
A Note on Security Proofs in the Generic Model

Marc Fischlin

Fachbereich Mathematik (AG 7.2)
Johann Wolfgang Goethe-Universität Frankfurt am Main

Postfach 111932
60054 Frankfurt/Main, Germany

marc@ mi.informatik.uni-frankfurt.de

http://www.mi.informatik.uni-frankfurt.de/

Abstract. A discrete-logarithm algorithm is called generic if it does
not exploit the specific representation of the cyclic group for which it
is supposed to compute discrete logarithms. Such algorithms include
the well-known Baby-Step-Giant-Step procedure as well as the Pohlig-
Hellman algorithm. In particular, these algorithms match a lower bound
of Nachaev showing that generic discrete-log algorithms require expo-
nentially many group operations. Building on this lower bound, Shoup
and subsequently Schnorr and Jakobsson proved other discrete-log-based
protocols to be intractable in the generic model. Here, we discuss pitfalls
when applying the generic model to other schemes than the discrete-log
problem and when interpreting such lower bounds as security proofs for
these schemes.

1 Introduction

The Baby-Step-Giant-Step algorithm and the Pohlig-Hellman algorithm to com-
pute discrete logarithms in cyclic groups operate representation-independent,
i.e., they do not rely on the specific representation of the group, and thus work
for any cyclic group. These examples match a lower bound of Nachaev [20]
proving that such generic algorithms need Ω(

√
q) group operations to compute

discrete logarithms in a group of size q. The index calculus method, though,
defeats this lower bound as it requires subexponential time for groups like ZZ∗

p

with standard binary encoding. Yet, the index calculus is not known to work for
arbitrary groups, e.g., it seems to be inapplicable to elliptic curves [26].

From a theoretical point of view, it is easy to see that security proofs in
the generic model do not generally transfer to “the real world” when adding
an encoding, because generic algorithms might cause an exponential blow-up in
comparison to Turing machines: for the group (ZZq,+) the discrete logarithm
for some element x ∈ ZZq with respect to the generator 1 is simply x. If we
use the standard binary encoding of ZZq then it is easy to compute discrete
logarithms for an algorithm that operates on bit strings. A generic algorithm,
however, requires Ω(

√
q) steps to find the discrete logarithm, because it cannot

take advantage of the trivial encoding.

Shoup [25] and subsequently Schnorr and Jakobsson [24] extended the idea
of Nachaev and proved schemes relying on the discrete-logarithm problem to be
intractable for generic algorithms. Nonetheless, applying this model and its lower
bound to other discrete-log-based protocols should not be viewed as providing
the same security level as the fact that, currently, optimal discrete-log finders
for appropriate groups like elliptic curves are generic. The aim of this work is to
highlight some of these pitfalls when proceeding from the discrete-log problem
to more sophisticated schemes in the generic model.

We present a simple explanatory example. Moving from a computational task
like computing discrete logarithms to a decisional problem, e.g., distinguishing
encryptions, without additional consideration is a dangerous step: the represen-
tation in decisional problems is related to the problem at a different level. For
instance, for discrete-log-based algorithms allegedly producing pseudorandom
strings an inappropriate encoding of group elements may cause the output to be
easily distinguishable from random, even though the encoding does not help to
compute discrete logarithms.

As another example consider the signed ElGamal encryption scheme in [24].
Informally, a signed ElGamal encryption consists of an ordinary ElGamal en-
cryption [11] together with a Schnorr signature [23]. In [24] it is shown that the
signed ElGamal scheme is secure against adaptive chosen-ciphertext attacks [22]
in a combination of the generic model and the random oracle model. This proof
relies on the fact that the adversary cannot generate a group element without
knowing a representation of this value with respect to a set of given group ele-
ments1 and that this representation is known to a simulator reducing an adaptive
attack with decryption requests to one without such queries.

In Section 3 we present a three-round negligible-error zero-knowledge proto-
col in the generic model for all languages in NP. Our protocol, too, applies the
property that a generic adversary cannot compute group elements without be-
ing aware of a representation, and that a simulator knows these representations;
for a similar but more complicated protocol see [16]. In [13] it has been proved
that three-round negligible-error black-box (i.e., observing only external behav-
ior of parties) zero-knowledge proofs can only exist for languages in BPP. Since
our protocol does not obey this black-box approach —we see internal data of
the simulated adversary, specifically, the representations of the group elements
chosen by the adversary— we simplify the problem to achieve something which
we do not know how to do otherwise. The same trick enables [24] to prove the
signed ElGamal scheme to be unbreakable in this model.

Another problem with viewing intractability results in the generic model as
security proofs is the dependency of cryptographic primitives in this setting.
Consider the well-known Schnorr signature scheme [23] in which a signature
corresponds to a proof of knowledge for the secret key. The challenge for this
proof of knowledge is generated by applying a suitable hash function to a group

1 A representation of X with respect to group elements g1, . . . , gn is a sequence
a1, . . . , an of integers such that X =

∏
gai

i . As for the special case n = 1 a rep-
resentation corresponds to the discrete log of X with respect to g1.

element and the message. This suggests that in the generic model the hash func-
tion itself must be treated as a black box, because it does not solely operate
on bit strings but partially on group elements. The hash function is therefore
closely connected to the group. As for an actual implementation in practice, it
is therefore necessary that one verifies that choosing a good hash function to a
presumably strong group does not give origin to undesired problems. We elab-
orate on this in Section 4 by discussing the Schnorr signature scheme. Namely,
we show that, although this signature scheme seems to be secure in the generic
model for appropriate hash functions, depending on the choice of the group to
the hash function, in the real world we either obtain a secure combination or we
get an easy-to-forge scheme.

In contrast to the generic approach, a classical proof in cryptography is mod-
ular: once proved secure under certain properties of the primitives involved, one
can take any instantiation of any of the primitives satisfying these properties,
and it is guaranteed that the combined scheme is secure. Hence, in the generic
case additional attention must be paid when implementing the schemes. Since
the aforementioned problems could be subtle and hidden very well, this intro-
duces a dangerous source of flaws.

In conclusion, even if some cryptographic protocol is provably secure in the
generic model, this does not necessarily give us the same confidence as the ob-
servation that nowadays optimal algorithms for the discrete-logarithm problem
for groups like elliptic curves are generic.

2 Preliminaries

Since the aim of this work is to highlight principle problems with security proofs
in the generic model, the following discussion and all results are kept at a very
informal level.

Generic algorithms and their application to cryptography have been intro-
duced to the crypto community by Shoup [25] relying on a result by Nachaev
[20]. Shoup models generic algorithms by oracle Turing machines. That is, choose
a random encoding of group elements and give the oracle Turing machine access
to a group operation oracle taking as input the random encodings of two group
elements X, Y and returning the random encoding of XY or XY −1. Schnorr and
Jakobsson [24] use the a slightly different approach by dividing data into group
data and non-group data. “Their” generic algorithms operate on non-group data
as Turing machines2 whereas for group data the algorithm is only allowed to com-
pute the group element

∏
Xai

i for elements X1, . . . , Xn and integers a1, . . . , an

in a single oracle step.
In [24] the signed ElGamal encryption scheme —introduced in [17, 27]— has

been analyzed in a combination of the random oracle and generic model. As
mentioned before, basically, an encryption consists of an ElGamal encryption
with a tag, a Schnorr signature. The system parameters are a group G of prime
2 Actually, Schnorr and Jakobsson [24] allow the generic algorithms to compute arbi-

trary functions on the non-group data and do not even restrict to recursive functions.

order q, a generator g of G, and a random oracle H : G3 → ZZq. The secret and
the public key are given by x ∈ ZZq and X = gx. In order to encrypt a message
m ∈ G select random r, s ∈ ZZq, compute an ElGamal ciphertext R = gr, Y =
mXr and a Schnorr signature with gs and c = H(gs, R, Y), z = s + cr mod q.
Finally, output (R, Y, c, z) as the ciphertext of m. To decrypt with the secret
key x first check the validity of the signature tag, i.e., that c = H(gzR−c, R, Y),
and if so return the message Y/Rx. The idea is that the Schnorr signature with
secret key r for message (R, Y) guarantees that the adversary knows r and thus
the message Y/Xr = m.

A first formal proof that this combination of ElGamal encryption and Schnorr
signature is indeed secure against adaptive chosen-ciphertext attacks has been
given in [27], under the assumption that H is a random oracle, that the deci-
sional Diffie-Hellman problem [6] is intractable, and based on a somewhat strong
assumption about the unforgeability of Schnorr signatures. In [24] the scheme
has been proved secure in the generic model given that H is a random oracle.

In order to show that certain approaches are possible when observing internal
behavior, but are not known to be achievable otherwise, we present an example
based on zero-knowledge proofs. Hence, we briefly discuss the definition of zero-
knowledge proofs in the generic model. See [12] for a comprehensive treatment
of zero-knowledge protocols. Informally, a zero-knowledge protocol [15] for a
language L is an interactive proof system between an unbounded party, called
the prover P , and a probabilistic polynomial-time machine, the verifier V , such
that the following holds:

– completeness: if P and V both honestly follow the protocol then V always
accepts inputs x ∈ L.

– soundness: for x /∈ L the verifier V only accepts with probability ε(|x|) for
any malicious prover P ∗ pretending to be P . The function ε is called the error
of the protocol. Likewise, if ε is negligible then the protocol has negligible
error.

– zero-knowledge: for any x ∈ L, any possibly malicious verifier V ∗ does not
not learn anything useful beyond the fact that x ∈ L (in a computational
sense) from the protocol execution with P . That is, for any verifier V ∗ there
exists a probabilistic (expected) polynomial-time simulator S such that for
x ∈ L the simulator’s output S(V ∗, x) is computationally indistinguishable
[14] from the random variable that describes the exchanged messages of a
protocol execution between P and V ∗.

Basically, augmenting interactive proof systems by a group oracle means to pro-
vide all parties P, P ∗, V, V ∗, S access to the same oracle. This, of course, implies
that we have to transfer the instinguishability property to the generic model.
Instead of demanding that any generic algorithm (with access to the same group
oracle) cannot distinguish the prover’s and the simulator’s answers, we after-
wards encode in both cases all group elements in a group with some encoding,
like ZZ∗

p and the binary representation. Clearly, this leads to a conditional state-
ment that the output of the zero-knowledge simulator is indistinguishable (in the
standard sense) from the prover’s answers under the assumption that the group

with the encoding is secure. By this, we circumvent to introduce distinguishers
in the generic model.

The zero-knowledge simulator which we present in Section 3 will not be a
black-box simulator as it learns the queries of V ∗ submitted to the group or-
acle, and hence observes some internal behavior of V ∗. In fact, this is crucial
for our three-round negligible-error zero-knowledge protocol in the next section.
Furthermore, this is exactly what is done in [24] in order to prove the signed
ElGamal encryption scheme to be secure against adaptive chosen-ciphertext at-
tacks. There, it is demonstrated that the adversary essentially cannot create ci-
phertexts without knowing the message, and that the message can be extracted
by looking at the adversary’s oracle gueries to the group oracle. Schnorr and
Jakobsson [24] call this plaintext awareness (and thus implicitely suggest a def-
inition in the generic model, although they do not present a formal definition).
They refer to plaintext awareness as defined in [5] rather than to the refinement
given in [2]. We are not aware if the signed ElGamal scheme is plaintext aware
according to this refinement.

Finally, let us recall the three-round discrete-log-based oblivious transfer pro-
tocol of Bellare and Micali [3]. We apply this protocol as a tool to derive our
zero-knowledge scheme. Informally, a chosen-one-out-of-two oblivious transfer
scheme is a two-party protocol between a sender possessing messages m0,m1

and the receiver. The receiver would like to learn mb from the sender such that
the sender does not learn the receiver’s choice b. On the other hand, the sender
is willing to reveal one of the messages to the receiver, but does not want to
give away anything about the other message. Bellare and Micali introduce the
following protocol in a group G of prime order q generated by g.3

– The sender generates a random pair x ∈ ZZq, X = gx of private and public
key and sends X to the receiver.

– The receiver, trying to get mb, randomly chooses y ∈ ZZq, sets Yb = gy and
Yb⊕1 = XY −1

b and transmits Y0, Y1.
– The sender checks that Y0Y1 = X. If so, it selects uniformly a0, a1 ∈ ZZq

and computes the ElGamal encryptions (Ai, Bi) = (gai , Y ai
i mi) for i = 0, 1

(where we presume for simplicity that the messages are in some way encoded
as group elements). The sender transmits both pairs to the receiver.

– The receiver, knowing the discrete-log of Yb, can decrypt mb.

Intuitively, the receiver can only know one of the secret keys of Y0, Y1 and thus
learns only a single message, i.e., the other message is computationally hidden
under the decisional Diffie-Hellman assumption [3]. Conversely, the sender does
not learn in an information-theoretical sense which of the messages the receiver

3 In the generic model, the group is given, while in the real world it is generated by the
sender in the first step, say, by selecting a subgroup G of ZZ∗

p. Since only the sender’s
privacy but not the receiver’s depends on the intractability of the discrete-log in this
group, and because the receiver can verify that a proper group of prime order has
been generated, we can simply assume that even a malicious sender chooses the
group honestly.

wants to retrieve, because the values Y0, Y1 are distributed independently of b.
We remark that the same functionality can be accomplished with a less effi-
cient scheme based solely on the computational Diffie-Hellman assumption and
hardcore predicates [3].

3 Three-Round Negligible-Error Zero-Knowledge for NP

In this section we present our three-round negligible-erro zero-knowledge pro-
tocol for the NP-complete language DHC, Directed Hamiltonian Cycle. The
well-known atomic protocol with error 1/2 works as follows (cf. [12]):

– The prover permutes the common input graph H with permutation π to
obtain a graph π(H). Then the prover sends a bit-wise commitment of
the describing matrix of π(H), and a commitment of π. We assume that
the commitment scheme is non-interactive, computationally-hiding and un-
conditionally-binding; such commitment schemes exist for example under
the discrete-log assumption (see [12]).

– The verifier chooses a random bit b and asks the prover to reveal a Hamilto-
nian cycle in the permuted graph (b = 0), or to show that the commitment
sequence really contains an isomorphic copy of H (b = 1).

– The prover acts accordingly, i.e., for b = 0 opens n committed 1-bits of
the matrix of π(H) describing a directed Hamiltonian cycle, and for b = 1
decommits to all of π and π(H).

– The verifier decides upon the opening.

Obviously, this protocol is complete. Soundness holds with error 1/2 because for
input H /∈ DHC the prover can answer at most one of the two possible challenges
correctly. The zero-knowledge simulator tries to guess the challenge prior to the
commitment, i.e., commits to an arbitrary graph with a random Hamiltonian
cycle if the guess is b = 0, and to a random permutation of H for b = 1. Then it
obtains the challenge b∗ of the verifier V ∗ and if b = b∗ the simulator opens the
commitments accordingly; else it restarts. The expected number of trials until
the simulator successfully guesses b∗ is two.

Assume that instead of opening the parts of commitment according to the
challenge in the atomic protocol, the prover executes both openings in parallel
but encrypts each of both sequences of decommitments with an independent
secret key. Additionally, the prover transfers one of these keys obliviously to
the verifier (who decides at random which key) with the Bellare-Micali proto-
col. This technique has already been successfully applied in other works about
zero-knowledge proofs (e.g. [18, 9]). Completeness and soundness of the atomic
protocol are preserved. But it is not clear that the zero-knowledge property still
holds, because not knowing the right key the trial-and-error simulator above
cannot check that its guess is correct. In the generic model, though, the simula-
tor sees the verifier’s group oracle queries and thus learns which key the verifier
has chosen.

An important observation is that we can move the commitment step of the
first round to the third round without affecting the soundness property. This
leads to the protocol in Figure 3, where we use the notation [OT(K0,K1, b)]i to
denote the message in the i-th round (i = 1, 2, 3) of the OT scheme of Bellare-
Micali with private input K0,K1 of the prover and random secret bit b of the
verifier. Additionally, we denote by EncK(·) a semantically-secure [14] encryption
scheme, e.g., the basic ElGamal encryption scheme under the decisional Diffie-
Hellman assumption [27], or a hardcore-predicate-based bit encryption scheme
based on the computational Diffie-Hellman assumption.

prover P common input: graph H verifier V

do |H|-times in parallel:

select keys K0, K1 choose random b
[OT(K0, K1, b)]1

−−−−−−−−−−−−−−−−−−−−−→
[OT(K0, K1, b)]2

←−−−−−−−−−−−−−−−−−−−−−
choose random π
compute π(H)
C = bit-wise commitm. of π, π(H)
E0 = EncK0(decomm. of HamCyc. in π(H))
E1 = EncK1(decomm. of π, π(H))

C, E0, E1, [OT(K0, K1, b)]3
−−−−−−−−−−−−−−−−−−−−−→ decrypt Eb

check validity

Fig. 1. Three-Round Negligible-Error Zero-Knowledge Proof of Hamiltonian Cycle

Apparently, our protocol is complete. A malicious prover P ∗ can convince
the verifier with probability at most 2−|H| for inputs outside the language, be-
cause P ∗ must then lie either about the permutation or about the Hamiltonian
cycle, but does not know on which side he is checked (the verifier’s choice b is
hidden information-theoretically in the Bellare-Micali protocol and the prover’s
commitments are unconditionally binding).

It remains to specify the zero-knowledge simulator S. In the generic model,
S knows which key the verifier in each parallel execution retrieves, because the
simulator sees the internal group oracle queries of the verifier. That is, although
the malicious verifier might generate Y0, Y1 in the oblivous transfer protocol
different than the honest verifier, it always holds in the generic model that Y0 =
gaXb and Y1 = X ·Y −1

0 for some a, b which the simulator knows; thus, the verifier
learns at most one of the keys K0,K1 and the simulator then knows which one

(i.e., for b ∈ {0, 1} the verifier knows the secret key to Yb, and neither one for
b /∈ {0, 1}).

Our simulator imitates the simulator of the atomic protocol and chooses ap-
propriate commitments and correct or dummy encryptions. That is, for each
parallel execution our simulator selects keys K0,K1 and invokes in the obliv-
ious transfer protocol with the verifier. The verifier answers with some group
elements and we deduce which key (if any) the verifier wants to retrieve. If this
is key K0 we run the simulator of the atomic protocol to produce an appropri-
ate commitment/decommitment for the guess b = 0; else, for K1, we let this
simulator generate a good instance for guess b = 1. We then correctly encrypt
the opening with the chosen key and a produce dummy ciphertext of 0-bits with
the other key. The fact that the views (afterwards encoded) are computation-
ally indistinguishable under the decisional Diffie-Hellman assumption follows by
standard techniques and is omitted. Also, if we use the less efficient variant of
the Bellare-Micali protocol with hardcore predicates and the corresponding bit
encryption scheme instead, then this scheme is computationally zero-knowledge
under the computational Diffie-Hellman assumption.

Why does our result not contradict the lower bound in [13] for the round
complexity of zero-knowledge proofs? The reason is that the BPP-algorithm in
[13] relies on a black-box simulator observing merely the external behavior of the
verifier. Here, the simulator sees some internal operations, namely, the queries to
the group oracle. The same property has been used in [24]. Recall that a signed
ElGamal encryption is a tuple (R, Y, c, z) = (gr,mXr, c, z). In [24] it has been
shown that submitting such a tuple to the decryption oracle can be simulated
because the signature ensures that the adversary must have computed gr via
the group oracle with very high probability; thus, r is known to a simulator
that keeps track of the adversary’s group oracle queries. In particular, it follows
that the answer m = Y/Xr of the decryption oracle can be computed by the
simulator without knowing the secret key to X. By this, any decryption requests
can be simulated by a single group operation.

4 Instantiations of the Schnorr Signature Scheme

In this section we discuss problems when choosing bad combinations of instanti-
ations of the primitives, although the constructed scheme is presumably secure
in the generic model. Our demonstration example will be the Schnorr signature
scheme [23]. First, let us briefly recall the system.

The scheme involves a group G of prime order q generated by some g ∈ G
and a hash function H; we will later discuss the properties of H. The secret
key is a random element x ∈ ZZq and the public key is given by X = gx ∈ G.
To sign a message m the signer chooses a random r ∈ ZZq, computes gr and
c = H(gr,m) ∈ ZZq as well as y = r + cx mod q. The signature consists of
the pair (c, y). In order to verify a signature/message pair (c, y),m the verifier
calculates Z = gyX−c and checks that c = H(Z,m).

A potential attack on the Schnorr signature scheme is to reverse engineer the
hash function, i.e., to choose a hash value c beforehand and then to try to find
y ∈ ZZq such that H(gyX−c,m) = c. Obviously, (c, y) is then a valid signature.
In practice, it is therefore assumed that H is a collision-intractable hash function
that cannot be reverse engineered.

We add the public parameters describing the group G and g,X to the hash
evaluation process. That is, the hash value is computed as H(〈G〉 , g, X, gr,m)
and as H(〈G〉 , g, X,Z,m), respectively, where 〈G〉 denotes the group descrip-
tion. This is also suggested in [19] to prevent so-called adversarial hashing, and
to best of our knowledge this does not weaken the Schnorr signature scheme.
Nonetheless, it gives us the possibility to relate the hash function evaluation
process to the underlying group.

We will consider two instantiations of the collision-intractable hash function
and the group. Both instances use the same hash function, but each time a dif-
ferent cryptographically-strong group. One example will be completely insecure,
whereas the other seems to be provide a secure signature scheme. By this, it
follows that the choice of the group also affects the choice of the hash function
and vice versa. As we will argue, both approaches conceivably provide a secure
combination in the generic model. In contrast, a traditional security proof that
a safe group and a collision-intractable hash function withstanding reverse engi-
neering are sufficient would imply that any combination of, say, SHA-1 or MD5
with groups in ZZ∗

p or elliptic curves yields a secure scheme. Hence, security in
the generic model does not support modular implementations in general.

For sake of clarity, we explain the example below for subgroups of ZZ∗
p of

prime order q with binary encoding. It also works for any other group, say,
elliptic curves, if we hash down the binary representations of group elements
to numbers between 0 and p − 1. Let h be a collision-intractable hash function
that maps bit strings to the intervall [1, (q − 1)/2], viewed as a subset of ZZq.
Furthermore, let h be secure against reverse engineering in the sense discussed
above. Define the hash function H for the signature scheme by dividing the input
message m into m1,m2 where m2 ∈ {0, 1}|p| is interpreted as a group element
in ZZ∗

p. Set

H(p, q, g,X,R, m1,m2)

=

h(m1) if R ∈ [0, q) and RXh(m1) = g mod p

and gR = m2 mod p

h(R,m1,m2) + q−1
2 mod q else

It is easy to see that he derived hash function H is collision-intractable for fixed
p, q, g,X and varying (R,m1,m2).

The idea of the construction of H is that its properties depend on the group.
Specifically, assume that we choose p = 2q+1. Then roughly half of the elements
in G ⊆ ZZ∗

p fall into the intervall [0, q) (see [21]). If an adversary now picks m1

at random and computes R = gX−h(m1) then with probability approximately
1/2 this value R is less than q as a natural number (assuming that the hash

function h distributes random values quite well). In this case, RXh(m1) = g and
for m2 = gR mod p the hash funtion output equals c = h(m1). Thus, (c, 1) is a
valid signature for (m1,m2) and the adversary easily succeeds in forging Schnorr
signatures (without necessarily being able to compute discrete logarithms).

Now let p = wq + 1 for w � q2. Assume for the moment that except for 1
none of the other q − 1 group elements lies in [0, q]. Unfortunately, we do not
know whether this holds in general or not, and we are not aware of any results
about the distribution of elements of this subgroup in ZZ∗

p (if the elements are
almost uniformly in ZZ∗

p then this clearly follows from the choice of w). But
again, we stress that this is an instructive example and we therefore admit this
simplification. In this case, the hash function evaluation for (R,m1,m2) can only
result in h(m1) if R = 1. But then RXh(m1) = Xh(m1) = g is only possible for
logg X = 1/h(m1) mod q. This, in turn, is equivalent to computing the discrete-
logarithm of X to base g, and assuming the intractability of the discrete-log
problem it is therefore very unlikely that this happens. Hence, given that the
case above never occurs, the hash function evaluation merely results in values
h(R,m1,m2)+(q−1)/2 mod q and the scheme resembles to the original Schnorr
system and is thus believed to be secure.

What happens in the generic model of Schnorr-Jakobsson? There, the ad-
versary cannot interchange group data and non-group data. Hence, any hash
function query cannot yield the answer h(m1) and the scheme is again conceiv-
ably secure. In other words, due to the generic model the hash function H has
the additional property of being immune against reverse engineering, although
H has not for the wrong choice of the group when implementing.

5 Conclusion

We have pointed out several pitfalls for security proofs in the generic model.
Clearly, it is preferable to construct attractive protocols that are provably se-
cure by classical methods. Yet, for some schemes used in practice like DSS such
security proofs are still missing today (assuming that DSS can be proven secure
at all). It is therefore a worthwhile effort to consider certain attacks on these
schemes. But one should have in mind that it merely provides some evidence of
hardness if these attacks fail. Also, the lack of proofs should incite researchers
to find provably secure alternatives.

We remark that there are alternatives to the signed ElGamal scheme of
[17, 27, 24] which are also discrete-log-based but require milder, yet still “non-
standard” assumptions. One is the system based on the random oracle assump-
tion and arbitrary trapdoor functions [5]. Another one is the DHAES scheme
of Abdalla et al. [1] based on a potentially stronger assumption than the deci-
sional Diffie-Hellmann assumption. The DHAES scheme seems to be at least as
efficient as the signed ElGamal scheme: one exponentiation is traded for some
private-key operations.

Finally, we remark that there is the ingenious encryption scheme of Cramer
and Shoup [8] based only on the decisional Diffie-Hellman assumption; the

Cramer-Shoup scheme is only slightly less efficient than the signed ElGamal
scheme.

Acknowledgements

We thank Claus Schnorr for remarks on the generic model.

References

1. M.Abdalla, M.Bellare, P.Rogaway: DHAES: An Encryp-
tion Scheme Based on the Diffie-Hellmann Problem, available at
http://www-cse.ucsd.edu/users/mihir/, 1998.

2. M.Bellare, A.Desai, D.Pointcheval, P.Rogaway: Relations Among Notions
of Security for Public-Key Encryption Schemes, Crypto ’98, Lecture Notes in
Computer Science, Vol. 1462, Springer-Verlag, pp. 26–45, 1998.

3. M.Bellare, S.Micali: Non-Interactive Oblivious Transfer and Applications,
Crypto ’89, Lecture Notes in Computer Science, Vol. 435, Springer-Verlag,
pp. 547–559, 1990.

4. M.Bellare, P.Rogaway: Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols, ACM Conference on Computer and Communication
Security, pp. 62–73, 1993.

5. M.Bellare, P.Rogaway: Optimal Assymetric Encryption, Eurocrypt ’94, Lec-
ture Notes in Computer Science, Vol. 950, Springer-Verlag, pp. 92–111, 1994.

6. D.Boneh: The Decision Diffie-Hellman Problem, Third Algorithmic Number The-
ory Symposium, Lecture Notes in Computer Science, Vol. 1423, Springer-Verlag,
pp. 48–63, 1998.

7. R.Canetti, O.Goldreich, S.Halevi: The Random Oracle Methodology, Re-
visited, Proceedings of the 30th Annual ACM Symposium on the Theory of Com-
puting, pp. 209–218, 1998.

8. R.Cramer, V.Shoup: A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attacks, Crypto ’98, Lecture Notes in Com-
puter Science, Vol. 1462, Springer-Verlag, pp. 13–25, 1998.

9. A.De Santis, G.Di Crescenzo, G.Persiano: Public-Key Cryptography and
Zero-Knowledge Arguments, Information and Computation, Vol. 121, No. 1,
pp. 23–40, 1995.

10. W.Diffie, M.Hellman: New Directions in Cryptography, IEEE Transaction on
Information Theory, Vol. 22, pp. 644–654, 1976.

11. T.ElGamal: A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms, IEEE Transaction on Information Theory, Vol. 31, pp. 469–
472, 1985.

12. O.Goldreich: Foundations of Cryptography (Fragments of a Book), available
at http://www.wisdom.weizmann.ac.il/home/oded/public html/index.html,
1998.

13. O.Goldreich, H.Krawczyk: On the Composition of Zero-Knowledge Proof Sys-
tems, SIAM Journal on Computing, Vol. 25, pp. 169–192, 1996.

14. S.Goldwasser, S.Micali: Probabilistic Encryption, Journal of Computer and
System Sciences, Vol. 28(2), pp. 270–299, 1984.

15. S.Goldwassser, S.Micali, C.Rackoff: The Knowledge Complexity of Inter-
active Proof Systems, SIAM Journal on Computing, Vol. 18, pp. 186–208, 1989.

16. S.Hada, T.Tanaka: On the Existence of 3-Round Zero-Knowledge Protocols,
Crypto ’98, Lecture Notes in Computer Science, Vol. 1462, Springer-Verlag,
pp. 408–423, 1998.

17. M.Jakobsson: A Practical Mix, Eurocrypt ’98, Lecture Notes in Computer Sci-
ence, Vol. 1403, Springer-Verlag, pp. 448–461, 1998.

18. J.Kilian, S,Micali, R.Ostrovsky: Minimum Resource Zero-Knowledge Proofs,
Proceedings of the 30th IEEE Symposium on Foundations of Computer Science,
1989.

19. S.Micali, L.Reyzin: Signing with Partially Adversarial Hashing, available at
http://theory.lcs.mit.edu/˜reyzin, 2000.

20. V.Nechaev: Complexity of a Determinate Algorithm for the Discrete Logarithm,
Mathematical Notes, Vol. 55, pp. 165–172, 1994.

21. R.Peralta: On the Distribution of Quadratic Residues and Non-Residues Mod-
ulo a Prime Number, Mathematical Notes, Vol. 58, 1995.

22. C.Rackoff, D.Simon: Non-Interactive Zero-Knowledge Proofs of Knowledge
and Chosen Ciphertext Attacks, Crypto ’92, Lecture Notes in Computer Science,
Vol. 576, Springer-Verlag, pp. 433–444, 1998.

23. C.Schnorr: Efficient Signature Generation for Smart Cards, Journal of Cryptol-
ogy, Vol. 4, pp. 161–174, 1991.

24. C.Schnorr, M.Jakobsson: Security of Signed ElGamal Encryption, Asiacrypt
2000, Lecture Notes in Computer Science, Springer-Verlag, 2000.

25. V.Shoup: Lower Bounds for Discrete-Logarithm and Related Problems, Eu-
rocrypt ’97, Lecture Notes in Computer Science, Vol. 1233, Springer-Verlag,
pp. 256–266, 1997.

26. J.Silverman, J.Suzuki: Elliptic Curve Discrete Logarithms and the Index Cal-
culus, Asiacrypt ’98, Lecture Notes in Computer Science, Vol. 1514, Springer-
Verlag, pp. 110–125, 1998.

27. Y.Tsiounis, M.Yung: On the Security of ElGamal Based Encryption, PKC ’98,
Lecture Notes in Computer Science, Vol. 1431, Springer-Verlag, pp. 117–134,
1998.

