
Secure Set Intersection with Untrusted Hardware Tokens

(Full Version)?

Marc Fischlin1, Benny Pinkas2, Ahmad-Reza Sadeghi1,3, Thomas Schneider3, and Ivan Visconti4

1 Darmstadt University of Technology, Germany
marc.fischlin@gmail.com

2 Bar Ilan University, Ramat Gan, Israel
benny@pinkas.net

3 Ruhr-University Bochum, Germany
{ahmad.sadeghi,thomas.schneider}@trust.rub.de

4 University of Salerno, Italy
visconti@dia.unisa.it

Abstract. Secure set intersection protocols are the core building block for a manifold of
privacy-preserving applications. In their basic form, secure protocols for set intersection fol-
low from general feasibility results for secure two-party computation. However, efficiency
requirements for practical deployment have recently incited efforts to design dedicated pro-
tocols which are significantly more efficient.
In a recent work, Hazay and Lindell (ACM CCS 2008) introduced the idea of using trusted
hardware tokens for the set intersection problem, devising protocols which improve over pre-
vious (in the standard model of two-party computation) protocols in terms of efficiency and
secure composition. Their protocol uses only a linear number of symmetric-key computations
and the amount of data stored in the token does not depend on the sizes of the sets. The
security proof of the protocol is in the universal composability model and is based on the
strong assumption that the token is trusted by both parties.
In this paper we revisit the idea and model of hardware-based secure set intersection, and in
particular consider a setting where tokens are not necessarily trusted by both participants.
More precisely, we allow one party to use multiple hardware tokens from different manu-
facturers which are not trusted by the other party. Security for the one is guaranteed as
long as the other party is not able to compromise all tokens, e.g., through side channel at-
tacks, firmware trapdoors or malicious hardware. Our protocols are very efficient and achieve
the same level of security as those by Hazay and Lindell for trusted tokens. For untrusted
tokens, our protocols ensure privacy against malicious adversaries, and correctness facing
covert adversaries.

Keywords: cryptographic protocols, set intersection, untrusted hardware

1 Introduction

A variety of applications with sophisticated privacy requirements can be based on secure set op-
erations, in particular secure set intersection. Examples are versatile and range from government
agencies comparing their databases of suspects on a national and international basis, to competing
enterprises evaluating their performance on various aspects (items, deployed processes), to dating
services.

The underlying protocols typically involve two mistrusting parties who compute an intersection
of their respective sets (or some function of them). As we elaborate in §1.1 on related work,
cryptographic research has proposed several solutions to this problem, each having its own strengths
and weaknesses; in particular, the efficiency aspect is crucial for deployment in real-life scenarios:
While software-based solutions use expensive public-key operations, it is also possible to incorporate
a tamper-proof hardware token into the protocol, yielding more efficient schemes and/or avoiding
impossibility results. However, this hardware-based model requires a strong trust model, i.e., a
token trusted by all parties.

? This is the full version of the CT-RSA 2011 paper [FPS+11].

2 M. Fischlin, B. Pinkas, A.-R. Sadeghi, T. Schneider, I. Visconti

Background. In this paper we will focus on a recent proposal by Hazay and Lindell [HL08a] that
aims to design truly practical and secure set intersection protocols by introducing a new party, a
(tamper-proof) hardware token T . Here, one party, called the issuer A, programs a key into the
token T which protects this key from being accessible by the other party B. At the same time,
the manufacturer of the token ensures that the token correctly computes the intended function,
i.e., A can only choose the secret key but cannot interfere with the token’s program. The protocol
is very efficient and requires the involved parties and the token to perform a few pseudorandom
permutation evaluations, thus disposing of any public-key operations and/or random oracles as in
previous efforts (cf. §1.1).

The use of the token in [HL08a] is justified when trusted hardware manufacturers are available
(e.g., manufacturers which produce high-end smartcards that have FIPS 140-2, level 3 or 4 certifi-
cation). The security of the scheme is proven in the Universal Composability (UC) model [Can01],
guaranteeing security even when composed with other protocols. It is important to note that to-
day’s high-end smartcards may have a sufficient amount of resources for executing the entire ideal
functionality in a relatively simple use-case such as set intersection, although probably not on
relatively large inputs. However, doing so would require to program the smartcard to implement
this specific functionality. The protocols of [HL08a] as well as the protocols we propose, on the
other hand, can be run in practice by using cheap smartcards: they assume limited computation
capabilities (only symmetric-key operations) and constant storage (see also [HL08a]).

Motivation. The security proof of the scheme of [HL08a] considers the universal composability
framework inherently relying on the trustworthiness of the token, since it is assumed that both
parties fully trust the token. This assumption, though, is critical with regard to several aspects
regarding to what level tokens can be trusted in practice.

First, even extensive testing of the token cannot provide protection against errors and back-
doors, introduced accidentally or deliberately in the underlying hardware and software stack run-
ning on it. A well-known example is the “Pentium bug” which caused the floating point division
unit of the Intel PentiumTM processor to compute slightly wrong results for specific inputs [SB94].
Such flaws in the hardware can be exploited in so called “bug attacks” [BCS08] to break the
security of the underlying protocol. Moreover, although appropriate certification might help to
ensure, to some degree, that at least the design of the token is backdoor-free, it is still unclear how
to protect against hardware Trojans being maliciously introduced into the hardware during the
manufacturing process, particularly because chip production is increasingly outsourced to other
countries which are potentially untrusted or have their own evaluation standards.

Another threat concerns hardware and side-channel attacks allowing to break hardware protec-
tion mechanisms. Modern commercial smartcards have been equipped with a variety of measures
to counter standard side-channel attacks. However, the severeness of attacks depends of course
on the effort (see, e.g., the recently reported hardware attack on the Trusted Platform Module
(TPM) [Sec10]).5

Our contribution and outline. After summarizing related works on set intersection and token-
based protocols in §1.1, we introduce our setting and the employed primitives in §2, and review the
basic protocol of [HL08a] in §3. Afterwards, we present the following contributionsbefore concluding
in §7.

We revisit the model of a fully trusted hardware token and provide several protocols for secure
set intersection that make use of untrusted hardware tokens and fulfill different security targets.
In our protocols only one party A trusts (some of) the hardware token(s) but the other party B
does not. More concretely, we present a stepwise design of token-based set intersection protocols:

1. Guaranteeing the privacy of B’s inputs in the malicious adversary model, using a single token
trusted only by the issuer A (§4).

2. Additionally guaranteeing the correctness of B’s outputs in the covert adversary model, using
a single token trusted only by the issuer (§5).

5 Note that hardware attacks are outside the scope of TPM specification [TCG09], although TPMs are
based on known smartcard technology and have rudimentary protection against some conventional side-
channel attacks.

Secure Set Intersection with Untrusted Hardware Tokens 3

3. Additionally preserving the privacy of A’s inputs in the malicious adversary model, using
multiple tokens of which at least one is trusted by issuer A (§6).

Moreover, our protocols have the “fall-back” security guarantees to the protocol of [HL08a]:
in case both parties fully trust the token, our protocols still provide the same security properties
as [HL08a]. While the original protocol of [HL08a] does not provide any security guarantees in the
case of untrusted token, our protocols achieve input privacy for malicious adversaries and output
correctness for a covert token, i.e., any cheating attempt of the token may breach correctness (but
not privacy) and is detectable with high probability.

1.1 Related Work

Set intersection without hardware tokens. Several protocols for two-party set intersection
secure in the semi-honest model have been proposed [FNP04, KS05, JL09, DT10, ADT10]. Pro-
tocols with security against malicious adversaries are given in [FNP04, KS05, SS07, HL08b, JL09,
DSMRY09,JL10,HN10,HL10,DKT10]. A detailed summary and performance comparison of most
of these protocols is given in [DT10]. Protocols with covert security are given in [HL08b, HL10].
All these protocols that do not employ hardware tokens need a non-negligible number of compu-
tationally expensive public-key operations [FNP04]. In contrast, the protocols of [HL08a] and our
protocols perform a linear number of fast symmetric-key operations only.

Set intersection with hardware tokens trusted by both parties. HW tokens with limited
capabilities that are trusted by both parties have been used to construct more efficient protocols
for verifiable encryption and fair exchange [TV09], and secure function evaluation [FFP+06,IS05].
Additionally, government-issued signature cards have been proposed as setup assumption for
UC [HMU05]. Further, semi-honest tamper-proof hardware tokens can serve as basis for non-
interactive oblivious transfer and hence non-interactive secure two-party computation, called one-
time programs [GT08, GKR08, JKSS10b]. Our tokens need not to be trusted by both parties. In
the rest of the paper we will extend the token-based set intersection model and protocol proposed
recently in [HL08a] which we summarize in §3.

Set intersection with hardware tokens trusted by the issuer only. HW tokens trusted by
their issuer only were used as setup assumption for constructing UC commitments [Kat07,MS08,
CGS08,DNW09], and information-theoretic one-time programs [GIS+10]. These protocols use HW
tokens merely to overcome known impossibility results, but do not claim to yield efficient protocols
for practical applications.

To improve the performance of practical two-party secure function evaluation protocols, gar-
bled circuits can be generated efficiently using a HW token trusted by its issuer only [JKSS10a].
Furthermore, truly efficient oblivious transfer protocols with security against covert adversaries
were proposed in [Kol10]. We adapt techniques of [Kol10] for constructing our protocols for secure
set intersection.

2 Preliminaries

We denote the security parameter for symmetric schemes by t. A pseudorandom permutation (PRP)
F is an algorithm which takes as input a key k ∈ {0, 1}t and describes a “random-looking”
permutation Fk(·) over D = {0, 1}t. If we drop the requirement on F being a permutation, then
we have a pseudorandom function (PRF) instead. If it also holds that it is hard to distinguish
permutation Fk from a random permutation given access to both the permutation and its inverse,
then F is called a strong pseudorandom permutation (SPRP). Note that AES, for example, is
believed to be a strong PRP.

4 M. Fischlin, B. Pinkas, A.-R. Sadeghi, T. Schneider, I. Visconti

2.1 The Setting for Token-Based Set Intersection Protocols

The general setting for the set intersection protocols we consider is as follows: Two parties, A and
B would like to compute the intersection F∩(X,Y) = X ∩Y on their input sets X = {x1, . . . , xnA

}
and Y = {y1, . . . , ynB

} such that only B obtains the output (while A learns nothing). Note that
we assume that the set sizes are known to both parties. We further assume that elements from X
and Y are from a domain D = {0, 1}t, i.e., X,Y ⊆ D. If needed, larger input data can be hashed
to shorter strings with a collision-resistant hash function.

Our protocols have the following general structure: party A issues, i.e., buys, one or more hard-
ware tokens T1, . . . , Tn, where Ti is manufactured by the hardware manufacturer Mi. It initializes
the tokens Ti, and sends them to B. In the case of protocols with a single token we simply call the
token T and its manufacturerM. In our model, any of the participating parties may be dishonest
(where a dishonest token T refers to a maliciously produced token), and all malicious parties are
controlled by a single adversary. We say that a party trusts T iff the other party cannot collude
with M to produce a dishonest or breakable token. We consider static corruptions only.

To model hardware-based access we assume that, once a token is in possession of B, A cannot
communicate with the token anymore. In particular, the adversary may construct a malicious
token, but may not interact with the token anymore, once it is sent to B. The adversary can
only communicate with the token through messages sent to and received from B. Analogously, two
tokens cannot communicate directly.

2.2 Security Models

While we denote by A,B, and T respectively the first (left) player, the second (right) player and
the token, we will denote by AI and BI the players of the ideal world where parties just send their
inputs to a set intersection functionality that then sends the intersection of the received inputs to
BI .

We use different security notions. First, we consider unconditional privacy of the input of a
player, i.e., regardless of the actions of the other malicious player, the input of an honest player
will remain private in the sense that anything that can be computed about it can also be computed
in the ideal world.

When we can carry a real-world attack mounted by an adversary during a protocol run into an
ideal world attack, we achieve simulation-based security. If simulation cannot be achieved, we will
instead downgrade to the weaker indistinguishability-based security notion. This last notion means
that a malicious player cannot guess which input the other player has used during a protocol run,
even when the honest player uses one of two inputs determined by the adversary.

The traditional notion of security through realizing an ideal functionality requires the simulation
of any real-world attack into an ideal-world attack, and that the outputs of honest players do not
deviate in the two worlds. We then say that the protocol securely computes (or evaluates) the
functionality F∩(X,Y), and often specify the adversary’s capabilities further, e.g., that the token
is trusted or that it cannot be compromised by B. This classical notion implicitly includes a
correctness requirement: the output of a honest player depends only on its input and the implicit
input used by the adversary in the protocol run.

When our protocols cannot achieve the correctness and simulation requirements simultaneously,
we will downgrade the standard security notion to covert security [AL07], which means that the
adversarial behavior can be detected by the honest player with some non-negligible probability ε,
called the deterrence factor.6 In all applications where the reputation of a player is more important
than the output correctness of another player (e.g., where established enterprises offering services
to citizens), this notion of covert security suffices, since there is a deterrence factor that discourages
malicious actions.

We note that our protocols provide stronger security guarantees than security against the
strongest notion of covert adversaries defined in [AL07], as no information about honest players’
inputs is leaked, independently of whether cheating was detected or not. That is, in our case the

6 In addition the protocol must be detection accurate in the sense that in real-world executions no honest
party accuses another honest party of cheating. All our protocols obey this property, albeit we do not
mention this explicitly.

Secure Set Intersection with Untrusted Hardware Tokens 5

ideal-world adversary can issue a cheat command (in case he wants to cheat) and this is announced
to the parties with probability ε – but unlike in [AL07] the ideal-world adversary here does not get
to learn the honest parties’ inputs in case no cheat is announced. Still, in such a case we provide
no correctness guarantee whatsoever.

3 Both Parties Trust Token [HL08a]

We now review the model and protocol of [HL08a]. Our models and protocols presented later
extend on these to cope with untrusted hardware.

Model of [HL08a]. In the model of [HL08a], the hardware token T is assumed to honestly
compute the intended functionality. The authors of [HL08a] argue that this assumption is justified
if highly trusted hardware manufacturers are available, e.g., manufacturers which produce high-
end smartcards that have FIPS 140-2, level 3 or 4 certification. The token T is as reliable as its
manufacturer M and, as only T is involved in the protocol but not M, this security assumption
is weaker than using M as a trusted third party.7

Set intersection protocol of [HL08a]. The set intersection protocol of [HL08a], depicted in
Fig. 1, works as follows: In the setup phase, A initializes the HW token T with a random key k, a
random message OK, and an upper bound on the size of B’s input set nB ; A sends T to B. In the
online phase, B can query the token to evaluate Fk (where F is a SPRP as defined in §2) on each
of its inputs. If T has been queried nB times, it invalidates k (e.g., by deleting it)8 and outputs OK
to B who forwards it to A. If OK is correct, A sends the evaluation of Fk on each of his inputs to
B. Finally, B computes the intersection by comparing the values obtained from T with those from
A. (Note that at that point B cannot query T anymore, i.e., all queries to T were independent of
A’s inputs.)

T

A
X = {x1, . . . , xnA}

B
Y = {y1, . . . , ynB}

Setup Phase:
k, OK ∈R D
init T : k, OK, nB
Online Phase: ∀yj ∈ Y :

ȳj = Fk(yj)

invalidate k
OK� = OK

T
yj

OK��

ȳj

OK��
OK�� ?

= OK
X̄ = {Fk(x)}x∈X X̄ X ∩ Y = {yj |ȳj ∈ X̄}

done

OK�� = OK�

Fig. 1. Set Intersection Protocol of [HL08a]: token T is trusted by both parties.

Security. According to Theorem 3 of [HL08a], the above protocol UC-securely realizes the set
intersection functionality when T is honest.

Efficiency. T performs nB evaluations of F . The communication in the online phase contains
the OK message from B to A, and a message containing nAt bits from A to B. The overall online
communication complexity is therefore O(nAt).

7 This model is somewhat related to the common reference string (CRS) model in which a party trusted
by all players generates a string according to a given distribution. The string is later used in the protocol.
While a CRS is a static information generated before protocol executions, the trusted token will offer a
trusted functionality during the execution of a protocol.

8 This ensures that B gains no advantage when querying T in an invalid way.

6 M. Fischlin, B. Pinkas, A.-R. Sadeghi, T. Schneider, I. Visconti

4 Only Issuer Trusts Token: Privacy of B’s Input

The protocol of [HL08a] assumes that T is fully trusted by both parties. Obviously, when one
of the parties can break into T (e.g., by physical attacks or by colluding with its manufacturer
M), they can break the correctness or the privacy of the protocol. In the following we extend the
protocol of [HL08a] to make it non-interactive and guarantee privacy of B’s inputs even if A and
T are malicious.

Model. We consider the trust model where B does not trust T to behave correctly, i.e., A can
collude with the hardware manufacturerM to produce a bad token T . This model seems justified,
as B is required to use a hardware token which is provided by A, whom B might not trust.

Problem 1 (A colludes withM to break privacy of B’s inputs). In the protocol of Fig. 1, the only
message in which information about B’s inputs can be leaked to A is the OK message. A corrupt
player A can construct a corrupt token T that changes the OK message based on the inputs that
B feeds to T (i.e., OK is used as covert channel), or T aborts the protocol (e.g., refuses to output
OK).

Protocol. Problem 1 arises in the protocol of [HL08a], as B first provides his input Y to T , T
answers B and finally B sends a message to A which depends on T ’s answer (OK). We eliminate
this source of leakage from T to A in the protocol as shown in Fig. 2, by making the protocol
non-interactive: First, A sends the permutations X̄ of its inputs (as before). Afterwards, B obtains
its permuted inputs Ȳ from T by sending its inputs Y to T . In contrast to the original protocol,
T cannot reveal the permuted inputs ȳj directly to B as otherwise B, who already knows X̄ now,
could already compute parts of the intersection X ∩ {y1, . . . , yj} and adaptively change his input
depending on this. Instead, T encrypts each ȳj by XORing it with a pseudo-random pad pj which is
derived by computing a pseudo-random function fs(j) keyed with a fixed secret key s. After having
queried for all elements in Y , B has an encrypted copy of Ȳ . Now, T releases the pseudo-random
pads pj with which Ȳ is encrypted to B, who can finally recover Ȳ and compute X ∩ Y as before.

T

A
X = {x1, . . . , xnA}

B
Y = {y1, . . . , ynB}

Setup Phase:
k, s ∈R D
init T : k, s, nB
Online Phase:

pj = fs(j)
ȳ�

j = Fk(yj) ⊕ pj

T

yj

pj

ȳ�
j

X̄ = {Fk(x)}x∈X
X̄ ∀j ∈ {1, .., nB}:

done invalidate k
pj = fs(j)

ȳj = ȳ�
j ⊕ pj

X ∩ Y = {yj |ȳj ∈ X̄}

afterwards

Fig. 2. Set Intersection Protocol with Privacy of B’s Inputs (Problem 1) w.r.t. malicious adversaries: token
T is not trusted by B.

Theorem 1. If F is a SPRP and f is a PRF, then the protocol depicted in Fig. 2:

1. securely evaluates F∩(X,Y) w.r.t. a malicious B that cannot break into T ;
2. keeps B’s input unconditionally private in the indistinguishability sense w.r.t. a malicious A;
3. securely evaluates F∩(X,Y) when both parties trust the token.

Proof. To prove Theorem 1 we treat each corruption case separately.

Secure Set Intersection with Untrusted Hardware Tokens 7

A is corrupted and T is trusted by A and B. As noted above, non-interactivity implies that B’s
input is protected unconditionally from a malicious A. Here however, we can even prove uncondi-
tional security in a simulation-based sense, constructing an ideal-world adversary AI that simulates
in the ideal world the attack carried out by A in the real world. The difference here that allows us to
achieve such a stronger security notion is that since the token is trusted, it has not been produced
by A, and therefore A has only black-box access to it. Thus, given a real-world adversary A, we
can construct an ideal-world adversary AI that includes A and is able to read and write on its
communication channels, including the ones that are supposed to be used for the communication
with the token. Notice that since the token is trusted, from the fact that it answers to B’s queries,
it must be the case that A uploads to T both k and s – otherwise T would be in an inconsistent
state and would not play with B (that therefore would just abort). Thus, AI will obtain k and s
from the initialization of the token performed by A. Then, AI reads the vector of messages X̄ and
inverts each x̄j ∈ X̄ obtaining the original vector X that corresponds to the set that A would play
in the real world. Then, AI plays X in the ideal world. As a consequence, the ideal-world honest
player BI will obtain the same input obtained by a real-world honest player B, that plays the
protocol with a trusted token. Finally AI outputs whatever A outputs. As the joint distribution
of the view of A and the output of B in real and ideal world are clearly identical, property 1 holds.

A is corrupted and T is trusted by A but not B. Since the protocol is non-interactive, A does
not get any message from B and therefore B’s privacy is protected unconditionally. However, we
cannot construct and ideal-world adversary AI since we cannot extract A’s input. Therefore we
obtain unconditional indistinguishability of B’s private input, and property 2 holds.

B is corrupted. To prove that A’s input remains private in a simulation-based sense against a real-
world malicious B we construct an ideal-world adversary BI that internally simulates a protocol
run to B, extracts its input and plays the extracted input in the ideal world. BI has control over
the communication channels used by B to communicate with T , and thus reads all queries yj
performed by B, sending as answer random values ȳ′j . Moreover, BI sends to B a random vector

X̄ therefore simulating the message of the honest real-world A. As soon as all elements of B have
been sent to the (simulated) token, BI groups all the elements in a set Y that is sent to the ideal
functionality. BI then obtains from the ideal functionality the intersection of Y with AI ’s input,
where AI is the honest player of the ideal model. Let Z be the output of BI in the ideal world.
BI now aims at giving Z to B in the internal execution of the real-world protocol. To do so, it
performs the last nB steps of the protocol sending values p1, . . . , pnB

as follows: if yj is in Z then
set pj = y′j ⊕ ȳj , else set pj equal to a random string. Then BI outputs whatever B outputs.

Notice that the only difference in the view of B between the real-world and the simulated
executions is that the former uses the SPRP F and the PRF f , while the latter uses random
bits. We now show that any distinguisher between the two views, can be used to build either an
adversary for F or an adversary f .

Consider the hybrid experiment G in which the real-world execution is played but F is replaced
by random strings, still keeping consistency so that on the same input F produces the same output.
Clearly G can be run in polynomial time and is computationally indistinguishable from the real-
world execution, otherwise we have immediately a forgery for the SPRP F .

Consider now the next hybrid game G′ in which all evaluations of f are replaced by random bits,
still keeping consistency as above. Again, any distinguisher between G and G′ would immediately
produce a forgery for the PRF f .

Finally, consider the simulated execution of the real-world protocol. Both the message sent
over the communication channel (i.e., X̄) and the first bunch of answers of T (i.e., ȳ′j) have the
uniform distribution and are therefore identically distributed in both G′ and in the simulated game.
The final answers pj received by B correspond in both the simulated game and in G′ to random
messages, with the only exception of the elements that appear in the intersection. In this last case
the received messages pj correspond precisely to the unique values that allow B to compute the
values in the intersection. This holds both in G′ and in the simulated execution. This allows us to
conclude the proof of property 3. ut

8 M. Fischlin, B. Pinkas, A.-R. Sadeghi, T. Schneider, I. Visconti

Efficiency and token reusability. While the round complexity of our protocol is optimal, com-
pared to the 3 rounds of [HL08a], its computational complexity is only by a factor of approximately
3 worse. Overall, the computational and storage requirements for T are the same in both proto-
cols, namely symmetric-key operations (SPRP and PRF), and a small constant amount of secure
storage.

Our protocols can be extended to reuse the same token for multiple protocol runs. For this, all
information shared between A and T (i.e., the value k and s) is derived pseudo-randomly from
a master-key known by A and T and some session identifier. The token T keeps track of the
next session id using a strictly monotonic tamper-proof hardware counter which is available in
most smartcards today. Also updating the usage counter nB inside the token is possible via secure
messaging as described in [HL08a].

5 Only Issuer Trusts Token: Correctness of B’s Output

In this section we extend the protocol of §4 to guarantee privacy and correctness when B does not
trust the token. This is formalized by the following problem.

Problem 2 (A colludes with M to break correctness of B’s output). In the protocols of Fig. 1 and
Fig. 2, a corrupt A can enforce B to obtain in the protocol wrong outputs, i.e., different from
X ∩ Y : This can be done by creating a malicious token T that does not compute the permutation
F correctly, but computes another function F ′ which maps multiple values to the same value or
even depends on the history of values seen from B.

Although Problem 2 does not affect the privacy of B’s input, the correctness of B’s output is no
longer guaranteed. In many application scenarios this is not a problem, as a malicious A could
also provide wrong inputs to the computation. However, a malicious token T could also compute
a completely different function which does not correspond to set intersection at all: For example,
a malicious T could output random values once it has obtained a value yi = 0. In this case, the
protocol computes some set Z (X∩Y if 0 ∈ Y , and X∩Y otherwise. As another example, assume
that A changes the function implemented in the token to map all people whose family name is
“Smith” to the same value. Then it can force the computed functionality to show an intersection
whenever B’s input contains a person with that family name.

Protocol. We extend the protocol of Fig. 2 and adapt the oblivious transfer protocol of [Kol10]
to the set intersection scenario. We will therefore obtain both input privacy against malicious A
and correctness against a covert A in the covert sense: A can actually succeed in violating the
correctness of B’s output with non-negligible probability but at the same time B can detect the
cheating behavior of A with probability 1/2. The update of the protocol goes as follows: The basic
idea is to let T compute two answers (using two different keys K,KT), where B can verify the
correctness of one answer (B obtains one key KT from A) without T knowing which one is verified.
For this, B randomly chooses and sends to A a test value rT and a distinct value r. Then, B obtains
the test key KT = Fk(rT) from A, whereas the other key K = Fk(r) remains unknown to B (to
ensure this, A checks that rT 6= r). Afterwards, B sends (r, rT) to T in random order such that T
can derive K,KT without knowing which of them is known to B. Then, for each element yj ∈ Y ,
B obtains ȳj = FK(yj) and ȳTj = FKT (yj) from T (after removing the pads pj and pTj as in the

protocol of Fig. 2). As B knows the test key KT it can test the correctness of ȳTj , whereas T can

only guess whether to cheat on ȳj or ȳTj . Finally, B computes the intersection from X̄ and Ȳ as
before.

The overall protocol shown in Fig. 3 provides A with input privacy against a malicious B, which
cannot break into the token, and provides B with input privacy (Problem 1) against a malicious
A and T and output correctness against a covert A and T (Problem 2).

Theorem 2. If F is a SPRP and f is a PRF, then the protocol depicted in Fig. 3:

1. securely evaluates F∩(X,Y) w.r.t. a malicious B that cannot break into T ;
2. securely evaluates F∩(X,Y) w.r.t. a covert A with deterrence factor ε = 1/2;

Secure Set Intersection with Untrusted Hardware Tokens 9

Setup Phase:

A
X = {x1, . . . , xnA}

B
Y = {y1, . . . , ynB}

k, s, sT ∈R D
init T : k, s, sT , nB T

∀j ∈ {1, .., nB} : pj = fs(j)
ȳ�

j = FK(yj) ⊕ pj

pT
j = fsT (j)

ȳ�T
j = FKT (yj) ⊕ pT

j

yj

(ȳ�
j , ȳ

�T
j)

Online Phase:

r
?

�= rT

KT = Fk(rT)
K = Fk(r)
X̄ = {FK(x)}x∈X

T

X̄, KT

r, rT ∈R D, r �= rT
r, rT

b ∈R {0, 1}
if b = 1: flip order of (r, rT) (r, rT)

K = Fk(r)
KT = Fk(rT)

if b = 1: flip order of (ȳ�
j , ȳ

�T
j)

done invalidate k
pj = fs(j)
pT

j = fsT (j)
if b = 1: flip order of (pj , p

T
j)

ȳT
j = ȳ�T

j ⊕ pT
j

?
= FKT (yj)

ȳj = ȳ�
j ⊕ pj

X ∩ Y = {yj |ȳj ∈ X̄}

afterwards

(pj , p
T
j)

Fig. 3. Set Intersection Protocol with Privacy of B’s Input and (Covert) Correctness of B’s Output when
T is not trusted by B, and Privacy of A’s input when A trusts T .

3. securely evaluates F∩(X,Y) when both parties trust the token.

B’s input is still (unconditionally) private even w.r.t. maliciousA, as in Property 2 of Theorem 1.

Proof (Sketch). To prove Theorem 2 we consider each property individually.

Malicious B that cannot break into T . We show an ideal world adversary BI . This adversary BI
internally runs B simulating also T ’s answers. BI sends to B a random vector of messages X̄ and
a random key KT . When simulating T ’s answers before done, BI plays honestly when test queries
are performed (i.e., using KT for the test queries along with the pseudorandom function indexed
by sT) and sending random messages otherwise, as already done in the proof of Theorem 1. When
message done has been received, BI plays in the ideal world the input extracted from the queries
received by T and gets back the intersection Z. Here BI proceeds by computing values pTj honestly,
but adaptively computing all final pj values so that the view of B will still be computationally
indistinguishable, precisely as in the proof of Theorem 1.

Note that, since A checks that r 6= rT , the pseudorandom keys K and KT are computationally
independent, and can be essentially replaced by independent random keys. A straightforward hybrid
game shows that by the pseudorandomness of F this does not change B’s success probability
significantly.

Covert A. Informally, the privacy of B’s input is preserved as A does not obtain any message from
B besides the random values r, rT . The same argument which has been applied already in the proof
of Theorem 1 about protecting B’s input from a malicious sender, applies here as well. The more
interesting difference however consists now in proving correctness of B’s output in the covert sense:
showing that a success of A in violating the correctness of B’s output can be detected by B with
probability ε = 1/2, and this is achieved through the cut-and-choose construction of [Kol10].

To formally prove the correctness of B’s output we build a simulator Sim which plays as an
honest B against adversaries AdvA and AdvT who control A and T , respectively. As the token is
not necessarily honest and hence a cheating AdvA does not need to initialize T at all, Sim cannot
learn the token’s keys k, s, sT from the initialization message sent from AdvA to AdvT . Instead,
Sim determines whether the adversary cheats in the protocol as follows: Sim obtains both opening
keys KT and K from AdvA, by rewinding AdvA and swapping the order of (r, rT). Afterwards, Sim

10 M. Fischlin, B. Pinkas, A.-R. Sadeghi, T. Schneider, I. Visconti

can verify whether both values ȳj , ȳ
T
j received from AdvT are correct. If AdvT tried to cheat (e.g.,

if the check of ȳTj failed), Sim catches T in doing so and issues the cheat instruction. Sim aborts
in this case (losing any correctness guarantee in case the cheat is not announced). Otherwise, Sim
continues to play as honest B and extracts A’s inputs from X̄ using K. Note that Sim simulates
the ideal view of a covert A with deterrence factor ε = 1/2, because for any run in which Sim
does not receive both keys, B would detect cheating with probability 1/2 in the actual protocol,
in which case it too aborts.

A and B trust the token. We now prove that when the token T is trusted, the protocol actually
realizes the set intersection functionality (i.e., both input privacy in the simulation-based sense
and output correctness are achieved). The proof follows closely the one of Theorem 1, indeed since
T is honest, both A’s and B’s input can be extracted by receiving the queries to T , moreover there
is no issue of correctness since T never deviates from the protocol. The only issue to mention is
that a malicious A could play a wrong third message, sending a wrong KT . Therefore, the ideal
world simulator AI will first check that A’s message is well formed playing as honest B, and only
in case honest B would have obtained the output, AI forwards the extracted input to the ideal
functionality. ut

Efficiency and amplifying deterrence factor. Overall, the protocol in Fig. 3 approximately
doubles the computation performed by T and the communication between B and T compared to
the protocol in Fig. 2. The hardware requirements for the token are the same.

In analogy to [Kol10], the deterrence factor ε can be increased by using n test elements rTi for
which B obtains the corresponding test keys KT

i from A. Now, T can only successfully guess the
key on which to cheat with probability p = 1

n+1 s.t. ε = 1 − p is polynomially close to 1 in n.
Obviously this is a tradeoff between deterrence factor and efficiency.

6 Only One Token Trusted: Privacy of A’s Input

Model. In this section we extend the model of §4 so that not only B does not trust the tokens
issued by A, but also B is allowed to collude with all but one hardware manufacturer without A
knowing which one. We show how to detect cheating in this model.

Problem 3 (B breaks into T to break privacy of A’s inputs). In the protocols so far, a malicious B
who can break into T (e.g., by a successful attack or by colluding with M who builds a trapdoor
for B into T) can obtain k and invert F to recover A’s inputs from X̄.

Protocol. To address Problem 3, we extend the protocol of Fig. 3 to multiple tokens as shown in
Fig. 4: Instead of using one token, A uses two hardware tokens T1 and T2 manufactured by M1

and M2, respectively. Then, A embeds into each token Ti a different random key and runs the
protocol using the sequential composition FK′ = FK2 ◦ FK1 instead of FK , i.e., B communicates
first with T1 and afterwards with T2. As long as at least one token is resistant against B’s attacks,
B cannot invert FK′ and hence cannot recover A’s inputs.

Theorem 3. If F is a SPRP and f is a PRF, then the protocol depicted in Fig. 4:

1. securely evaluates F∩(X,Y) w.r.t. a malicious B that cannot break into all but one token Ti;
2. securely evaluates F∩(X,Y) w.r.t. a covert A with deterrence factor ε = 1/2;
3. securely evaluates F∩(X,Y) when both parties can trust all tokens.

Proof (Sketch). The proof of Theorem 3 follows similarly to that of Theorem 2, but using multiple
tokens where B can break into all but one.

Malicious B that can break into all but one token Ti. Assume that B corrupts token T1 and
thus learns k1, s1, and sT1 . Then security for A follows as in the proof of Theorem 2 from the
trustworthiness of T2, only that we consider the injectively transformed inputs through Fk1

(·).
Analogously, if B corrupts T2 then security follows as before, because the outer function is easy to
simulate.

Secure Set Intersection with Untrusted Hardware Tokens 11

X ∩ Y = {yj |ȳ2,j ∈ X̄}

r
?

�= rT

KT
i = Fki

(rT)
Ki = Fki(r)
X̄ = {FK2(FK1(x))}x∈X

Online Phase:

Ti

r, rT ∈R D, r �= rT
r, rT

X̄, KT
1 , KT

2
b ∈R {0, 1}
if b = 1: flip order of (r, rT)
for i ∈ {1, 2}: (r, rT)

Ki = Fki(r)
KT

i = Fki(r
T)

Setup Phase:

A
X = {x1, . . . , xnA}

B
Y = {y1, . . . , ynB}

for i ∈ {1, 2}:
ki, si, s

T
i ∈R D

init Ti: ki, si, s
T
i , nB T1, T2

∀j ∈ {1, .., nB} :

pi,j = fsi(j)
ȳ�

i,j = FKi(yi,j) ⊕ pi,j

pT
i,j = fsT

i
(j)

ȳ�T
i,j = FKT

i
(yi,j) ⊕ pT

i,j

yi,j

(ȳ�
i,j , ȳ

�T
i,j)if b = 1: flip order of (ȳ�

i,j , ȳ
�T
i,j)

yi,j =

�
yj if i = 1

ȳi−1,j else

afterwards done invalidate ki

pi,j = fsi(j)
pT

i,j = fsT
i
(j)(pi,j , p

T
i,j)if b = 1: flip order of (pi,j , p

T
i,j)

ȳT
i,j = ȳ�T

i,j ⊕ pT
i,j

?
= FKT

i
(yi,j)

ȳi,j = ȳ�
i,j ⊕ pi,j

Fig. 4. Set Intersection Protocol with Privacy of B’s Inputs, (Covert) Correctness of B’s Output and
Privacy of A’s Inputs when A trusts at least one Token.

Covert A. The only message A obtains from B are the random values r, rT which do not depend on
B’s inputs, and this proves B’s input privacy. For correctness of B’s output, we observe that only
one token can cheat while the other behaves correctly such that the probability of being caught
remains 1/2. Alternatively, the two tokens could run a combined cheating strategy: token T1 which
is queried first can only guess on which of the two values to cheat without being detected with
probability 1/2. In case cheating is not detected, T1 can transfer information on which value it
cheated successfully to T2 in the value ȳ1,j . However, the combined cheating strategy will still be
caught with probability at least 1/2.

A and B trust all tokens. In this case the protocol realizes the set intersection functionalities (i.e.,
both input privacy in the simulation-based sense and output correctness are achieved). The proof
is similar to that of Theorem 2. ut

Multiple tokens and efficiency. The protocol in Fig. 4 can be generalized to n ≥ 1 tokens
T1, . . . , Tn manufactured by M1, . . . ,Mn, where a malicious B is able to break all but one token.
For n = 1, the protocol is equivalent to the protocol of Fig. 3, where B cannot break into the single
token. With n tokens, the protocol in Fig. 4 is essentially a n-times repetition of the protocol in
Fig. 3.

7 Conclusion

In this paper we revisited the problem of designing practical and secure set intersection proto-
cols using tamper-proof hardware tokens that have limited computational capabilities (symmetric
cryptography only) and constant storage. We discussed the shortcomings of the models based on
fully trusted tokens, and focused on the recent protocol proposed by Hazay and Lindell [HL08a].
The original protocol of [HL08a] is “truly practical” with respect to efficiency and uses only one
token. Nevertheless, it provides no security guarantees if the token is not trusted by one of the
parties. In contrast, our protocols are designed in a stronger adversary model where the token is

12 M. Fischlin, B. Pinkas, A.-R. Sadeghi, T. Schneider, I. Visconti

not trusted by all involved parties. Moreover, our protocols are non-interactive to avoid a feedback
covert channel. Hazay and Lindell claim security in the Universal Composability model, while
we can only guarantee privacy against malicious adversaries and correctness against covert ad-
versaries, however, in case of fully trusted token(s), we provide the same security properties as
Hazay and Lindell. We propose several protocols in different adversary models as summarized in
Table 1; their communication complexity is similar (or even lower for Fig. 2) and the computation
complexity is only slightly (by a small constant factor) higher than that of the original protocol.
The computational and storage requirements on the token are the same.

Our protocol in Fig. 2 guarantees privacy of B’s inputs against malicious A and T (++), but no
correctness guarantees for B’s outputs in this case. The protocol in Fig. 3 additionally guarantees
correctness of B’s output against covert adversaries (+).

Protecting against the case where B is able to break tamper-proofness of all but one token is
possible as well as shown in Fig. 4, but less practical as multiple tokens are required.

Table 1. Achieved Properties of Set Intersection Protocols with Untrusted Hardware Tokens

Protocol Practicality #Tokens
B’s Privacy B’s Correctness A’s Privacy
(Problem 1) (Problem 2) (Problem 3)

[HL08a] (Fig. 1) ++ 1 - - -

Fig. 2 + 1 ++ - -

Fig. 3 + 1 ++ + -

Fig. 4 - n ++ + ++

Acknowledgments. The work described in this paper was supported in part by the European
Commission through the ICT program under contract 238811 UNIQUE, 216676 ECRYPT II,
216499 CACE, and 215270 FRONTS. The first author was supported by an Emmy Noether Grant
Fi 940/2-1 of the German Research Foundation (DFG) and by CASED (www.cased.de). The
second author was supported by the SFEROT project of the European Research Council. The last
author was also supported in part by the MIUR Project PRIN “PEPPER: Privacy E Protezione
di dati PERsonali” (prot. 2008SY2PH4).

References

ADT10. G. Ateniese, E. De Cristofaro, and G. Tsudik. (If) size matters: Size-hiding private set inter-
section. Cryptology ePrint Archive, Report 2010/220, 2010. http://eprint.iacr.org/.

AL07. Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic
adversaries. In TCC’07, volume 4392 of LNCS, pages 137–156. Springer, 2007.

BCS08. E. Biham, Y. Carmeli, and A. Shamir. Bug attacks. In CRYPTO’08, volume 5157 of LNCS,
pages 221–240. Springer, 2008.

Can01. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
FOCS’01, pages 136–145, 2001.

CGS08. N. Chandran, V. Goyal, and A. Sahai. New constructions for UC secure computation using
tamper-proof hardware. In EUROCRYPT’08, volume 4965 of LNCS, pages 545–562. Springer,
2008.

DKT10. E. De Cristofaro, J. Kim, and G. Tsudik. Linear-complexity private set intersection protocols
secure in malicious model. In ASIACRYPT’10, volume 6477 of LNCS, 2010.

DNW09. I. Damg̊ard, J. B. Nielsen, and D. Wichs. Universally composable multiparty computation
with partially isolated parties. In TCC’09, volume 5444 of LNCS, pages 315–331. Springer,
2009.

DSMRY09. D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Efficient robust private set inter-
section. In ACNS’09, volume 5536 of LNCS, pages 125–142. Springer, 2009.

DT10. E. De Cristofaro and G. Tsudik. Practical private set intersection protocols with linear compu-
tational and bandwidth complexity. In FC’10, volume 6052 of LNCS, pages 143–159. Springer,
2010.

http://eprint.iacr.org/

Secure Set Intersection with Untrusted Hardware Tokens 13

FFP+06. M. Fort, F. C. Freiling, L. D. Penso, Z. Benenson, and D. Kesdogan. Trustedpals: Secure
multiparty computation implemented with smart cards. In ESORICS’06, volume 4189 of
LNCS, pages 34–48. Springer, 2006.

FNP04. M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. In
EUROCRYPT’04, volume 3027 of LNCS, pages 1–19. Springer, 2004.

FPS+11. M. Fischlin, B. Pinkas, A.-R. Sadeghi, T. Schneider, and I. Visconti. Secure set intersection
with untrusted hardware tokens. In CT-RSA’11, LNCS. Springer, February 14-18, 2011. To
appear.

GIS+10. V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. Founding cryptography on
tamper-proof hardware tokens. In TCC’10, volume 5978 of LNCS, pages 308–326. Springer,
2010.

GKR08. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. One-time programs. In CRYPTO’08, volume
5157 of LNCS, pages 39–56. Springer, 2008.

GT08. V. Gunupudi and S. Tate. Generalized non-interactive oblivious transfer using count-limited
objects with applications to secure mobile agents. In FC’08, volume 5143 of LNCS, pages
98–112. Springer, 2008.

HL08a. C. Hazay and Y. Lindell. Constructions of truly practical secure protocols using standard
smartcards. In CCS’08, pages 491–500. ACM, 2008.

HL08b. C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern matching with
security against malicious and covert adversaries. In TCC’08, volume 4948 of LNCS, pages
155–175. Springer, 2008.

HL10. C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern matching with
security against malicious and covert adversaries. JoC, 23(3):422–456, 07 2010.

HMU05. D. Hofheinz, J. Müller-Quade, and D. Unruh. Universally composable zero-knowledge argu-
ments and commitments from signature cards. In MoraviaCrypt’05, 2005.

HN10. C. Hazay and K. Nissim. Efficient set operations in the presence of malicious adversaries. In
PKC’10, volume 6056 of LNCS, pages 312–331. Springer, 2010.

IS05. A. Iliev and S. Smith. More efficient secure function evaluation using tiny trusted third
parties. Technical Report TR2005-551, Dartmouth College, Computer Science, Hanover, NH,
July 2005.

JKSS10a. K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Embedded SFE: Offloading
server and network using hardware tokens. In FC’10, volume 6052 of LNCS, pages 207–221.
Springer, 2010.

JKSS10b. K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Garbled circuits for leakage-
resilience: Hardware implementation and evaluation of one-time programs. In CHES’10, vol-
ume 6225 of LNCS, pages 383–397. Springer, 2010.

JL09. S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications to adaptive
OT and secure computation of set intersection. In TCC’09, volume 5444 of LNCS, pages 577–
594. Springer, 2009.

JL10. S. Jarecki and X. Liu. Fast secure computation of set intersection. In SCN’10, volume 6280
of LNCS, pages 253–270. Springer, 2010.

Kat07. J. Katz. Universally composable multi-party computation using tamper-proof hardware. In
EUROCRYPT’07, volume 4515 of LNCS, pages 115–128. Springer, 2007.

Kol10. V. Kolesnikov. Truly efficient string oblivious transfer using resettable tamper-proof tokens.
In TCC’10, volume 5978 of LNCS, pages 327–342. Springer, 2010.

KS05. L. Kissner and D. X. Song. Privacy-preserving set operations. In CRYPTO’05, volume 3621
of LNCS, pages 241–257. Springer, 2005.

MS08. T. Moran and G. Segev. David and Goliath commitments: UC computation for asymmetric
parties using tamper-proof hardware. In EUROCRYPT’08, volume 4965 of LNCS, pages
527–544. Springer, 2008.

SB94. H. P. Sharangpani and M. L. Barton. Statistical analysis of floating point flaw in the
PentiumTM processor. White paper, Intel Corporation, 1994.

Sec10. Heise Security. Hacker extracts crypto key from TPM chip, Feb 10, 2010.
http://www.h-online.com/security/news/item/Hacker-extracts-crypto-key-from-

TPM-chip-927077.html.
SS07. Y. Sang and H. Shen. Privacy preserving set intersection protocol secure against malicious

behaviors. In PDCAT’07, pages 461–468. IEEE Computer Society, 2007.
TCG09. Trusted Computing Group (TCG). TPM main specification. Main specification, Trusted

Computing Group, May 2009. http://www.trustedcomputinggroup.org.
TV09. S. Tate and R. Vishwanathan. Improving cut-and-choose in verifiable encryption and fair

exchange protocols using trusted computing technology. In DBSec’09, volume 5645 of LNCS,
pages 252–267. Springer, 2009.

http://www.h-online.com/security/news/item/Hacker-extracts-crypto-key-from-TPM-chip-927077.html
http://www.h-online.com/security/news/item/Hacker-extracts-crypto-key-from-TPM-chip-927077.html
http://www.trustedcomputinggroup.org

	Secure Set Intersection with Untrusted Hardware Tokens

