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Abstract. We revisit the definition of signatures of knowledge by Chase
and Lysanskaya (Crypto 2006) which correspond to regular signatures
but where the signer also proves knowledge of the secret key to the
public key through any signature. From a more abstract point of view,
the signer holds a secret witness w to a public NP statement x and
any signature to a message allows to extract w given some auxiliary
trapdoor information. Besides extractability, Chase and Lysanskaya also
demand a strong witness-hiding property, called simulatability, akin to
the zero-knowledge property of non-interactive proofs. They also show
that this property ensures anonymity for delegatable credentials or for
ring signatures, for example.
In this work here we discuss relaxed notions for simulatability and when
they are sufficient for applications. Namely, in one notion we forgo any
explicit witness-hiding notion, beyond some weak requirement that sig-
natures should not help to produce further signatures, analogously to
unforgeability of regular signature schemes. This notion suffices for ex-
ample for devising regular signature schemes with some additional proof-
of-possession (POP) or knowledge-of-secret-key (KOSK) property. Our
stronger notion resembles the witness-indistinguishability notion of proofs
of knowledge and can be used to build anonymous ring signatures. Be-
sides formal definitions we relate all notions and discuss constructions
and the aforementioned applications.

Keywords Signature of Knowledge, Anonymity, Credential, Ring Sig-
nature

1 Introduction

Signatures of knowledge (SoK), a term coined in [8], are widely used in cryp-
tography (e.g., [7,6,18,22]). The intuition behind SoKs is clear: besides basic
signature security, signatures of knowledge should also prove that the signer
“knows” the secret key. SoKs were, however, formalized only recently by Chase
and Lysyanskaya [12].

In [12], SoKs are abstractly considered, as primitives allowing users S to sign
messages such that if the signature verifies, a verifier knows that S has a witness
w to some NP statement x; no further information is leaked about w though.



Chase and Lysyanskaya give two equivalent formalizations: a simulation-based
definition in Canetti’s Universal Composition (UC) framework [10], following ap-
proaches for regular signature schemes [11], and a game-based definition —called
SimExt security— containing an extractability experiment akin to knowledge ex-
tractors [2] and a simulatability notion similar to non-interactive zero-knowledge
(NIZK) proofs [4].

Since SimExt security closely resembles the security of NIZK proofs of knowl-
edge (NIZKPoK), it is unsurprising that the construction in Chase and Lysyan-
skaya [12] is based on such proofs. The generality of this approach on the one
hand yields quite expensive solutions, deploying general NIZKPoKs, but on the
other hand also supports many applications. Two applications shown in [12] are
ring signatures, where signers prove knowledge of a secret key corresponding to
one of the public keys of the ring but without revealing its identity, and delegat-
able anonymous credentials, where zero-knowledge guarantees anonymity.

1.1 Relaxing the Notion of Signature of Knowledge

Reconsider SoK-based ring signatures. In this case simulatability as defined in
[12] yields very strong anonymity: the SoK is simulatable without any witness.
This is stronger than the security requirements of ring signatures, where only
the actual signer should be hard to identify. We may thus consider a switch to
the weaker notion of witness indistinguishability (WI) for SoKs, ensuring that
one cannot deduce which (valid) witness w was used to sign. This relaxation
thus allows for potentially more efficient solutions.

Consider furthermore simple digital signatures with key registration, where
(some) information about the secret key is shown. Such registration steps are
both common in practice [1,19], where one simply signs the public key to be reg-
istered, and often required in theory to prove security of protocols based on such
signature schemes [5,17,20]. The corresponding model is called the “knowledge
of secret keys” (KOSK) model and it implements some kind of proof of knowl-
edge. Extractability of SoKs combines theory with practice, because self-signed
public keys then mirror the KOSK model (though one can now extract with
each signature and does not need an extra registration step). However, ordinary
digital signatures usually do not require simulatability, but only unforgeability.

1.2 Our Contributions

We introduce two relaxed security notions for SoKs, following the NIZKPoK
approach of [12] and thus inheriting extractability; however simulatability no
longer holds. Instead, we transfer the definition of unforgeability from regular
signatures and introduce UnfExt (Unf orgeability & Extractability) security as
a minimal security level for SoKs. We augment this notion by adding witness
indistinguishability, deriving the stronger WIUnfExt security. The SimExt def-
inition of [12] is yet one step stronger, replacing witness indistinguishability by
simulatability (as [12] shows, SimExt security implies unforgeability). We relate



all three notions formally, showing a strict hierarchy, and also provide equivalent
definitions in the UC framework.1

We then instantiate our notions. Using a result about the security of Wa-
ters’ signature scheme [23] in the KOSK model [20], we easily get an Un-
fExt SoK (for a special NP relation). In fact, this scheme is trivially witness-
indistinguishable, too, as witnesses are unique. We next present a general con-
struction of WIUnfExt-secure SoKs for arbitrary NP statements based on gen-
eral assumptions. This construction relies on witness-indistinguishable proofs
of knowledge (a.k.a. ZAPs [13]), which are a relaxation of non-interactive zero
knowledge proofs; however, our construction does in fact achieve SimExt security
in the definition of Chase and Lysyanskaya [12]. Our third construction achieves
UnfExt security by signing message m on behalf of an extension of the original
statement-witness pair.

We finally address the aforementioned applications, especially ring signa-
tures. We discuss that adding witness indistinguishability reflects strong anonymity
of ring signatures. We use anonymity and unforgeability notions from the frame-
work for ring signatures of Bender et al. [3].

2 Signatures of Knowledge

Signatures of knowledge (SoKs) are protocols between a signer S, which signs
messages m ∈M, and a verifier V checking signature validity.

We identify NP languages L with arbitrary, but fixed relationsRL, i.e., x ∈ L
iff there exists a polynomial-size witness w such that (x,w) ∈ RL. Jumping
ahead, we also require that it is hard, given some x, to compute a valid witness w
(we formalize this w.r.t. an instance generator, as shown in section 3). We assume
efficient (i.e., polynomial in the length |x| of x) verification of (x,w) ∈ RL; denote
byWL(x) the possibly empty set {w : (x,w) ∈ RL} of witnesses to x. Note that
WL(x) formally depends on RL, not on L. Sets S = M, L,RL,WL, . . . are
usually indexed by the security parameter k ∈ N and Sk denotes the strings
s ∈ S of polynomial complexity in k (for some fixed polynomial).

Definition 1 (Signature of Knowledge). A Signature of Knowledge (SoK)
for relation RL is a tuple of efficient algorithms SoK = (Setup,Sign,Vf) where:

par← Setup(1k). For a security parameter k, Setup outputs public parameters
par. We assume that k is efficiently recoverable from par.

σ ← Sign(m,x,w, par). For a message m ∈ Mk, statement x ∈ Lk, witness
w ∈ WL

k (x), and parameters par (generated for k), Sign outputs SoK σ.
b← Vf(σ,m, x, par). On input an SoK σ, a message m, a statement x, and

parameters par, the algorithm Vf outputs bit b indicating the validity of the
SoK (b = 1 for valid σ).

1 Note that a work by Zou and Sun [15], advertising to discuss stronger anonymity for
signatures of knowledge, rather shows subliminal channels in some group signature
schemes through malicious signers, and is therefore not discussed further here.



We require the usual correctness property: for any x ∈ Lk, any w ∈ WL
k (x), and

any m ∈Mk, it holds that,

Prob
[

par← Setup(1k);σ ← Sign(m,x,w, par) : Vf(σ,m, x, par) = 1
]
≈ 1,

i.e., is negligibly close to 1 (as a function of k).

3 Security Notions for SoKs

We first briefly describe SimExt security as in [12] and then introduce UnfExt
security as a relaxation thereof. We also explain the relation between the notions
and introduce WIUnfExt security as another flavor of SoK security. We then
show equivalent definitions in Canetti’s universal composition framework.

3.1 Simulatability, Unforgeability, and Witness Indistinguishability

In [12], SimExt security considers auxiliary inputs given to the adversary. We
omit such inputs for simplicity and instead use efficient algorithms, covering
both uniform and non-uniform (with auxiliary input) computational models, as
needed. Furthermore SoKs are universal in [12], using (the machine verifying)
the relation RL as input. Here we define SoK for specific fixed RL, which is
handier for instantiations, e.g., for specific SoK for discrete-log based relations.

Definition 2 (SimExt Security for SoK [12]). The SoK scheme SoK =
(Setup,Sign,Vf) is SimExt secure for RL iff it is:

Simulatable. There exists an efficient simulator Sim = (SimSetup,SimSign)
such that for all efficient adversaries A it holds that

∣∣∣∣Prob
[

(par, τ)← SimSetup(1k) : d← ASim(par,τ,·,·,·)(par) : d = 1
]

−Prob
[

par← Setup(1k); d← ASign(par,·,·,·)(par) : d = 1
] ∣∣∣∣ ≈ 0,

where, on input (par, τ,m, x,w), Sim checks that RL(x,w) = 1; if so, it
returns SimSign(par, τ,m, x), otherwise it ouputs ⊥.

Extractable. There additionally exists an efficient extractor Ext such that for
all efficient A,

Prob [(par, τ)← SimSetup(1k); (x,m, σ)← ASim(par,τ,·,·,·)(par);

w ← Ext(par, τ, x,m, σ) :

(x,w) ∈ RLk ∨ (m,x) ∈ Q ∨ Vf(σ,m, x, par) = 0] ≈ 1

Here, Q is the list of (m,x) queries that A has made to Sim.

Note that Simulatability guarantees that using Sign or SimSign is essentially
equivalent for extractability. Simulatability is a strong requirement for SoKs,



resembling zero-knowledge simulation for non-interactive proofs. Some witness-
“protection” is necessary, however: we cannot restrict SoK security to just cor-
rectness and extractability, as this allows for insecure SoKs. Indeed, consider an
SoK scheme outputting w||m for each m, and where Vf checks the validity of
w. This SoK is correct and trivially extractable. However, any adversary can
create a SoK on fresh m∗, either by extracting a valid w from queried SoKs, or
by modifying queried SoKs such that the new SoK verifies for m∗.

Thus, a minimal security of SoKs additionally requires the basic (existential)
unforgeability under adaptive chosen message attacks of common signatures.
This requires that computing a witness w from a statement x is infeasible, else
unforgeability cannot hold. We capture this by introducing an instance genera-
tor IGen outputting (x,w) ∈ RL accordingly. Consider the example where IGen
outputs a group element x and its discrete logarithm w (w.r.t. some group gen-
erator). We say that IGen is a hard-instance generator if, in addition, no efficient
algorithm can, on input x for (x,w)← IGen(1k), output some w∗ ∈ WL(x) with
non-negligible probability.

We now define UnfExt SoKs in the notation of [12]. To connect Unforgeability
and Extractability we assume that the parameters in the two experiments are
indistinguishable (else the notions could be perfectly independent):

Definition 3 (UnfExt Security). The SoK SoK = (Setup,Sign,Vf) is Unf-
Ext secure for RL and IGen iff it is:

Extractable. There exists an efficient extractor Extr = (ExtSetup,Ext) such
that for any efficient A

Prob[(par, τ)← ExtSetup(1k); (x,m, σ)← A(par);

w∗ ← Ext(par, τ, x,m, σ) : (x,w∗) ∈ RL ∨ Vf(σ,m, x, par) = 0] ≈ 1.

Unforgeable. For all efficient A,

Prob[(x,w)← IGen(1k); par← Setup(1k);

(m,σ)← ASign(·,x,w,par)(x, par) : m 6∈ Q ∧ Vf(σ,m, x, par) = 1] ≈ 0

Here, the list Q contains queries m to Sign (note that the oracle is initial-
ized with the generated x and w, thus these parameters are not part of the
queries).

Parameter Indistinguishability. The output par in (par, τ) ← ExtSetup(1k)
is computationally indistinguishable from the output par← Setup(1k).

Note that the extractability notion in [12] gives the adversary access to a
simulated signing oracle, allowing the adversary to see simulated signatures for
arbitrary messages (however, Ext need not extract witnesses from simulated sig-
natures). Since we do not consider simulated signatures in our definition, we
drop the oracle access and require extractability for any message.

As aforesaid, unforgeability in the UnfExt notion is equivalent to regular
chosen-message unforgeability for digital signatures. As a first sanity check, note



that our trivial example where the SoK included w is not unforgeable, as A can
insert any fresh message into a forgery so that it verifies.

We show later that UnfExt security is strictly weaker than SimExt secu-
rity. Indeed, as aforementioned, UnfExt SoKs may leak some information about
the witness w, but not to the extent that it allows forgeries. An intermediate
security level between UnfExt and SimExt security combines UnfExt security
with witness indistinguishability (WI). As we show after the definition, we still
need unforgeability to exclude trivial examples (in particular, WI does not imply
unforgeability). We formalize WIUnfExt security as follows:

Definition 4 (WIUnfExt Security). The SoK SoK = (Setup,Sign,Vf) is
WIUnfExt secure for RL and IGen iff it is:

UnfExt. The scheme is UnfExt scheme and, in addition,
Witness Indistinguishable. For all x ∈ Lk, all w0, w1 ∈ WL

k (x), and all
efficient A,

Prob[par← Setup(1k); b← {0, 1};
d← ASign(·,x,wb,par)(x,w0, w1, par) : d = b] ≈ 1

2

Note that we demand witness indistinguishability even if A knows w0, w1. We
also show that WI does not imply unforgeability. Consider a WIUnfExt SoK and
change it into SoK′ such that: Setup′ = Setup; on input m algorithm Sign′ runs
Sign on message m, then runs Sign on message 0 (the all-zero string of some fixed
length), and outputs (Sign(m),Sign(0)) as its signature; and finally on inputs
m, (σm, σ0), the verifier runs Vf on inputs (m,σm) and then on (0, σ0). The new
SoK′ is still WI and extractable, but an adversaryA against unforgeability simply
queries Sign′ on input m 6= 0, receives (σm, σ0), and then outputs 0, (σ0, σ0) as
its forgery.

An alternative SoK security definition could use witness-hiding (WH) proofs
of knowledge [14] where it is infeasible to recover the entire witness. However,
unforgeability already implies WH: if a signature of knowledge is not WH, then
it is also not unforgeable (the adversary can simply re-use the recovered witness
w to sign a fresh message m∗).

3.2 Relationships of Security Notions

The strict hierarchy of SimExt, UnfExt, and WIUnfExt security appears in
Fig. 1. Formally we have:

Proposition 1 (Relationships of Notions). For any RL and any hard-instance
generator IGen, (1) any SimExt secure SoK for RL is also WIUnfExt secure for
RL and IGen, and (2) any WIUnfExt secure SoK for RL and IGen is also UnfExt
secure. Furthermore, (3) if there exists an UnfExt secure SoK for some RL and
IGen, then there exists an SoK for some RL′

and IGen′ that is UnfExt but not
WIUnfExt; and (4) if there exists an WIUnfExt SoK for some RL and IGen, and
if one-way permutations (OWP) exist, then there exists an SoK for some RL′

and IGen′ which is WIUnfExt but not SimExt.



Proof. We prove claim (1). Consider a SimExt secure SoK= (Setup, Sign, Vf).
SimExt and UnfExt correctness are identical. Extractability follows since the
definitions are almost the same; however, as aforesaid A uses SimSign in SimExt
security, whereas in WIUnfExt security, A has no oracle access – though it may
still simulate Sign for valid pairs (x,w). By Simulatability, A cannot distinguish
between SimSign and Sign; thus we can interchange them with a negligible change
in the success probability. Unforgeability follows as described in [12] from the
fact that IGen is a hard-instance generator (despite minor technical differences).

Indistinguishability of the parameters is a weaker requirement than simulata-
bility. Finally, we prove witness indistinguishability. For this, we replace Setup
by SimSetup and Sign by SimSign in the original WI game (using the trapdoor
τ output by SimSetup). In the modified game, A cannot distinguish between
SoKs for the two witnesses, as they are generated independently of the witness.
By Simulability, using Sign and SimSign are indistinguishable; thus the success
probability in the modified game and that of the WI game are only negligibly
different. Thus the SimExt secure SoK is also WIUnfExt secure.

Statement (2) follows by definition of UnfExt and WIUnfExt security.
For claim (3) consider UnfExt secure SoK= (Setup, Sign, Vf) forRL and IGen.

We construct SoK∗ = (Setup∗,Sign∗,Vf∗) forRL′
and IGen′, defined for witnesses

W= (w||b) (for bit b) and statements X = x. Then (X,W) ∈ RL′
iff (x,w) ∈ RL,

and IGen′ samples (X,W) by running IGen and appending a random bit to w.
Algorithms Setup∗ and Vf∗ run Setup, resp. Vf as black boxes, forwarding the
output. Algorithm Sign∗ on input W runs Sign as a black box, appending b
from W to the output SoK. Clearly SoK∗ inherits correctness, extractability,
parameter indistinguishability, and unforgeability from SoK. Yet SoK∗ is not
WI, as signatures leak the added bit for witnesses w||0 and w||1.

In claim (4) we assume the existence of a OWP f . Consider WIUnfExt secure
SoK. We construct SoK′ that is still WIUnfExt secure, but not SimExt secure.
For each statement x, choose random r and set X = x||f(r). All W ∈ WL(X)
also include r, i.e., W = w||r (this later ensures WI). It is also easy to derive
IGen′ from IGen as in Claim (3). Algorithm Setup′ of SoK′ runs Setup from SoK,
forwarding the output par. Algorithm Sign′ of SoK′ first runs Sign from SoK to
get SoK σ. The output of Sign′ is σ||r. Verification by Vf ′ runs Vf from SoK,
then checks that f(r) for the r in the SoK is the one featured in X.

For the analysis, note that SoK′ is still WIUnfExt secure. Completeness,
extractability, and indistinguishability of the parameters are trivial. Forging SoK’
also involves forging SoK. Finally, WI is preserved as r is the same for all w ∈
WL(x) for each x. However, SoK′ is not SimExt secure under the one-wayness
of f . In particular, it is not simulatable. Assume that there exists a simulator
Sim that simulates Sign’ to A. The success probability is taken over all x; if Sim
is successful, then we can build an inverter B against f . Indeed, Sim receives
for every statement x the corresponding f(r) for random r. If Sim simulates
Sign successfully, it outputs the correct value r (else the SoK does not verify).
Algorithm B runs Sim, outputting r as its pre-image, and is as successful as Sim.

ut



Fig. 1. Security of SoKs: arrows refer to implications, hatched arrows to separations;
the dotted arrow indicates that the separation relies on an additional assumption. The
figure also shows potential applications of the different notions.

3.3 Universally Composable Versions

In the Universal Composability (UC) framework due to Canetti [9], protocols
are associated with ideal functionalities, describing permissible leakage of data
in the protocol run. Several parties run the protocol, receiving input from a
so-called environment Z. A protocol π UC-realizes functionality F if Z cannot
distinguish between a “real world” where parties run π around an adversary
who gets inputs from, and outputs to Z, and an “ideal world”, where parties
run F around a simulator Sim, also outputting to Z. The adversary may corrupt
parties, thus controlling them; these parties are marked down as corrupt. In the
UC framework, π is secure if there exists a Sim such that for all Z and for all
adversaries, Z cannot distinguish between the two worlds.

Chase and Lysyanskaya [12] give two equivalent definitions of SoKs. The first
is UC-based, for a modification of the tweaked ideal signature functionality—[11].
For more details regarding ideal functionalities for signatures, refer to [12]. The
UC definition for SoKs is equivalent to SimExt security, thus strictly stronger
than UnfExt security. We show how to modify this definition to capture UnfExt
security. The main difference is that we do not require simulatability for our
signing algorithm. In particular, we use Sign and not SimSign for SoK generation.

Our ideal functionality (Figure 2) resembles the one in [12], but is simpler,
as it is parameterized by RL, whereas [12] use a universal functionality and put
the (code of the machine verifying the) RL into session identities sid.

Note that as opposed to [12] the simulator is not among the algorithm de-
scriptions. This follows our idea that full simulatability is not required for SoK.
Note also that SoKs require some common parameter setup preceding it. As in
[12], we use the CRS model and corresponding FDCRS functionality, where D is
a party-chosen distribution of the parameters. If party P forwards (CRS, sid) to
FDCRS, the functionality checks that no value v is associated with this sid; else, it
chooses v randomly according to D and stores it, returning (CRS, sid, v) to both
P and to the adversary.

For SoKs, D is the distribution of the parameters output by Setup(1k). We
run SoK= (Setup, Sign, Vf) in a hybrid CRS environment and denote the re-



FSOK(RL): signature of knowledge for a witness w with (x,w) ∈ RL.

Setup. Upon receiving (Setup, sid) from party P , check that this is the
first time a Setup request is made with parameter sid; if not, ignore,
else (Setup, sid) is forwarded to the adversary, which eventually returns
(Algorithms, sid, x,Vf, Sign,Ext) to the functionality. Here Sign and Ext de-
scribe probabilistic polynomial time (PPT) algorithms (represented by PPT
Turing Machines), and Vf describes a deterministic polynomial time al-
gorithm. The algorithm descriptions and x are stored, and P receives
(Algorithms, sid, Sign,Vf).

Signature Generation. Upon receiving (Sign, sid,m) from P , run σ ← Sign(m)
and check that Vf(σ,m, x) = 1; if so, output (Signature, sid,m, σ) to P and
record (m,x, σ). Else, output (Completeness Error) to P and halt.

Signature Verification. Upon receiving (Verify, sid, σ,m, x′) from verifier V , if
(m,x′, σ′) is stored for some σ′, then output (Verified, sid, σ,m, x′,Vf(σ,m, x′))
to V . Else, if x′ = x and Vf(σ,m, x) = 1 but (m,x, σ) has not been stored yet,
output (Unforgeability Error) and halt. Else let w′ ← Ext(m,x, σ); if (w′, x) ∈
RL, output (Verified, sid, σ,m, x,Vf(σ,m, x)) to V . Else, if Vf(σ,m, x) = 0,
output (Verified, sid, σ,m, x, 0) to V . Else, output (Extraction Error) and halt.

Fig. 2. Signature of Knowledge Functionality

sulting protocol πSoK(RL, IGen). During each session of πSoK, every time party
P receives a (Setup, sid) message from the environment Z, sid is checked and P
queries FDCRS so as to get (CRS, par). The public par are stored by P and P also
generates (x,w) ← IGen(1k). Both values are then included in the descriptions
returned to Z as (Algorithms, sid,Sign(par, ·, x, w),Vf(par, ·, ·)).

If Z sends a request (Sign, sid,m) to party P , this party retrieves the stored
par and returns (Signature, sid,m, Sign(par,m, x, w)). If a verifier V receives re-
quest (Verify, sid, σ,m, x′) from Z, it returns (Verified, sid, σ,m, x′,Vf(par, σ,m, x′))
to Z.

Like in [12], we can prove the equivalence of the two definitions. In particular,
we formalize the following theorem.

Proposition 2 (Equivalence of Notions). Protocol πSoK(RL, IGen) UC-realizes
the functionality FSOK(RL) in the FDCRS hybrid model iff SoK is UnfExt secure
for RL and IGen.

The proof closely follows that of [12] and is omitted for space reasons. A UC
equivalence can also be extended to the notion of WIUnfExt security.

4 SoK Instantiation

In this section we recall Waters’ signature scheme [23] and show that it is UnfExt
secure; it is in fact also trivially WIUnfExt, as witnesses are unique. The latter
point is also discussed in [20] in the related KOSK model. We also describe a



universal construction based on general assumptions and for arbitrary relations,
which actually achieves the stronger SimExt security. We finally describe an
UnfExt secure construction where we sign messages m for extended statement-
witness pairs (x,w); an advantage here is that a single proof (ZAP) suffices for
every statement-witness pair, rather than a proof for each message.

4.1 Waters’ Signature Scheme

We construct UnfExt secure SoKs from Waters’ unforgeable pairing-based signa-
tures [23]. In particular, such signatures are already complete and unforgeable,
becoming extractable if we add some master information about the randomness
used for signature generation. We outline our construction and then consider its
security. Note that we slightly abuse notation here as the key pairs now depend
on the parameters, i.e., the relation depends on par; all results presented before
remain valid in this setting.

Let SigW = (SKGenW ,SSignW ,SVfW ) be the unforgeable signature scheme
due to Waters. We review this construction briefly before outlining our UnfExt
Secure SoK. In the schema due to Waters, the parameters (generated at Key
Generation) consist of: multiplicative groups G and GT ; a prime q; an element
g ∈ G of prime order q; and (the description of) a bilinear mapping ê.

Key Generation. For security parameter k, algorithm SKGenW runs an (ex-
ternal) generator G to generate parameters par = (G,GT , q, g, ê). The algo-
rithm then picks a random a← Zq and computes g1 := ga. Then it chooses
g2, u0, . . . , uk ← G. Finally, the algorithm outputs the public/private key-
pair (pk, sk) for pk= (par, g1, g2, u0, . . . , uk) and sk = ga2 .

Signature Generation. For message m ∈M and private key sk, the signing
algorithm SSignW parses m = m1 . . .mk for m1, . . . ,mk ∈ {0, 1} and com-

putes H(m) ← u0
∏k
i=1 u

mi
i . It then picks a random r ∈ Zq; the signature

output by SSign is σ = (ga2 ·H(m)r, gr).

Signature verification. For signature σ, message m, and public key pk, SVf
parses σ as (σ1, σ2) and outputs 1 iff. ê(g, σ1) = ê(σ2, H(m)) · ê(g1, g2).

This signature scheme is complete and existentially unforgeable under adap-
tive chosen message attacks under the CDH assumption (see [23]).

We turn this construction into an UnfExt secure SoK by including u0, . . . , uk
in the public parameters, thus allowing the simulator to extract the witness if
the discrete logs of u0, . . . , uk with respect to g are in the trapdoor informa-
tion generated by ExtSetup. This idea is outlined in the following. The public
parameters, besides parW = (G, GT , q, g, ê) now also contain u0, . . . , uk. To
generate x and w via IGen the values g2 and a are chosen as by SKGenW ;
g1 is set as g1 = ga; and witness w = sk = ga2 is given to the signer. The
statement is then x = (g, g1, g2) and we define the relation RL as follows:
(x,w) ∈ RL iff ê(g1, g2) = ê(g, w). If the values are generated honestly, we
note that ê(g1, g2) = ê(ga, g2) = ê(g, g2)a = ê(g, ga2 ) = ê(g, w).



SoK Setup. For security parameter k, the algorithm Setup generates parW =
(G,GT , q, g, ê) as in SigW and also chooses z0, . . . , zk ← Zq and then sets
ui = gzi for i = 0, . . . , k. Finally, Setup outputs par = (parW , u0, . . . , uk).

SoK Generation. For message m ∈ M, witness w = ga2 , statement x =
(g, ga, g2), and parameters par, the signing algorithm Sign runs SSignW and
outputs signature σ.

SoK verification. For signature σ, message m, statement x, and public pa-
rameters par, the algorithm Vf runs SVf outputting the bit b.

Theorem 1 (UnfExt Security). The signature of knowledge scheme SoK de-
fined above is UnfExt Secure under the CDH assumption.

Proof. We have to prove correctness, extractability, unforgeability, and parame-
ter indistinguishability. First note that correctness and unforgeability (for IGen
as described above) follow from the corresponding properties of Waters’ signa-
ture scheme. We now describe an extractor Extr= (ExtSetup, Ext) which, given
a valid signature σ outputs witness w. The algorithm ExtSetup runs Setup and
sets τ = (z0, . . . , zk). In particular, the public parameters have identical distri-
butions in both cases. For signature σ, message m, statement x, parameters par,
and trapdoor information τ , the algorithm Ext parses σ as (σ1, σ2), calculates

d = z0 +
∑k
i=1 zimi mod q and outputs w∗ = σ1σ

−d
2 . Note that, if the signature

verifies, we must have

ê(g, σ1) = ê(σ2, H(m)) · ê(g1, g2)

which can be rewritten as

ê(g1, g2) = ê(g, σ1) · ê(σ2, gd)−1 = ê(g, σ1σ
−d
2 ) = ê(g, w∗).

Hence, by definition of the witness relation, it holds that (x,w∗) ∈ RL. Thus,
extractability is also proved for this description of the extractor Extr. ut

Note that the scheme above is actually WIUnfExt since the witness is unique,
given x and par.

4.2 General Construction

By our results in Section 3.2 any SimExt signature of knowledge is WIUnfExt (if
finding witnesses for instances is hard). Theoretically thus, the general construc-
tion in [12] based on simulation-sound NIZKPoK is also WIUnfExt. We show
an alternative construction using the witness-indistinguishable proof systems for
any NP language, also called ZAPs [13]. The other ingredients are an IND-CCA
public-key encryption scheme (KGen,Enc,Dec) and a pseudorandom generator
G. For space reasons we merely sketch the construction and discuss its security.



Construction. Our idea is to add into par a public key pk of the encryption
scheme, a random string z of length 2k (whose purpose becomes clear later), and
a string parZAP for the ZAP. To sign message m with respect to witness w for x
let the signer encrypt the witness w together with m to C = Enc(pk, w||m) and
append a ZAP (with respect to parZAP) that C encrypts w||m for (x,w) ∈ RL
or that z is in the range of G for inputs of length k. We remark that we formally
require all witnesses w to be padded to have equal length; this is easy to imple-
ment via standard paddings as all witnesses of complexity k are polynomially
bounded. The verifier simply checks the validity of the ZAP.

Extractability. The extractability of this scheme can be realized by the decryp-
tion algorithm, relying on the fact that a random z is not in the range of G with
probability at least 1 − 2−k; thus, the validity of the ZAP implies that the en-
crypted witness is valid. Proving unforgeability and witness indistinguishability
is more sophisticated.

Unforgeability. For unforgeability consider an adversary against the original sig-
nature algorithm, being able to produce a valid SoK for a fresh message m with
non-negligible probability. As the ZAP is valid and z is not in the range of G with
overwhelming probability, running the decryption algorithm on the ciphertext in
the adversary’s forgery yields a valid witness w with non-negligible probability.
Note that we now consider an adversary’s success w.r.t. successful extraction of a
valid witness, not to a successful forgery. We can further condition on the adver-
sary not outputting a forgery for a previously seen ciphertext; such ciphertexts
cannot contain a fresh message.

Change the game slightly by using pseudorandom z = G(r) in par. By the
security of G the adversary’s success cannot drop significantly. In the next game
hop, the altered signing algorithm uses the preimage r to provide valid ZAPs;
by the WI of the ZAPs, this negligibly increases the success probability. In the
final game, instead of encrypting w in C the again modified signing process uses
0|w|||m. Note that the ZAP computation is not affected by this, and all wit-
ness have the same length. By the IND-CCA security of the encryption scheme,
replacing the encryptions of w||m by 0|w|||m, does not significantly change the
adversary’s probability of finding a forgery for a fresh message; this decrease is
easily detected by recovering the witness and message encapsulated in the ad-
versary’s forgery attempt (this has to work by IND-CCA and by message —thus
ciphertext— freshness). But now the signing oracle is independent of the actual
witness; thus the adversary essentially finds a valid witness w to x without help,
which is infeasible according to the security of the instance generator.

Parameter Indistinguishability. The public parameters have identical distribu-
tion in the actual scheme and the extractability experiment.

Witness Indistinguishability. Again here we can run any distinguisher on fake
parameters including a pseudorandom value z, encrypting Enc(pk, 0|wb|||m) in-
stead, and using the preimage of z to give a valid ZAP. As for unforgeability it



follows that the behavior of the distinguisher compared to the original signature
generation process (for either w0 or w1) cannot change significantly. But since
the resulting signatures are independent of b, it also follows that the original
signatures must be witness indistinguishable.

Simulatability. Actually this construction also achieves the stronger notion of
Simulatability. This can be seen from the proof of Witness Indistinguishability
and unforgeability, as essentially the initial game is reduced to a game where
the signature is independent of the witness. The proof for simulatability would
involve a SimSign procedure that does not use a valid witness at all and still
outputs a verifiable signature (by using a pseudorandom value z).

4.3 Embedding Witnesses

Both the construction in section 4.2 and the one in [12] instantiate SimExt
secure SoKs by encrypting the witness w and a message m, and giving a zero
knowledge proof (NIZK) that the encryption is correctly formed and that w
and the statement x for which the signature was created are in RL. This both
ensures extractability for w, and it “hides” w, such that the SoK is simulatable.
However, in this scheme the NIZK needs to be computed every time a signature
is generated, as a fresh m must be encrypted every time together with w.

In this section we show how embedding the witnesses into a larger set can
improve efficiency such that the proof only needs to be computed once. This,
however, undermines witness indistinguishability, which does not hold in gen-
eral, making the solution inapplicable e.g., to the case of ring signatures. In our
construction we again use ZAPs, an IND-CCA public-key encryption scheme
(KGen,Enc,Dec), a pseudorandom generator, but this time also an existentially
unforgeable signature scheme Sig = (SKGen,SSign,SVf).

Construction. We add into par the public key pkEnc of the encryption scheme, a
random string z of length 2k, and a string parZAP for the ZAP. The main idea
for signature generation is that instead of signing messages m for statement-
witness pairs (x,w) in the relation RL, we sign m with respect to an extended
witness W = (w, s, r) and an extended statement X = (x, pkSig, C, π), where π
is a ZAP (with respect to parZAP) that C = Enc(pk,W) is a correct encryption
of W with randomness r such that (x,w) ∈ RL, and s is the randomness which
made SKGen(1k) output pkSig, or that z is in the range of G for inputs of length
k. The signature of knowledge is generated as SSign(skSig,m). Given m and x
the verifier computes verifies the validity of the signature by using pkSig, and
then the validity of the ZAP.

Extractability of Original Witnesses. The extractability of this scheme follows as
in the previous section. Note that we extract from the proof for any X only the
part of the some witness W∗ which comprises a witness w and the randomness
s for SKGen; the randomness r for the ciphertext would only be extractable if
the encryption scheme were to support randomness recovery, i.e., the decryption
algorithm could also be used to derive the randomness r.



Unforgeability. A forgery (m,σ) of a SoK must be output for a fresh message
m such that σ verifies under the public key pkSig. This would straightforwardly
violate the unforgeability under the signature scheme, as we can simulate the
encryption and the ciphertext C and proof π without knowledge of the random-
ness s resp. the signing key skSig with the same technique as in the construction
in the previous section.

Parameter Indistinguishability. The parameters for the extractor and the one in
the actual scheme are identically distributed.

5 Application Scenarios

SoKs allow users to sign messages on behalf of any NP statement x; in particu-
lar, if there exist more witnesses corresponding to this statement, SoKs naturally
provide ring signatures. In this context, the SimExt security of SoKs due to [12]
actually guarantees that signatures are simulatable without the witness. How-
ever, with our definition of Witness Indistinguishable UnfExt SoKs we ensure
that witnesses are merely indistinguishable.

Below we show applications of SoKs to regular digital signatures and ring
signatures.

5.1 Digital Signatures

SoKs can be easily used as simple signature schemes as described in e.g. [16] as
shown in construction 2.

Construction 2. Let SoK= (Setup, Sign, Vf) be a UnfExt SoK scheme for a
relation RL. Define the signature scheme Sig= (SKGen, SSign, SVf) as follows,
for some security parameter k.

Key Generation. On input k, algorithm SKGen first runs Setup(1k) and out-
puts par then it runs the instance generator IGen for SoK on input par to
obtain a statement/witness keypair (x,w) such that (x,w) ∈ RL. SKGen
outputs (pk = (x, par), sk = (w, x, par)).

Signature Generation. On input message m and sk = (w, x, par), algorithm
SSign runs Sign(m,w, x, par) and outputs the resulting SoK σ as its signa-
ture.

Signature Verification. On input signature σ, message m, and pk = (x, par),
algorithm SVf runs Vf(σ,m, x, par) and outputs the resulting bit b.

The security of digital signatures as in [16] is defined in terms of correct-
ness and existential unforgeability against chosen message attacks. The following
holds.

Proposition 3. If SoK is UnfExt secure, then construction 2 is a secure digital
signature.



Proof. Correctness is trivially inherited. Furthermore, Existential Unforgeability
holds: given an efficient adversary A outputting forgery s = SSignsk(m), the
adversary B against SoK Unforgeability uses A as follows: whenever A queries
SSign on mi, adversary B queries Sign on the same input, forwarding the output
signature σ. Finally, when A outputs a forgery (m, s), B outputs the same,
together with pk = x. By construction, if A is successful, then the SoK is valid,
thus B succeeds too. Furthermore, m must be fresh for B, as it is fresh for A. ut

5.2 Ring Signatures

Ring signatures were formalised by Rivest, Shamir, and Tauman [21] in 2001. In
this setting, a signer signs message m on behalf of a so-called ring of participants
such that it is impossible to tell which ring member actually signed m. We denote
ring members by U1, U2, . . . , Un.

Ring signatures assume the existence of a PKI where users Ui are associ-
ated with private/public key pairs (ski, pki). Message m can be signed by Ui
under public keys {pki}ni=1 and under private key ski, resulting in a signature
σ. Verification requires the public keys of all the users, outputting a bit. In par-
ticular, Rivest et al. [21] define ring signatures to be setup-free, i.e. any signer
can dynamically select a ring just by knowing the public keys of the other ring
members.

We adopt the ring signature definitions due to Bender et al. [3]. This work
defines rings of n of users to be the subset of their public keys, which may be
honestly generated or chosen by the adversary. In the notation of [3], we write
R = (pk1, . . . , pkn) for the ring of users Uj with j ∈ {1, . . . , n}.

Definition 5 (Ring Signatures [3]). A ring signature is a tuple of efficient
algorithms RSig = (RSKGen,RSSign,RSVf) such that:

Key generation. Run on security parameter k, RSKGen outputs key-pair (sk, pk).
Signature generation. On input index i, message m, ring R of size n with

n distinct elements, and sk s.t. (sk, pki) is a legitimate key-pair.
Signature verification. On input (R,m, σ), algorithm RSVf returns bit b.

We require perfect completeness, i.e., for all k, for all n key-pairs (ski, pki) for
i ∈ {1, . . . , n}, any j ∈ {1, . . . , n}, and any message m, it holds that RSVf(R,m,
RSSign(j, skj ,m,R)) = 1 for R = (pk1, . . . , pkn).

Ring signatures have two main properties: anonymity and unforgeability.
Bender et al. [3] introduce various degrees of these notions and prove strict im-
plications between the different flavors. The adversary may query an OSign oracle
with input an index j, a messagem, and a ringR, and running RSSign(j,m,R, skj)
to obtain the honestly generated signature σ. We reiterate only the strongest
form of anonymity – anonymity against attribution attacks – and the basic-
most form of unforgeability – unforgeability against fixed-rings attacks and call
them anonymity, resp. unforgeability. Intuitively, this form of anonymity allows



the adversary to know the secret keys of all-but-one users, but it still can’t dis-
tinguish the signer of a message (i.e., if even a single signer is honest, a signature
cannot be attributed to him, even by everyone else colludes together). In unforge-
ability against fixed-rings attacks, the signature is unforgeable if the adversary
uses the same ring of users. This is equivalent, as we see below, to using the
same statement x for SoKs. For further details on ring signatures, please refer
to [3]. Ring signature security now follows:

Anonymity. In order to formalize anonymity, Bender et al. allow the adversary
to learn the randomness used by RSKGenin generating the users’ key pairs.
Instead, we give the adversary access to all the honestly generated secret keys
after they have been generated. Another subtle difference in our definition
allows our adversary to be stronger: Bender et al. give the adversary access
to the secret keys only after the adversary has chosen a challenge message m,
indices i0 and i1, and a ring R such that pki0 , pki1 are in R. In our definition,
the adversary may know the secret keys even before it has made its choice.
We call the ring signature scheme anonymous iff for all integers n (depending
on k), and all efficient adversaries A, the following holds:

Prob [(ski, pki)
n
i=1 ← RSKGen(1k); (st, i0, i1,m,R)← AOSign(·,·,·)((ski, pki)

n
i=1)

b← {0, 1};σ ← RSSign(ib,m,R, skib); d← AOSign(·,·,·)(σ, st) : d = b] ≈ 1
2 .

Unforgeability. For all security parameters k, all integers n, and all efficient
adversaries A, the following holds:

Prob [(ski, pki)
n
i=1 ← RSKGen(1k); (m,σ)← AOSign(·,·,R)({pki}ni=1) :

(·,m) 6∈ Q ∧ RSVf(R,m, σ) = 1 ] ≈ 0.

Here we denote by Q the list of queries made to the OSign oracle.

Note that, although this definition of anonymity is the strongest of the three
presented by Bender et al. [3], it is not as strong as the simulatability property
required by signatures of knowledge as defined by Chase and Lysyanskaya. And
yet, ring signatures can be constructed from SoKs in a natural way, as long as
there exists a form of witness indistinguishability. Indeed, a signature of knowl-
edge on a message m proves that a signer who knows a valid witness (out of
possibly many valid witnesses) to a statement has signed a statement. In fact, if
we equivalate a ring to a statement, we can perceive the set of witnesses belong-
ing to this set as each representing a user in the ring. We describe this in what
follows.

We first consider a relation RL with statements of the form x and witnesses
w and with an efficient instance generator IGen, which, on input a security pa-
rameter k and some parameters par, outputs a statement x and a witness w
with (x,w) ∈ RL. Let SoK= (Setup, Sign, Vf) be a witness indistinguishable
signature of knowledge for a relation R with statements R = (x1, . . . , xn) and
witnesses w such that (w,R) ∈ R iff. there exists an index j ∈ {1, . . . , n} such



that (w, xj) ∈ RL. Consider a ring signature RSig= (RSKGen, RSSign, RSVf),
such that:

Setup. Before running the ring signature scheme, the algorithm Setup is run
on input k to output parameters par.

Key Generation. Upon input a security parameter K = (k, par) for an inte-
ger k and parameters par, the key generation algorithm RSKGen runs IGen,
outputting the tuple (xi, wi).

Ring Signature generation. Upon input an index i ∈ {1, . . . , n}, a message
m, a ring R = (x1, . . . , xn), and a private key wi, the signature generation
algorithm RSSign runs Sign on input m,R,w, par, and returns the output
signature σ.

Ring Signature verification. Upon input a ring R = (x1, . . . , xn), a mes-
sage m, and a signature σ, the signature verification algorithm RSVf runs
Vf on input σ,m,R, par, and outputs the resulting bit b.

This construction is a secure ring signature in the sense of the above security
definition. In particular, the completeness property follows from the correct-
ness of the underlying signature of knowledge scheme, and unforgeability follows
from the unforgeability of the SoK (but the ring is fixed, as the definition of
unforgeability for SoKs fixes the statement, in this case R). To see that RSig is
also anonymous in the presence of attributions, note that the witness indistin-
guishability definition is quantified over all witnesses, which are freely given to
the adversary. Therefore the adversary knows all wi, but cannot tell them apart
anyway.
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