
A preliminary version appears in ISC 2009, Lecture Notes in Computer Science, Springer-Verlag, 2009. This version is dated

December 18, 2009.

Security Analysis

of the PACE Key-Agreement Protocol

Jens Bender1 Marc Fischlin2 Dennis Kügler1

1Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany
2Darmstadt University of Technology, Germany

Abstract. We analyze the Password Authenticated Connection Establishment (PACE)
protocol for authenticated key agreement, recently proposed by the German Federal
Office for Information Security (BSI) for the deployment in machine readable travel
documents. We show that the PACE protocol is secure in the real-or-random sense of
Abdalla, Fouque and Pointcheval, under a number-theoretic assumption related to the
Diffie-Hellman problem and assuming random oracles and ideal ciphers.

1 Introduction

Authenticated key exchange is a fundamental cryptographic protocol in which two parties,
usually called the client and the server, establish a secure key. In a password-based key-
agreement protocol both parties only share a low-entropy secret, usually drawn at random
from a set of size N . Since the security only relies on this short password an adversary can
guess the right password with probability at least 1/N and then impersonate another party
in an execution (in a so-called online dictionary attack). Ideally, this should also be an upper
bound on the adversary’s success probability, even if the adversary eavesdrops or actively
participates in other protocol executions. In particular, the adversary should not be able to
deduce the password of any party in an offline dictionary attack by successfully matching
password candidates to executions afterwards.

A widely accepted model to capture the above security requirements is the real-or-random
security notion of Abdalla, Fouque and Pointcheval [2], a refinement of the model of Bellare,
Pointcheval and Rogaway [5]. The original and the refined model have been accepted as a
profound approach to capture security of key agreement protocols and several password based
protocols for authenticated key exchange (AKE) have been shown secure via this approach
[5, 2, 1]. The real-or-random security model says that an adversary, mounting an active attack
on several concurrently running instances of the key agreement protocol, cannot distinguish
genuine keys from random strings.

1

The PACE Protocol. Here we investigate the security of the Password Authenticated
Connection Establishment (PACE) protocol. This protocol has been specified by the Ger-
man Federal Office for Information Security (BSI) to secure the communication between a
chip contained in a machine readable travel document and a reader (terminal) [6]. The pur-
pose of PACE is to establish a secure channel based on weak passwords like the personal
data of the passport holder. The protocol is currently under standardization of ISO/IEC
JTC1/SC17/WG3.

The PACE protocol can be roughly divided into four phases (see also Figure 2 on Page 7):
In the first phase the chip sends a random nonce s encrypted with the password to the termi-
nal. In the second phase both parties execute an interactive protocol Map2Point, mapping the
nonce to a random generator Ĝ of a group, e.g., an elliptic curve (the group parameters are
provided by the chip and authenticated by a governmental authority). In the third phase the
two parties run a Diffie-Hellman (DH) key agreement on the agreed-upon generator Ĝ and
use the DH key to derive the actual keys for subsequent use. Finally, both parties conclude
the execution by sending some authentication data.

PACE is rather a framework allowing different instantiations than a single protocol. Here
we focus on the most prominent version based on elliptic curves. Still, we look at different
options to implement the Map2Point protocol in which the nonce is thrown to a random
generator. A candidate is the DH-based protocol advocated in [6] where both parties generate
a DH key H and define Ĝ = sG+H for the generator G of the elliptic curve and the nonce
s. Another option is to use a coin-flipping protocol instead to generate H jointly and then
again letting Ĝ = sG+H. A third possibility is to hash into the elliptic curve directly. We
discuss these options in more detail later.

Security Result for PACE. In this paper we provide a security analysis of the PACE
framework. We remark that the purpose of this work here is not to investigate the design
choices of the protocol (which are based on implementation aspects and patent issues) but
to analyze PACE as a given protocol with respect to security. Some aspects of the protocol
are, of course, security-related and in this case we explore them in more detail.

We analyze PACE in the random oracle model and the ideal cipher model (which have
recently been shown to be equivalent [9]). These models entail idealized assumptions about
the hash function and cipher deployed in the protocol. Namely, it is assumed that the hash
function behaves like a random function, and that the cipher acts like a random permutation.
We note that neither model may be instantiable in practice [7, 9]. Yet, security shows that,
in order to break the scheme, some weaknesses of these primitives must be exploited.

We also introduce a new Diffie-Hellman-like problem, called general PAssword-based
C hosen-E lement Diffie-Hellman (gPACE-DH) problem. This problem basically says that
it is infeasible for an adversary to derive the final DH key of PACE, even if the adversary
impersonates one of the two parties and biases the outcome of the Map2Point subprotocol.
It follows that the gPACE-DH problem is connected to the specific choice of the Map2Point
step in PACE. For Map2Point protocols guaranteed to produce a random generator we simply
speak of the PACE-DH problem.

Our PACE-DH problems resemble the password-based chosen-base (PCDH) problem of
Abdalla et al. [4]. Yet, while the PCDH problem is known to be equivalent to the basic

2

gPACE-DH

Map2Point
random
output

≤ PACE-DH ≤ DL

gPACE-DH
generically≡ PACE-DH

generically≡ DH
generically≡ DL

Figure 1: Relationships of the (PACE-)DH problems: gPACE-DH denotes the problem related
to Map2Point, PACE-DH covers the special case of Map2Point protocols mapping the nonce to a
uniformly distributed generator, DH is the regular Diffie-Hellman problem, and DL the discrete
logarithm problem; A ≤ B denotes that the hardness of problem A implies hardness of the problem
B. In the generic group model all problems are hard.

DH problem [4, 1], hardness of the PACE-DH is not known to imply the DH assumption.
We nonetheless show that the PACE-DH problem and the gPACE-DH problem are hard in
Shoup’s generic group model [15] for the choices of Map2Point discussed above. An overview
over the relationship of the DH problem to the PACE-DH problems is given in Figure 1.

Assuming the hardness of the gPACE-DH problem we show that PACE is real-or-random
secure in the sense of [2], in the random oracle model and ideal cipher model. We also discuss
that the protocol provides forward security.

2 Security Model

We analyze the PACE protocol in the real-or-random security model of Abdalla et al. [2]
which extends the model of Bellare et al. [5]. Here we provide an overview over the model,
for more information and discussion about the choices see [5] and [2].

Attack Model. The model considers a set of honest participants, also called users. Each
participant may run several instances of the key agreement protocol, and the j-th instance
of a user U is denoted by Uj or (U, j). Each pair of participants shares a secret password
π which may be used multiple times to generate session keys. The password π is chosen
randomly from a (public) dictionary with N elements.

To obtain a session key the protocol P is executed between two instances of the corre-
sponding users. An instance is called an initiator or client (resp. respondent or server) if it
sends the first (resp. second) message in the protocol. For sake of distinctiveness we often
denote the client by A and the server by B.

We consider security against active attacks where the adversary’s goal is to distinguish
between genuine keys, derived in executions between honest parties, and random keys. This
corresponds to the so-called real-or-random setting [2], a stronger model than the original
find-then-guess model of [5], where the adversary can see several test keys (instead of a single
one only).

Each user instance is given as an oracle to which an adversary has access, basically
providing the interface of the protocol instance. By assumption, the adversary is in full

3

control of the network, i.e., decides upon message delivery. The adversary can make the
following queries to the oracles:

Execute(A, i,B, j). Causes the users A and B to run the protocol for (fresh) instances i and
j. The final output is the transcript of a protocol execution. This query simulates a
passive attack where the adversary merely eavesdrops the network.

Send(U, i,m). Causes the instance i of user U to proceed with the protocol when having
received message m. The output is the message generated by U for m and depends on
the state of the instance. This query simulates an active attack of the adversary where
the adversary pretends to be the partner instance.

Reveal(U, i). Returns the session key of the input instance. The query is answered only if
the session key was generated and the instance has terminated in accepting state. This
query models the case when the session key has been leaked. We assume without loss
of generality that the adversary never queries about the same instance twice.

Corrupt(U). The adversary obtains the party’s long-term key π. This is the so-called weak-
corruption model. In the strong-corruption model the adversary also obtains the state
information of all instances of user U . The corrupt queries model a total break of the
user and allow to model forward secrecy.

Test(U, i). The oracle test is initialized with a random bit b. Assume the adversary makes
a test query about (U, i) during the attack and that the instance has terminated in
accepting state, holding a secret key sk. Then the oracle returns sk if b = 0 or a
random key sk′ from the domain of keys if b = 1. If the instance has not terminated
yet or has not accepted, then the oracle returns ⊥. This query should determine the
adversary’s success to tell apart a genuine session key from an independent random
key. We assume again without loss of generality that the adversary never queries about
the same instance twice.

In addition, since we work in the random oracle and ideal ciper model where oracles providing
a random hash function oracle and an encryption/decryption oracle are available, the attacker
may also query these oracles.

Partners, Correctness and Freshness. Upon successful termination we assume that
an instance Ui outputs a key sk, the session ID sid, and a user ID pid identifying the intended
partner (assumed to be empty in PACE for anonymity reasons). We note that the session
ID usually contains the entire transcript of the communication but, for efficiency reasons,
in PACE it only contains a fraction thereof. We discuss the implications in more detail in
Section 3. We say that instances Ai and Bj are partnered if both instances have terminated
in accepting state with the same output. In this case the instance Ai is called a partner to
Bj and vice versa. Any untampered execution between honest users should be partnered
and, in particular, the users should end up with the same key (this correctness requirement
ensures the minimal functional requirement of a key agreement protocol).

4

Neglecting forward security for a moment, an instance (U, i) is called fresh at the end of
the execution if there has been no Reveal(U, i) query at any point, neither has there been a
Reveal(B, j) query where Bj is a partner to Ui, nor has somebody been corrupted. Else the
instance is called unfresh. In other words, fresh executions require that the session key has
not been leaked (by neither partner) and that no Corrupt-query took place.

To capture forward security we refine the notion of freshness and further demand from a
fresh instance (U, i) as before that the session key has not been leaked through a Reveal-query,
and that for each Corrupt(U)-query there has been no subsequent Test(U, i)-query involving
U , or, if so, then there has been no Send(U, i,m)-query for this instance at any point. In this
case we call the instance fs-fresh, else fs-unfresh. This notion means that it should not help
if the adversary corrupts some party after the test query, and that even if corruptions take
place before test queries, then executions between honest users are still protected (before or
after a Test-query).

AKE Security. The adversary eventually outputs a bit b′, trying to predict the bit b of
the Test oracle. We say that the adversary wins if b = b′ and instances (U, i) in the test
queries are fresh (resp. fs-fresh). Ideally, this probability should be close to 1/2, implying
that the adversary cannot significantly distinguish random keys from session keys.

To measure the resources of the adversary we denote by

t the number of steps of the adversary, i.e., its running time,
(counting also all the steps required by honest parties)

qe the maximal number of initiated executions
(bounded by the number of Send- and Execute-queries),

qh the number of queries to the hash oracle, and
qc the number of queries to the cipher oracle.

We often write Q = (qe, qh, qc) and say that A is (t, Q)-bounded.
Define now the AKE advantage of an adversary A for a key agreement protocol P by

Advake
P (A) := 2 · Prob[A wins]− 1

Advake
P (t, Q) := max

{
Advake

P (A)
∣∣∣A is (t, Q)-bounded

}
The forward secure version is defined analogously and denoted by Advake-fs

P (t, Q).

3 The PACE Protocol

In this section we describe the PACE framework and options for its subprotocol Map2Point.

3.1 The Main Protocol of PACE

We describe the elliptic curve instantiation of the PACE protocol [6]. Roughly, the chip in
the PACE protocol first transmits the authenticated group data G and a nonce s, encrypted
with (the hash value of) the password. The receiver can recover this value with the matching

5

password. Then both parties engage in an interactive protocol Map2Point(s) to map s to a
random group element Ĝ. This generator is subsequently used to run a Diffie-Hellman key
agreement to derive a common key K. Once this key is agreed upon, the parties derive the
encryption and authentication keys by hashing K appropriately.

In [6] it is for example recommended to use the following protocol Map2Point: Both
parties run another DH key agreement protocol (with the chip making the first step), jointly
generating a random group element H, but where the secret nonce s does not enter the
computation. Then both parties compute the output of this step as Ĝ = sG+H. We denote
this procedure in the following by DH2Point.

We let H be a hash function, C be a block cipher, andM be a MAC. We use C(K; s) and
C−1(K; z) to denote the encryption and decryption of s and z, respectively, for a secret key
K. Let G = (a, b, p, q,G, k) be the description of an elliptic curve y2 = x3 + ax + b mod p
where 〈G〉 is a group of prime order q. The chip (A) and terminal (B) share a secret password
π from a dictionary with N elements, chosen at random, and use some mapping to generate
the secret key Kπ for the block cipher from π. Below we let Kπ = H(π||0). Note that we
implicitly assume that the parties know the right password when engaging in an interaction,
e.g., the user may enter the PIN at the reader or the terminal optically scans the machine
readable zone of the passport. The ellptic curve version of the PACE protocol is given in
Figure 2.

6

Figure 2: PACE based on DH over elliptic curves (with generic Map2Point protocol)

A B

password π password π
authenticated EC parameters G = (a, b, p, q,G, k)

Kπ = H(π||0) Kπ = H(π||0)
choose s← Zq
z = C(Kπ, s)

G, z−−−−−→ abort if G incorrect
s = C−1(Kπ, z)

. Map2Point(s) .
−−−−−→←−−−−−

jointly generate Ĝ
. .
choose yA ← Z∗q choose yB ← Z∗q
YA = yA · Ĝ YB = yB · Ĝ

YB←−−−−−
abort if YB /∈ 〈G〉 \{0}

YA−−−−−→ abort if YA /∈ 〈G〉 \{0}
K = yA · YB K = yB · YA
Kenc = H(K||1) Kenc = H(K||1)
Kmac = H(K||2) Kmac = H(K||2)
K ′mac = H(K||3) K ′mac = H(K||3)
TA ←M(K ′mac, (YB,G)) TB ←M(K ′mac, (YA,G))

TB←−−−−−

abort if TB invalid
TA−−−−−→ abort if TA invalid

key= (Kenc,Kmac) key= (Kenc,Kmac)
sid = (YA, YB,G) sid = (YA, YB,G)
pid = ε pid = ε

7

Remarks. Some remarks about the changes compared to the original protocol in [6] and
about underlying assumptions are in order.

Session IDs. In the definition of the protocol only the final values (and the group parameters)
enter the session ID. This is in order to spare the parties from saving or processing
the transcript data in the execution; for a formal treatment of this issue and general
solutions see [10]. It follows that the partner definition is “more loose” than the common
definition including the whole transcript in sid. With this loose partnering approach
here an adversary may now be able to run a man-in-the-middle attack making the
honest parties assume they communicate with someone else, even though they hold the
same key. Still, the confidentiality of the key is not affected by this.

The final authentication step. The original scheme uses the output key Kmac for the MAC
computations in the key-agreement protocol, too. This version, however, may not
be provable secure in the [5] and [2] model. The reason is that with the Test query
the adversary obtains a random or the genuine secret key, including Kmac. Then
the adversary can possibly test whether this key part Kmac together with YA or YB
and matches the transmitted value TA or TB. For the general analysis we therefore
suggest to derive an ephemeral MAC key K ′mac as K ′mac = H(K||3) and use this key
for authentication. A similar strategy is recommended in [5].

Sorting out trivial group elements. The checks for the group elements YA, YB to be distinct
from the neutral element are necessary to prevent trivial attacks in which the adversary
(impersonating one of the parties) simply sends YA = 0 or YB = 0 in which case it would
also hold that K = 0. Note that this also requires that Map2Point guarantees Ĝ 6= 0
with very high probability. See also the discussion in the next section.

3.2 The Map2Point Protocol

In this section we describe possible instantiations for the Map2Point sub routine. An overview
is given in Figure 3. We always implicitly assume that both parties check for the right format
of received values, e.g., that H is a group element. We take a closer look at the security
requirements for Map2Point in Section 4.2.

The Diffie-Hellman Mapping DH2Point. The DH2Point mapping is based on the Diffie-Hellman
key agreement. Both parties generate a DH key H (relative to the generator G in G)
by exchanging XA = xAG and XB = xBG and letting H = xAxBG. The nonce s in
then “added” to this DH key via Ĝ = sG+H. Note that the parties should also check
that H 6= 0, otherwise the final output would deterministically depend on the nonce s
only.

The Coin-flipping Mapping Coin2Point. Also creates Ĝ as Ĝ = sG + H, but both parties
use a coin-flipping protocol to generate the random element H. Namely, party A first
generates XA = xAG and sends a hash value H(XA) of XA, then party B transmits
XB = xBG and A finally reveals XA to B (who checks that this value matches the
initial hash). Both parties set H = XA +XB.

8

Figure 3: Choices for the Map2Point Protocol

DH2Point(s)

A B

choose xA ← Z∗q choose xB ← Z∗q
XA = xA ·G XB = xB ·G

XB←−−−−−
XA−−−−−→

abort if XB = 0 abort if XA = 0
H = xA ·XB H = xB ·XA

Ĝ = sG+H Ĝ = sG+H

Coin2Point(s)

A B

choose xA ← Z∗q choose xB ← Z∗q
XA = xA ·G XB = xB ·G

CA = H(XA)
CA−−−−−→
XB←−−−−−
XA−−−−−→
abort if CA 6= H(XA)

H = XA +XB H = XA +XB

Ĝ = sG+H Ĝ = sG+H

Hash2Point(s)
(assumes h2c function onto curve

and pseudorandom function R)

A B

choose nonce t
t←−−−−−

Ĝ = h2c(R(s, t)) Ĝ = h2c(R(s, t))

Power2Point(s) (with re-encryption)
(for Z∗

p, p = wq + 1)

A B

choose key K ′

s′ = C(K ′, s)
where s = C−1(Kπ, z)
K ′←−−−−−

s′ = C(K ′, s)
Ĝ = (s′)w mod p Ĝ = (s′)w mod p

The Hash-into-the-Curve Mapping Hash2Point. Assume we have an efficient function x 7→
hash2curve(x) allowing to throw the string x to the curve directly. Possible instantia-
tions are given in [14, 13]. Then the two parties can generate the point Ĝ as follows. In
addition to using the encrypted nonce s, party B sends another nonce t in clear (after
having received s), and both parties finally apply a pseudorandom generator R(s, t) to
create x. Set Ĝ = hash2curve(R(s, t)).

The Power-to-Group Mapping Power2Point. This method only works for groups over Z∗p.
Here the parties use a function s 7→ sw mod p for p = wq + 1 for w with large prime
factors only to map s to a sub group element of Z∗p. The fact that w does not have small
factors ensures that the mapping is statistically close to uniform (given that the value
s is uniform). One can again combine this mapping with an interactive generation of
H, or with the re-encryption technique discussed in the previous case.

9

4 Security Assumptions

As remarked above we carry out our security analysis assuming an ideal hash function (ran-
dom oracle model) and an ideal encryption scheme (ideal cipher model). Basically, the first
assumption says that H acts like a random function to which all parties have access. The
second property says that for each key K the mapping C(K, ·) is an independent random
permutation and one can evaluate both C(K, s) and C−1(K, z) for arbitrary values (K, s) and
(K, z).

We also require that the message authentication codeM is unforgeable under adaptively
chosen-message attacks (see for instance [12]). We denote by Advforge

M (t, q) a (bound on the)
value ε for which no attacker in time t can output a new message and a valid tag (after
having seen at most q MACs for adaptively chosen messages) with probability more than ε.

In addition, we need the number-theoretic assumptions discussed below. At the end of
this section we discuss security requirements for the Map2Point protocol.

4.1 Number-Theoretic Assumptions

For passive adversaries, merely eavesdropping the network, security follows from the DH
assumption:

Definition 4.1 (DH Problem) The DH problem is (t, ε)-hard if for any adversary A run-
ning in time t the probability that yAyBG ← A(G, G, yAG, yBG) is at most ε (where the
probability is over the choice of G, yA, yB ← Zq and the internal coin tosses of A).

We let AdvDH(t) denote a (bound on the) value ε for which the DH problem is (t, ε)-hard.

The PACE-DH Problem. Active adversaries, injecting messages, can usually contribute
to the input to the DH problem and we thus require a stronger assumption based on the
PAssword-based C hosen-E lement (PACE) DH problem. Assume that we are given N values
si from Zq (each value corresponding to C−1(Kπ, z) for a possible password π) of which
one corresponds to the actual password sk. Potentially, these values si are biased by the
adversary through its choice of z so we precautiously let the adversary fully determine them
(with the only restriction that they are distinct).

Suppose further that we are given a random group element H (generated via Map2Point
and possibly known to the adversary), as well as yB(skG+H) for a random yB (for the value
YB sent by an honest party). Then the adversary’s task is to find a group element YA (i.e.,
the YA sent in the protocol) and a key K such that K = yBYA. Since the adversary may try
different possibilities for K, below we let the adversary output a set of q` possible key values
K1, . . . ,Kq` .

We first remark that the setting above corresponds to the case that the adversary im-
personates the chip. This means that the adversary can adaptively decide upon his choices
after seeing the group elements (representing the chip’s choices). The case that the adversary
plays the terminal is a special case where the adversary first ignores parts of the data. We
also remark that, while we consider concurrent executions of the key agreement protocol, for

10

the analysis it suffices to consider our interactive number-theoretic problem in a somewhat
isolated setting.

Note that we cannot exclude trivial guessing strategies for our problem. That is, if the
adversary manages to guess k it can simply set YA = skG + H and later choose K = YB.
Similarly, it can choose any linear transformation YA = a(skG+H) and K = aYB for a ∈ Zq
(also covering the case that a = 0 in which case the other party aborts). Hence, there is
always an adversarial strategy with success probability at least 1/N . Yet, this should be
close to optimal:

Definition 4.2 (Password-Based Chosen-Element DH Problem) The password-based
chosen-element DH problem is (t,N, q`, ε)-hard if for any adversary A = (A0,A1) running
in total time t the probability that the following experiments returns 1 is most 1

N + ε:

pick G (including a generator G)
let (st, s1, . . . , sN)← A0(G, G,N)

where s1, . . . , sN are pairwise distinct and st is some local state
pick H ← 〈G〉, yB ← Zq and k ← {1, 2, . . . , N}
let (YA,K1, . . . ,Kq`)← A1(st, yB(skG+H), H)
output 1 iff YA 6= 0 and Ki = yBYA for some i ∈ {1, 2, . . . , q`}

We let AdvPACE-DH(t,N, q`) denote a (bound on the) value ε for which the PACE-DH
problem is (t,N, q`, ε)-hard.

On the Hardness of the PACE-DH Assumption. The hardness of the PACE-DH
problem implies hardness of the discrete logarithm problem (see Section 4.2). We note that
the PACE-DH problem resembles the password-based chosen-basis problem of Abdalla et
al. [4, 1]. Yet, while that problem has been proven to be equivalent to the DH problem
[4, 1] (albeit with a loose security reduction),1 we are not aware if the PACE-DH problem
here is also infeasible assuming the hardness of the DH problem. However, in the generic
model of Shoup [15] the problem is also as hard as the DH problem, indicating that only
“clever” attacks exploiting the group representation can make a difference in comparison to
the regular DH problem. We discuss this in Appendix A.

The gPACE-DH Problem. In the PACE-DH problem above the group element H is
assumed to be random. In the actual protocol execution, however, it depends on the execution
of protocol Map2Point in which the adversary may control one of the parties. Hence, in the
general PACE-DH problem we mimic the generation of H via Map2Point and thus lend the
adversary more power in generating H:

Definition 4.3 (General Password-Based Chosen-Element DH Problem) The gen-
eral password-based chosen-element DH problem is (t,N, q`, ε)-hard (with respect to Map2Point)

1Note that the similar chosen-basis decisional Diffie-Hellman problems of Abdalla and Pointcheval [3] have
been shown to be insecure by Szydlo [16]; Szydlo’s attacks do not transfer to the computational counterparts,
though.

11

if for any adversary A = (A0,A1,A2) running in total time t the probability that the following
experiments returns 1 is most 1

N + ε:

pick G (including a generator G)
let (st0, s1, . . . , sN)← A0(G, G,N)

where s1, . . . , sN are pairwise distinct and st0 is some local state
pick yB ← Zq and k ← {1, 2, . . . , N}
let Ĝ be the local output of the honest party in an execution of Map2Point(sk),

where A1(st0) controls the other party (and generates the local state st1).
let (YA,K1, . . . ,Kq`)← A2(st1, yBĜ)
output 1 iff YA 6= 0 and Ki = yBYA for some i ∈ {1, 2, . . . , q`}

We let AdvgPACE-DH
Map2Point (t,N, q`) denote a (bound on the) value ε for which the gPACE-DH

problem is (t,N, q`, ε)-hard (with respect to Map2Point).

PACE-DH vs. gPACE-DH. Using the coin-flipping protocol Coin2Point for Map2Point
the output H is (statistically close to) uniformly distributed –and simulatable— and thus
security holds under the basic PACE-DH problem. Next consider the DH2Point protocol
which generates H as the DH key from XA and XB. Then the hardness of the gPACE-
DH problem clearly implies hardness of the PACE-DH problem for DH2Point. That is, given
adversary APACE breaking the case of a random H we can easily build an adversary ADH2Point

against the gPACE problem for DH2Point by simply following the DH key agreement honestly,
such that H is a random element. Then any solution to the random case returned by APACE

also gives a solution to the DH2Point case. The converse is not known to hold, essentially
because the DH key agreement may not yield a uniformly distributed element (if the honest
party goes first). Still, we note again that in the generic group model both problems are
hard, and we indicate in Appendix A that both problems may indeed be close even in the
non-generic case. Some potential advantages of the DH2Point approach over Coin2Point are
discussed in the next section.

4.2 Requirements for the Map2Point Protocol

In this section we discuss security aspects of the Map2Point protocol. We subsume the choices
for Map2Point under some general form.

Canonical Map2Point Protocols. To define the security requirements for Map2Point in
the PACE protocol formally we need a special property basically saying that Map2Point con-
sists of an interactive step RndPoint() where both parties jointly generate some randomness,
say, a random group element H or a key K ′. In the sequel we denote this randomness simply
by H. This step should be independent of the nonce s and only depend on the public data
(including transmitted values). Only in the final local step the parties compute Ĝ from this
value H and the nonce s via a non-interactive algorithm NncPoint(s,H).

We call a protocol Map2Point canonical if, in addition to the aforementioned structure,
the protocol is non-trivial in the sense that for any s ∈ Zq the output Ĝ of an execution of

12

Map2Point(s) between honest parties satisifies Ĝ 6= 0. Note that for DH2Point and Coin2Point,
for example, there is a small probability of 1/q that the output of Map2Point is 0, namely, if
H = −sG. We ignore this small term to simplify the presentation and merely note that such
cases can be easily thwarted by testing for trivial values and setting Ĝ = G in this case.

Necessary Security Requirements. To be suitable for the gPACE-DH problem any
canonical Map2Point protocol must satisfy the following properties:

Proposition 4.4 For a canonical protocol Map2Point it can only hold AdvgPACE-DH
Map2Point (t,N.q`) ≤

ε if the following is true:

Collision-Resistance. Consider distinct, adversarial chosen values s1, . . . , sN ∈ Zq and an
execution of RndPoint() where the adversary (running in time at most t − Θ(N ·
Time(NncPoint))) may control one of the parties, and where the honest player and
the adversary output H. Then we have NncPoint(H, si) = NncPoint(H, sj) for i 6= j
with probability at most ε′ = Nε.

Hardness of Discrete-Logarithms. Consider distinct, adversarial chosen values s1, . . . , sN ∈
Zq and an execution of RndPoint() where the adversary (running in time at most t −
Θ(N · Time(NncPoint) + N · Time(ExpG))) may control one of the parties, and where
the honest player and the adversary output H. Then the probability that the adversary
also outputs a value logNncPoint(H,si) NncPoint(H, sj) for some i 6= j is at most ε′ ≤ Nε.
(In particular, for Map2Point = DH2Point the probability for outputing logGH must be
at most Nε.)

The second property indicates that deterministic protocols Map2Point must be treated
with special care because then the outcome of the protocol may be under full control of the
adversary. It must then be ensured that the adversary cannot find s1, . . . , sN such that it
knows the discrete logarithm of Map2Point(sj) with respect to Map2Point(si) for some i 6= j.
One remedy against such an attack may then be a strong cipher for which the adversary
cannot find such si, sj which map to the same ciphertext (for the corresponding hashed
passwords). While this is true in the ideal cipher model it may be much harder to achieve
this property for concrete instantiations.

Proof (of Proposition 4.4). It suffices to show the second case, because the for a collision
we obviously have logNncPoint(H,si) NncPoint(H, sj) = 1.

Assume that there is an adversary B (with the given running time) finding the discrete
logarithm with probability more than ε′. Then we construct a successful adversary A in
the gPACE-DH game. Adversary A initially runs B to generate s1, . . . , sN and relays the
communication from the the RndPoint execution and its Map2Point run. Algorithm A then,
upon receiving H and a value a from B, as well as YB = yBĜ in the game, checks if there are
i 6= j with a = logNncPoint(H,si) NncPoint(H, sj). If not, it sets j = 1. Adversary A eventually
outputs YA = NncPoint(H, sj) and K1 = YB as well as K2 = aYB.

For the analysis note that, if B succeeds in finding a discrete logarithm, then A wins
with probability at least 2/N . This is true because the “right” index k is picked at random,
independently of the outcome of RndPoint, and thus hits the bad indices with probability

13

at least 2/N (such that YB or aYB is a valid solution for j resp. i). Given that a is not a
discrete logarithm we again have k = j = 1 with probability 1/N . Overall, adversary A wins
with probability 1

N + 1
N ε
′ > 1

N + ε. Noting that A runs in time t we obtain a contradiction
to the hardness of the gPACE-DH problem. �

Specific Map2Point Choices. Here we consider the security of the previously defined
choices for Map2Point:

The DH2Point Protocol. Recall that both parties compute Ĝ as Ĝ = sG + H where H is a
Diffie-Hellman key. If both parties in this step are honest then the outcome is clearly
a random element H and breaking such an instance would require to solve the PACE-
DH problem (instead of the gPACE-DH problem). If the adversary impersonates the
terminal and sends XB first, then, unless XB = 0, the value H is random as well (for
XB = 0 the honest party aborts). It is unclear how the adversary can take advantage
(in breaking the key agreement protocol) if it chooses XA after receiving XB from an
honest party, without knowing the discrete logarithm of XA to G. But assuming that
the adversary knows the discrete log, the value H is a random group element as in the
PACE-DH problem (or the adversary is able to deduce the discrete logarithm of XB to
G and the discrete logarithm problem is thus easy).

The Coin2Point Protocol. In the coin-flipping case where A first commits to XA and then
both parties exchange XA and XB we set Ĝ = sG + XA + XB. Assuming that the
hash function H acts like a random oracle we obtain a secure solution under the basic
PACE-DH problem (as H allows to decommit arbirtrarily for honest A, and to extract
the value XA from a commitment of a malicious A).

A potential disadvantage compared to DH2Point is that an outsider here can determine
H = XA +XB from the interaction XA, XB between two honest parties, and can thus
possible find password candidates. In the DH2Point case the value H is essentially
an unknown random element to an eavesdropper (under the decisional Diffie-Hellman
assumption) and therefore also “shields” the password. Another point is that the coin-
flipping protocol relies on the (perfect) one-wayness of the hash function (which may
be a different requirement than for a good key derivation function); any leakage about
XA from H(XA) may allow the adversary to bias the outcome H via XB.

The Hash2Point Protocol. Requires that the pseudorandom mapping R generates a (pseudo)-
random element, even if the input is partly under control of the adversary. Furthermore,
the hashing into the curve must be such that neither side knows the discrete logarithm
of the group element.

The Power2Point Protocol. The protocol clearly require that the mapping from s′ to the
group does not allow to compute discrete logarithms easily. This must particularly
hold since the re-encryption technique potentially allows a malicious party B to find
suitable keys K ′ after learning s. In the ideal cipher model the adversary, however, has
very limited control over the outcome s′.

14

5 AKE-Security of PACE

We analyze the PACE protocol with respect to general Map2Point protocols:

Theorem 5.1 Let Map2Point be canonical and assume that the password is chosen from a
dictionary of size N . In the random oracle model and the ideal cipher model we have

Advake
PACE(t, Q) ≤ qe

N
+ qe ·AdvgPACE-DH

Map2Point (t∗, N, qh)

+qe ·Advforge
M (t∗, 2qe) +

2qeN2 + 8q2eN + qcqe
min{q, |Range(H)|}

where t∗ = t+O(kq2e + kq2h + kq2c + k2) and Q = (qe, qc, qh).

We remark that the time t∗ covers the additional time to maintain lists and perform
look-ups.

Proof. Correctness of the protocol follows from the correctness of the MAC algorithm M
and the fact that Map2Point does not return a trivial group element Ĝ = 0.

We show security via the common game based approach, gradually changing the original
attack Game0 (with random test bit b) via experiments Game1,Game2, . . . to a game where
the adversary’s success probability to predict b is bounded by the guessing probability of
1
2 . Each transition from Gamei to Gamei+1 will only change the adversary’s probability only
slightly (depending on cryptographic assumptions), thus showing that the success probability
in the original attack cannot be significantly larger than 1

2 . (Formally we can condition on
all “bad” events ruled out in the previous games to not happen.)

Technically, we would like to conclude that the adversary never makes a hash query about
a Diffie-Hellman key from which an honest party has derived the output keys. If such a query
does not occur then, because we deploy a random oracle, the final keys still look random.
We show that this is essentially true under the hardness of the gPACE-DH problem (and in
the course take advantage of the random oracle and ideal cipher model).

But we also need to take into account attacks where the adversary manages to find
unpartnered instances but which derive the same keys. In this case the adversary could
easily distinguish the answer of a Test-query by posting a Reveal-query for the unpartnered
instance (if the instances are partnered then such a Reveal-query is not admissible for a
success). We prove that this is guaranteed by the unforgeability of the MAC.

We also remark that we assume that no Corrupt-query takes place in this setting (or else
the adversary cannot win). We cover forward security and Corrupt-queries in Section 6. We
next define the games.

Description of Game0. Corresponds to the original attack on the protocol.

Description of Game1. As Game0 but abort in case of Kπ collisions.
We abort the experiment (declaring the adversary to lose) whenever there are distinct

passwords π 6= π∗ yielding the same hash value Kπ = H(π||0) = H(π∗||0). Since there are
at most 1

2N
2 admissible password pairs in total and H is a random oracle, the adversary’s

15

success probability decreases by at most 1
2N

2/ |Range(H)| by the birthday bound. Letting
Gamei also denote the event that the adversary successfully predicts the test bit b in Gamei
we thus have

Prob[Game0] ≤ Prob[Game1] +
N2

2 · |Range(H)|
.

Description of Game2. As Game1 but abort in case of collisions among decrypted values.
We abort (again declaring the adversary to lose) if there appears some value z in an

execution such that for some admissible passwords π 6= π∗ we have C−1(Kπ, z) = C−1(K∗π, z).
Since π 6= π∗ implies Kπ 6= K∗π by the first game and the cipher is ideal, the probability that
for any of the at most qe values z in the executions we have a collision is at most 1

2qeN
2/q.

Prob[Game1] ≤ Prob[Game2] +
qeN

2

2q
.

Description of Game3. As Game2 but abort in case two keys K 6= K∗ of two accepting
user instances yield an identical key Kenc, Kmac or K ′mac.

Since there are at most 1
2(2qe)2 of such user instances and the probability that two fixed

ones yield a hash collision for one of the output keys is at most 3/ |Range(H)|, the adversary’s
success probability only drops by the term 6q2e/ |Range(H)|.

Prob[Game2] ≤ Prob[Game3] +
6q2e

|Range(H)|
.

Description of Game4. As Game3 but simulate the ideal cipher.
We replace the actual ideal cipher C by a lazy-sampling like technique. Namely, for honest

users we maintain an intially empty list of tuples (A,B, s, z). For each honest party (involved
in a protocol instance between A and B) calling C about (Kπ, s) we check the list for an entry
(A,B, s, z) and, if there exists one, we return z. Else we pick a random element z, return
it and store (A,B, s, z) in the list. For each call of an honest party (involved in instance
(A,B)) to C−1 about (Kπ, z) we also search for an entry (A,B, s, z) and return s if we find
such an entry; else we pick a random s, store (A,B, s, z) and return s.

For the adversary we keep a separate list. For any call of the adversary to C about (Kπ, s)
we check if there is already an entry (Kπ, s, z) and return z if so; else we return a random
value z and store (Kπ, s, z). For each call of the adversary to C−1(Kπ, z) we search for an
entry (Kπ, s, z) in the list and return s if such an entry exist, else we pick a random s and
return s and store (Kπ, s, z).

Note that the two lists may cause inconsistencies between the answers to honest users
and to the adversary. However, conditioning on the adversary never making a hash query
about a DH key derived by an accepting user instance the execution of Game3 does not
reveal any information about the s-values chosen by honest parties. More formally, let THQ
be the event that the adversary makes a so-called target hash query about K||n for some
n ∈ {1, 2, 3}, where K is the key some honest user instance has derived (before computing
the MACs).

16

We next bound the probability for event THQ by describing another game in which we
abort if this happens (and then show that under the gPACE-DH assumption this cannot
happen too often). To be precise we actually consider the event THQ in Game3 where it
occured for the first time. But since we are only interested in the first target hash query and
up to the point where this target hash query is made the modifications from Game3 to Game4

cannot affect the adversaries success probability significantly (as shown above), it suffices to
consider event THQ in Game4. An important observation here is that up to the first target
hash query the data in Game4 is independently distributed from the actual passwords of users
(because neither the simulated cipher nor the MAC computations reveal anything about the
password, the interactive runs of protocol RndPoint are also password-independent, and the
group elements in the final DH exchange are distributed independently of Ĝ).

Conditioning on ¬THQ, the probability of making an accidental query to C about an
s-value chosen by an honest party is at most qcqe/q. Analogously, if no target hash queries
occur, then answering calls of the adversary to C−1 as described above, does not lead to any
difference in the success probability.

Prob[Game3] ≤ Prob[THQ] + Prob[Game4 | ¬THQ] +
qcqe
q
.

Description of Game5. As Game4 but stop if the adversary makes a hash query about a
DH-key of an accepting user instance (U, i).

We even declare the adversary victorious if it ever submits a query K||n for n ∈ {1, 2, 3}
to the hash oracle H such that a user instance (U, i) has computed this key and sent out the
final MAC (i.e., we even consider instances in which the user may not accept eventually).
We claim that this cannot occur with probability more than qe/N , plus the advantage of
breaking the gPACE-DH problem (times qe). Consider a user instance (U, i) in accepting
state and the corresponding execution in which the DH-key K is derived.

We now break the gPACE-DH problem as follows. We are given (G, G,N) as input. We
initially make a guess for the execution number between 1 and qe for which the adversary
makes the first test query and, at the same time, a target hash query. Then we simulate
Game5. We wait to receive z in this execution and then output the (possibly then chosen)
values s1, . . . , sN for all passwords π and all (unique) derived keys Kπ and for each call by
the adversary to C−1.

In the predicted execution we run the Map2Point algorithm with the adversary to obtain
Ĝ (relaying the communication in the execution and the external Map2Point instance in the
gPACE-DH problem). We then receive yBĜ as additional input and feed these data into
the execution. We finally pick random keys Kenc,Kmac,K

′
mac (instead of querying H) and

complete the protocol with the help of these data. When the adversary eventually stops we
output YA, transmitted in the predicted execution by the adversary or the honest party, and
the list K1, . . . ,Kqh of values appearing in the at most qh hash queries of the form K||n
for n ∈ {1, 2, 3} . (If the adversary impersonates the chip then we output the value YB, of
course.)

It remains to analyze the probability that we obtain an admissible solution to the gPACE-
DH problem. Recall that we fail to win if we output YA = 0. But this case leads the honest
party to abort immediately. Hence, we can assume YA 6= 0. Also note that all possible

17

nonces s1, . . . , sN for the different passwords are distinct by Game2 and thus comply with the
requirement for the gPACE-DH game. Hence, up to the target hash query the distribution of
the data is independent of the password of the user instance, and we make the right execution
prediction with probability 1/qe, in which case we obtain a valid solution to the gPACE-DH
problem whenever the adversary makes a target hash query.

Overall, the success probability cannot decrease by more than

Prob[THQ] ≤ qe
N

+ qe ·
(
AdvgPACE-DH

Map2Point (t∗, N, qh)
)

From now on we can condition on the adversary not making a hash query about the DH-key
of an accepting user instance.

Description of Game6. As Game5 but replace keys Kenc,Kmac in Test-queries by random
keys.

Note that, since we assume that the adversary never makes a hash query about a DH-key
of an accepting user instance, this simulation is perfect unless there is an accepting instance
(U, i) having the same DH-key as another instance (U∗, j) but such that the two instances
are not partnered. In this case the adversary could make a Reveal-query to party (U∗, j)
and could notice the difference to the Test(U, i) query. Note that Reveal-queries to partnered
instances do not lead to a win for the adversary.

Consider a DH-key K derived by some honest party U in an execution i. In particular,
(U, i) has accepted and returned keys (Kenc,Kmac), session ID (YA, YB,G) and pid = ε. We
show that, except with negligible probability, there cannot exist some user U∗ in execution j
such that this user also accepted with output (Kenc,Kmac), sid = (Y ∗A, Y

∗
B,G∗) and pid = ε,

but such that the two instances are not partnered. According to Game3 the match of the
keys in the output also implies that the derived DH-key K∗ of this user instance must match
K.

Assume now that (U∗, j) is not partnered with (U, i). The only possibility that instance
(U∗, j) is not partnered with (U, i) stems from different session IDs, i.e., (Y ∗A, Y

∗
B,G∗) 6=

(YA, YB,G). Note that, in order to make (U∗, j) accept there must be valid MACs computed
over the data. If either of the values (YA,G), (YB,G), (Y ∗A,G∗), (Y ∗B,G∗) has not been sent by
an honest party (with a subsequent MAC) then the adversary must be able to forge MACs.

To be more precise, assume that the adversary finds a valid MAC for a new value. Then
we show how to forge a MAC of a new message, given oracle access to a MAC algorithm
M(K ′mac, ·) for a random (and unknown) key K ′mac. Initially we guess a number between
1 and qe for an execution. We run the Game6 controlling the random oracle and with full
knowledge of all secret values with one exception: instead of calling H about (K||3) for the
chosen execution we omit this step and use the external oracle to derive the MAC (and
subsequently for any other of the at most 2qe MAC computations based on the same DH-
key). When the adversary sends a valid MAC in an execution with the same DH-key for a
new value then we copy these data and stop.

Note that we guess the first execution in which the DH-key in question appears with
probability 1/qe. Given a correct guess we find a valid forgery for the MAC with the same
probability as the adversary succeeds in the experiment. Note that the data transmitted by

18

the adversary have not been sent by an honest user and have thus never been submitted to
MAC oracle.

Hence, the adversary can only inject values (YA,G), (YB,G) ,(Y ∗A,G∗), (Y ∗B,G∗) with valid
MACs generated by honest users in other executions. But once the key K is determined
by one instance, in the other instance the honest user contributes a random exponent, say,
yB (the case that the honest user goes second and picks yA is even simpler). But then the
adversary can only choose among the at most 2qe other values chosen by honest parties and
send one of them. The probability that any of these at most 2qe values yields, together with
yB the key K on the user’s side, is at most 2qe/q. Hence,

Prob[Game5 | ¬THQ] ≤ Prob[Game6] +
2qe
q

+ qe ·Advforge
M (t∗, 2qe).

Putting the Results Together. In the final game all the keys returned in Test-queries
are independent random values and the adversary cannot distinguish them from genuine
ones. The success probability is therefore bounded from above by 1

2 in this game. Hence,
the adversary’s success probability for the original game cannot be larger than 1

2 plus any
“losses” on the transition to the final game. �

6 Discussion

On Forward Secrecy. The above theorem remains true in the forward-secrecy setting
(assuming weak corruptions). Recall that here the adversary may corrupt players and learn
the long-lived secret but, if it does, then it can only issue further Test-queries for instances in
which both users have been honest. The latter guarantees that, even for insecure long-lived
passwords, future executions between honest parties are still protected.

To show forward security we need a slight variant of the gPACE-DH problem in which the
adversary first outputs YA, then learns k and finally outputs q` potential keys K1, . . . ,Kq` .
This (adaptive) version of gPACE-DH for parameters (t,N, q`) can be shown to be as hard
as the (non-adaptive) gPACE-DH problem for parameters (Nt,N,Nq`). For this simply let
the non-adaptive adversary simulate the adaptive adversary up to the point where it outputs
YA. Instead of outputting YA the non-adaptive algorithm internally completes N runs of the
adaptive adversary for all N possible choices of k, yielding at most N times q` possible keys.
The non-adaptive adversary finally outputs YA and this list of keys, and wins with the same
probability as the adaptive adversary.

Forward secrecy of the protocol follows under the adaptive gPACE-DH problem. If a
party gets corrupted after a Test-query (in which case an honestly or maliciously chosen YA
has already been determined, before the adversary learns the password and thus k) computing
the DH key would require to solve the adaptive gPACE-DH problem and thus the gPACE-DH
problem. If a party gets corrupted before a Test-query then this execution does not involve
Send-commands and the data are thus chosen honestly. In particular, one can think of YA as
being chosen at random before the adversary learns the password. Security then also follows
from the adaptive gPace-DH problem.

19

Untraceability, Unlinkability and Non-Transferability. Here we outline to what
extend the PACE protocol obeys other desirable security features. Untraceability means that
one cannot trace the chip’s identity afterwards. Unlinkability says that transcripts cannot be
linked. Non-transferability guarantees that the terminal cannot prove transactions to third
parties.

Untraceability holds in a restricted sense. Since different countries will have distinct
elliptic curve parameters (especially if they contain a country’s signature for authentication)
one can at least link transcripts to countries. Other than that, if one eavesdrop an execution
between two honest parties, then the chip’s identity remains hidden. A similar argument
holds for unlinkability. Non-transferability follows from the fact that the terminal could
generate the data in a communication itself with the help of the password (assuming that
the authenticated elliptic curve data of countries are publicly available anyway).

Random Oracles and Ideal Ciphers. Our analysis is carried out using the combination
of two idealized assumptions, namely, the random oracle model and the ideal cipher model.
Both models have recently shown to be equivalent [9], and haven been used before to analyze
the security of other key agreement protocols (e.g., [5]). The security proof here therefore
relies on the assumption that both the hash function and the cipher have been designed well.

Composability. The protocol has been analyzed in the security model of Abdalla et al. [2]
and Bellare et al. [5]. Recently, Canetti’s universal composition (UC) model has been used to
establish security requirements for password-based key agreement [8]. If proven secure in this
model then the protocol can be securely composed (with itself and with other protocols) and
it can be shown that the derived keys can safely be used to establish secure channels. (We
note that in case of machine readable travel documents composability with other protocols
may be a minor issue.) Still, we note that the protocol is secure under concurrent executions
of parties.

Unfortunately, UC-secure password-based key agreement in the standard model is im-
possible [8]. This does not rule out that the PACE protocol cannot be proven secure in this
setting if one again assumes random oracles or ideal ciphers or authenticated group data.
Yet, some (more or less formal) modification of the protocol is still necessary: the UC model
requires session identifiers which are known in advance, whereas in the model of [2, 5] the
session id is simply set afterwards to be (parts of) the communication transcript.

Acknowledgments

We thank the anonymous reviewers of ISC 2009 for valuable comments. We also thank the
participants of the WG 16 sub group for the stimulating discussions, and Rainer Urian for
feedback.

20

References

[1] Michel Abdalla, Emmanuel Bresson, Olivier Chevassut, Bodo Möller and David
Pointcheval: Provably Secure Password-Based Authentication in TLS, ASIACCS ’06,
pp. 35–45, ACM Press, 2006.

[2] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval: Password-based authen-
ticated key exchange in the three-party setting, PKC 2005, Lecture Notes in Computer
Science 3386, pp. 65–84. Springer-Verlag, 2005.

[3] Michel Abdalla and David Pointcheval: Interactive Diffie-Hellman Assumptions with
Applications to Password-based Authentication, Financial Cryptography 2005, Lecture
Notes in Computer Science 3570, pp. 341–356, Springer-Verlag, 2005.

[4] Michel Abdalla and David Pointcheval: Simple Password-Based Authenticated Key Pro-
tocols, CT-RSA 2005, Lecture Notes in Computer Science 3376, pp. 191–208, Springer-
Verlag, 2005.

[5] Mihir Bellare, David Pointcheval and Phillip Rogaway: Authenticated Key Exchange
Secure against Dictionary Attacks, Eurocrypt 2000, Lecture Notes in Computer Science,
Vol. 1807, pp. 139–155, Springer-Verlag, 2000.

[6] Federal Office for Information Security (BSI): Advanced Security Mechanism for Machine
Readable Travel Documents – Extended Access Control (EAC), Password Authenticated
Connection Establishment (PACE), and Restricted Identification (RI), BSI-TR-03110,
Version 2.0, 2008.

[7] Ran Canetti, Oded Goldreich and Shai Halevi: The Random Oracle Methodology, Re-
visited, STOC’98, pp. 209–218, ACM Press, 1998.

[8] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell and Philip D. MacKenzie:
Universally Composable Password-Based Key Exchange, Eurocrypt 2005, Lecture Notes
in Computer Science 3494, pp. 404–421, Springer-Verlag, 2005.

[9] Jean-Sebastien Coron, Jacques Patarin and Yannick Seurin: The Random Oracle Model
and the Ideal Cipher Model are Equivalent, Crypto 2008, Lecture Notes in Computer
Science 5157, pp. 1–20, Springer-Verlag, 2008.

[10] Marc Fischlin and Anja Lehmann: Delayed-Key Message Authentication for Streams, to
appear at TCC 2010, Lecture Notes in Computer Science, Springer-Verlag, 2010.

[11] Oded Goldreich: The Foundations of Cryptography, Volume 1, Cambridge University
Press, 2001.

[12] Oded Goldreich: The Foundations of Cryptography, Volume 2, Cambridge University
Press, 2004.

[13] Thomas Icart: How to Hash Into Elliptic Curves, Crypto 2009, Lecture Notes in Com-
puter Science, Springer-Verlag, 2009.

21

[14] Andrew Shallue and Christiaan van de Woestijne: Construction of Rational Points on
Elliptic Curves over Finite Fields., ANTS 2006, Lecture Notes in Computer Science
4076, pp. 510–524, Springer-Verlag, 2006.

[15] Victor Shoup: Lower Bounds for Discrete Logarithms and Related Problems, Euro-
crypt’97, Lecture Notes in Computer Science 1233, pp. 256–266, Springer-Verlag, 1997.

[16] Michael Szydlo: A Note on Chosen-Basis Decisional Diffie-Hellman Assumptions, Fi-
nancial Cryptography, Lecture Notes in Computer Science 4107, pp. 166–170, Springer-
Verlag, 2006.

A Hardness of the PACE-DH Problem

Generic Hardness of the PACE-DH Problem. We show that the basic PACE-DH
Problems are hard in Shoup’s generic attack model. In Shoup’s model the adversary’s output
can be represented by (linear) polynomials in the discrete logarithms of the input values
sk, yB, h = logGH. (To simplify we consider si for i 6= k to be fixed.) That is, YA is
represented by a polynomial FYA

(sk, yB, h) = α + βsk + γyB(sk + h) + δh and so are the
outputs Ki, by FKi(sk, yB, h) = α′i+β

′
isk+γ′iyB(sk+h)+δ′ih. In order to win the adversary’s

output must now be a DH value, i.e., the formal polynomial

FDH,i(sk, yB, h) = yBFYA
(sk, yB, h)− FKi(sk, yB, h)

= −α′i − skβ′i − δ′ih+ yBα+ hyB(δ − γ′i) + yBsk(β − γ′i) + y2
Bskγ + y2

Bhγ

must vanish for sk, yB, h. Note that FDH,i(sk, yB, h) can only be the zero-polynomial if
α = γ = α′i = β′i = δ′i = 0 and β = δ = γ′i for known δ. But this means that the values YA
and Ki are of the form δ(skG+H) and δyB(skG+H) and thus a trivial (linear) combination
of the input data. Since the adversary is oblivious about k, i.e., YA is independent of k and
all si’s are distinct, the probability for the adversary guessing k correctly is at most 1/N .

Now fix the value sk as well. The probability that a polynomial FDH,i of total degree now 2
vanishes for a random value is then at most 2m/q, if m group operations have been performed
(Shoup’s model also takes into account a term of O(m2/q) for “accidental” collisions among
group values). Hence, summing over all at most q` many Ki’s the success probability of the
adversary is at most 1

N + O(q`m+m2)
q . Hence, to solve the problem generically with significant

advantage one needs roughly
√
q many operations or outputs.

Generic Hardness of the General PACE-DH Problem for DH2Point. Now con-
sider the case that the element H is generated via a DH key agreement DH2Point where
the adversary receives xBG and then determines H by sending XA. For a generic attacker
h = logGH itself is thus a polynomial of degree at most 2 in the variable xB. (The case that
the adversary goes first is a special case in which h is a polynomial of degree at most 1.) It
therefore follows as above that a generic algorithm needs Ω(

√
q) steps or outputs.

22

From the General PACE-DH Problem for DH2Point to PACE-DH. We next argue
that, even though the adversary can potentially bias the outcome of the DH2Point execution,
the only advantage of the adversary over the PACE-DH case of uniformly generators H must
essentially stem from the ability to compute logGH. That is, assume that computing logGH
for the output of the honest party in an execution with an adversary ADH2Point against the
gPACE-DH problem for DH2Point is infeasible (note that, otherwise, the gPACE-DH problem
is obviously easy). Then we show that the gPACE-DH and the PACE-DH are equivalent
(modulo the technical detail that the adversary against the gPACE-DH problem can forward
some state information about the sampling process of H).

Denote by ε the non-negligible advantage of ADH2Point of breaking the gPACE-DH prob-
lem, i.e., the probability with which the adversary surpasses the pure guesssing probability.
Call a fixed group element H0 good (for the adversary) if the probability that the adversary’s
advantage exceeds ε/2, given that H = H0. Then we have that the probability that H,
output by the honest user in an interaction of DH2Point with the adversary, is good, is at
least ε/2. Else the overall advantage of ADH2Point would be strictly smaller than ε (because
the probablity of hitting a good H would then be less than ε/2 and for bad H the adversary
does not succeed with advantage more than ε/2).

Define H ⊆ 〈G〉 to be the set of all good H0’s. Then the set H must contain a non-
negligible fraction of all group elements. Else the adversary can derive an H through
DH2Point which lies in the set H with non-negligible probability ε/2, and for which it can
then compute the discrete logarithm by enumerating the discrete logarithms of all elements
in H (and by checking for the right one). Since we assume that this is infeasible, it follows
that H must form a non-negligible fraction of all elements.

We conclude that a uniformly distributed element H (as in the case of PACE-DH) lies in
H with non-negligible probability. Note that for such H’s the gPACE-DH adversary solves
the problem with non-negligible probability. Hence, if, in addition, the gPACE-DH adversary
does not forward any state information, then we derive that the adversary also solves the
PACE-DH problem with non-negligible success probability.

23

