applicability to practical protocols
is quite limited (see Sec. 1). For this reason, two independent security analysis for PACE
were performed, a cryptographic security analysis and an algebraic-logic security proof,
to explore PACE by applying state-of-the-art techniques. As the mathematical founda-
tions are quite different, i.e., complexity theory versus mathematical logic, both analyses
for PACE existed more or less concurrently at the outset of our merging attempt. Now,
the described formalization of the BR-model provides us with a uniform formal frame-
work for algebraic-logic and (computational-)cryptographic reasoning. This enables us to
merge the cryptographic security analysis and the algebraic-logic security proof of PACE
as described in this paper. We obtained a closed formal security analysis for PACE. The
consequence is that the proven properties of the PACE protocol in both approaches can
be linked. This enhances the reliability of the cryptographic (pencil-and-paper) proof as it
can be supported by an accurate, formal algebraic-logic verification.

Here, we have only described the merging of a cryptographic security analysis and the
algebraic-logic security proof of the password-based security protocol PACE. However,
our approach, formalizing cryptographic analysis methodologies, seems to be much more
general and applicable to a broad class of security protocols. This estimation has stimu-
lated the project ProtoTo, funded by the German Federal Ministry of Education and Re-
search (BMBF), about merges in related cases.

References

[AFP06] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-Based Au-
thenticated Key Exchange in the Three-Party Setting. IEE Proceedings — Information
Security, 153(1):27–39, March 2006.

[AR02] Martı́n Abadi and Phillip Rogaway. Reconciling Two Views of Cryptography (The
Computational Soundness of Formal Encryption). Journal of Cryptology, 15(2):103–
127, 2002.

[AR07] Martı́n Abadi and Phillip Rogaway. Reconciling Two Views of Cryptography (The
Computational Soundness of Formal Encryption). Journal of Cryptology, 20(3):395,
July 2007.

[BFK09] Jens Bender, Marc Fischlin, and Dennis Kügler. Security Analysis of the PACE Key-
Agreement Protocol. In Proceedings of the Information Security Conference (ISC)
2009, volume 5735 of Lecture Notes in Computer Science, pages 33–48. Springer-
Verlag, 2009.

[BGHB11] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin.
Computer-Aided Security Proofs for the Working Cryptographer. In CRYPTO, volume
6841 of Lecture Notes in Computer Science, pages 71–90. Springer, 2011.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated Key Exchange
Secure against Dictionary Attacks. In Bart Preneel, editor, Advances in Cryptology —
Eurocrypt ’00, volume 1807 of Lecture Notes in Computer Science, pages 139+, 2000.

[BPW03] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A Composable Cryptographic
Library with Nested Operations. In Sushil Jajodia, Vijayalakshmi Atluri, and Trent
Jaeger, editors, ACM CCS 03: 10th Conference on Computer and Communications
Security, pages 220–230. ACM Press, October 2003.

[BPW04] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A General Composition The-
orem for Secure Reactive Systems. In Moni Naor, editor, TCC 2004: 1st Theory of
Cryptography Conference, volume 2951 of Lecture Notes in Computer Science, pages
336–354. Springer, February 2004.

[BR94] Mihir Bellare and Phillip Rogaway. Entity Authentication and Key Distribution. In
Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO’93, volume 773 of Lec-
ture Notes in Computer Science, pages 232–249. Springer, August 1994.

[BU08] Michael Backes and Dominique Unruh. Limits of Constructive Security Proofs. In Josef
Pieprzyk, editor, Advances in Cryptology – ASIACRYPT 2008, volume 5350 of Lecture
Notes in Computer Science, pages 290–307. Springer, December 2008.

[Can01] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In 42nd Annual Symposium on Foundations of Computer Science, pages
136–145. IEEE Computer Society Press, October 2001.

[CH06] Ran Canetti and Jonathan Herzog. Universally Composable Symbolic Analysis of Mu-
tual Authentication and Key-Exchange Protocols. In Shai Halevi and Tal Rabin, editors,
TCC 2006: 3rd Theory of Cryptography Conference, volume 3876 of Lecture Notes in
Computer Science, pages 380–403. Springer, March 2006.

[CLC08] Hubert Comon-Lundh and Véronique Cortier. Computational soundness of observa-
tional equivalence. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM
CCS 08: 15th Conference on Computer and Communications Security, pages 109–118.
ACM Press, October 2008.

[CS10] Lassaad Cheikhrouhou and Werner Stephan. Meilensteinreport: Inductive Verification
of PACE. Technical report, Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH, 2010.

[CSDF10] Lassaad Cheikhrouhou, Werner Stephan, Özgür Dagdelen, and Marc Fischlin. Meilen-
steinreport: Integrating the Cryptographic Security Analysis and the Algebraic-Logic
Security Proof of PACE. Technical report, Deutsches Forschungszentrum für Künstliche
Intelligenz GmbH, 2010.

[EAC] Technical Guideline: Advanced Security Mechanisms for Machine Readable Travel
Documents – Extended Access Control (EAC), Password Authenticated Connection
Establishment (PACE), and Restricted Identification (RI). Technical Report TR-03110,
Version 2.05, Federal Office for Information Security (BSI).

[IK03] Russell Impagliazzo and Bruce M. Kapron. Logics for Reasoning about Cryptographic
Constructions. In 44th Annual Symposium on Foundations of Computer Science, pages
372–383. IEEE Computer Society Press, October 2003.

[MH07] Hirofumi Muratani and Yoshikazu Hanatani. Computationally Sound Symbolic Criteria
for UC-secure Multi-Party Mutual Authentication and Key Exchange Protocols. In
IEICE Tech. Rep., volume 106 of ISEC2006-150, pages 59–64, Gunma, March 2007.
Thu, Mar 15, 2007 - Fri, Mar 16 : Gunma Univ. (Kiryu Campus) (IT, ISEC, WBS).

[MW04a] Daniele Micciancio and Bogdan Warinschi. Completeness Theorems for the Abadi-
Rogaway Language of Encrypted Expressions. Journal of Computer Security, 12(1):99–
130, 2004.

[MW04b] Daniele Micciancio and Bogdan Warinschi. Soundness of Formal Encryption in the
Presence of Active Adversaries. In Moni Naor, editor, TCC 2004: 1st Theory of Cryp-
tography Conference, volume 2951 of Lecture Notes in Computer Science, pages 133–
151. Springer, February 2004.

[Neu11] Stephan Rouven Neumann. Integration der kryptographischen Sicherheitsanalyse und
des algebraisch-logischen Sicherheitsbeweises von PACE. Master’s thesis, Saarland
University, Germany, 2011.

[Pat05] A.R. Patil. On symbolic analysis of cryptographic protocols. Massachusetts Institute of
Technology, Dept. of Electrical Engineering and Computer Science, 2005.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and Integrity Preservation of Se-
cure Reactive Systems. In S. Jajodia and P. Samarati, editors, ACM CCS 00: 7th Confer-
ence on Computer and Communications Security, pages 245–254. ACM Press, Novem-
ber 2000.

[PW01] Birgit Pfitzmann and Michael Waidner. A Model for Asynchronous Reactive Systems
and its Application to Secure Message Transmission. In IEEE Symposium on Security
and Privacy, pages 184–, 2001.

[UKN+] Markus Ullmann, Dennis Kügler, Heike Neumann, Sebastian Stappert, and Vögeler
Matthias. Password Authenticated Key Agreement for Contactless Smart Cards. In
Proceedings of the 4-th Workshop on RFID Security, Budapest 2008, pages 140–161.

