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Abstract. We construct efficient universally composable oblivious transfer protocols
in the multi-party setting for honest majorities. Unlike previous proposals our pro-
tocols are designed in the plain model (i.e., without a common reference string), are
secure against malicious adversaries from scratch (i.e., without requiring an expensive
compiler), and are based on weaker cryptographic assumptions than comparable two-
party protocols. Hence, the active participation of auxiliary parties pays off in terms of
complexity. This is particularly true for the construction of one of our building blocks,
an efficient universally composable homomorphic commitment scheme. Efficient solu-
tions for this problem in the two-party setting are not known, not even in the common
reference string model.

1 Introduction

Oblivious transfer (OT), originally defined by Rabin [Rab81], is a two-party protocol between
a sender and a receiver. In this protocol the receiver either obtains a message initially held
by the sender, or gets the undefined symbol ⊥ instead. Each event occurs with probability
1/2, yet the sender remains unaware of the success of the transfer.

Oblivious transfer is a very important cryptographic primitive, for secure multi-party
computations [Kil88,GMW87] as well as a tool for more practical applications like anonymous
buying over the Internet [BCR87,NPS99,AIR01]. Often, these cases rely on a variant called
chosen one-out-of-two oblivious transfer [EGL85]. There, the sender holds two messages and
the receiver gets to choose one (and only one), but the choice is hidden from the sender. Both
versions of OT have been shown to be equally powerful [Cre87].

Previous proposals for secure OT [EGL85,BCR87,BM90,NP01] have often been investi-
gated in an isolated setting where issues like concurrency of executions or side effects caused
by other cryptographic protocols are not considered. As a noteworthy exception, Garay and
MacKenzie [GM00] gave the first oblivious transfer protocol which is provably secure if run
concurrently. Yet, even this protocol is not known to remain secure under more advanced
attack models. For example, the adversary could have some auxiliary information about the
sender’s messages (e.g., if the messages are used in other subprotocols), or the protocol may
be executed in parallel with other cryptographic protocols.

Ideally, one would like to have an OT protocol which can be safely used as a building block
within larger protocols, independently how the execution is interleaved with other steps. Such
a security guarantee is provided by Canetti’s universal composition (UC) framework [Can01].
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In this framework one defines an idealized version of the primitive in question, capturing the
desired security properties in an abstract way and ensuring that the functionality is secure
in interdependent settings. For example, an idealized functionality for oblivious transfer is
a trustworthy interface which waits to receive the two messages from the sender as well as
the receiver’s choice and then delivers the corresponding message to the receiver; no further
information about one party’s input is given to the other party.

Given an appropriate formalization of some functionality in the UC framework, one next
shows that this functionality can be securely realized by an interactive protocol between the
parties (without the trusted interface). Here, securely realizing means that, in any environment
in which the protocol may be run, for this environment executions of the interactive protocol
are indistinguishable from executions in the ideal model with the trustworthy functionality.
The UC framework, notably the composition theorem, then guarantees that the protocol can
indeed be securely deployed as a subroutine in more complex protocols and environments.

1.1 Previous Results

While some important stand-alone primitives like encryption and signatures basically preserve
security in the UC framework [Can01,Can04], other functionalities for commitment and obliv-
ious transfer cannot be implemented by any protocol between two parties of which one can
be dishonest [Can01,CF01]. In particular, previously proposed OT protocols in a stand-alone
setting (even if geared to be secure for concurrent executions like [GM00]) demonstrably fail
to realize the aforementioned ideal OT functionality. In fact, Lindell [Lin04], using a weaker
security notion than universal composition called concurrent self-composition, shows that
oblivious transfer (and other functionalities) cannot even be accomplished in this setting.

We stress that the impossibility results of [Can01,CF01] refer to protocols between two
parties in the plain model, i.e., without any auxiliary parties or setup assumptions. Indeed,
Canetti [Can01] shows that any functionality can be realized in the UC framework by two
or more parties if a majority of the players is honest (which for two parties implies that
both parties cannot be corrupted). Although based on general cryptographic assumptions,
this feasibility construction is computationally expensive. It requires to evaluate the circuit
computing the functionality in a gate-wise manner, and also involves a general compiler lifting
security in the presence of honest-but-curios adversaries to the case of malicious adversaries.
This compiler usually relies on complex zero-knowledge proofs for general NP statements.

Another workaround for the impossibility results is to let the two parties have access
to a common reference string (CRS) drawn according to some fixed distribution before the
execution starts. This has been successfully applied to the case of commitments [CF01], as
well to oblivious transfer [CLOS02]. The OT protocol in [CLOS02] is used as a building block
to extend the aforementioned feasibility result of [Can01] to dishonest majorities. It consists
of a two-level design which can be implemented by any trapdoor permutation. The first part
is basically the OT protocol of Goldreich et al. [GMW87] in the plain model but which is only
secure against honest-but-curious adversaries. In the second step one patches the protocol to
thwart malicious adversaries, using once more compiler techniques and zero-knowledge proofs.
These zero-knowledge proofs then also use the common reference string model.

Recently, Garay et al. [GMY04] utilized the CRS model, too, and proposed an extended
committed oblivious transfer (ECOT) protocol which is universally composable. In such an
ECOT protocol the parties run an oblivious transfer but they are also committed to their
data; additionally, the sender can prove in zero-knowledge some relation about his committed
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values. The core of the ECOT protocol is of course a regular oblivious transfer and therefore
the protocol in [GMY04] realizes the OT functionality securely in the CRS model.

The solution in [GMY04] does not rely on compiler techniques but is secure against ma-
licious adversaries from scratch, under the decisional Diffie-Hellman assumption and the de-
cisional composite residuosity assumption, and the strong RSA assumption or presuming
chosen-message security of DSA. Yet, if implemented with the suggested efficient primitives
the protocol is only known to be secure against adaptive corruptions if parties can erase in-
ternal data. Also, the protocol is geared towards evaluation of bit gates and therefore allows
to transfer bit messages only; we are not aware if it can be extended easily to handle longer
messages.

Another solution to bypass the two-party impossibility result, suggested in [PS04], is
to lend super-polynomial power to the adversary in the real-life execution as well as in the
idealized world, and to the environment trying to distinguish the two settings. This somewhat
non-standard assumption about the computational power is done in a controlled way via
so-called imaginary angels and it allows to overcome the need for a CRS in the general
construction in [CLOS02]. The underlying oblivious transfer protocol in [PS04] is essentially
identical to the one by Canetti et al. [CLOS02] and again needs a compiler and zero-knowledge
proofs to handle malicious adversaries. Only the compiler is implemented differently by virtue
of the imaginary angels, and can forgo the CRS.

1.2 Our Results

To overcome the two-party results of [Can01,CF01] we work in the setting of honest majorities.
As explained before, for two parties this trivially boils down to a protocol between honest
users. We are therefore interested in the case of three or more parties.

Assuming an honest majority one could try to reduce the design of a multi-party OT
protocol in the plain model to known two-party solutions in the CRS model. For example, in
the three-party case (in which the adversary can corrupt only one party) the third party could
pick the CRS and the sender and receiver then run the two-party protocol on this CRS over
a secure channel.1 We do not pursue this approach, though, because it would not improve
over existing solutions. Instead, we try to make better use of the additional parties.

Moreover, for more than three parties the straightforward approach for letting the other
parties generate the CRS would require a more advanced protocol than in the three-party
case. Otherwise the adversary could corrupt the sender or the receiver in addition to some of
the other players, possibly allowing the malicious sender or receiver to cheat for an adversarial
chosen CRS. But easy protocols for jointly generating unbiased common reference strings are
not known, especially since the CRS often contains non-trivial values like an RSA modulus
with unknown factorization.

We present several protocols implementing UC oblivious transfer in the multi-party sce-
nario, depending on the number of helper parties and, especially, on the maximum of dishonest
players among them. For the case of n = 3 parties, among which there is an honest major-
ity and thus at most t ≤ 1 corrupt users, we present a basic protocol to realize universally
composable OT very efficiently, requiring the parties to essentially perform only one or two
encryptions/decryptions. In case of static adversaries or if we alternatively presume reliable
data erasure, our protocol can be implemented with any CCA-secure public-key encryption

1 The confidential transmission guarantees that no information is revealed to the adversary, even if
the third party is corrupt and chooses the CRS in a malicious way.
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(assuming authenticated channels between the parties).2 As usual in multi-party computa-
tions, adaptive corruptions are dealt with using the more expensive but presumably inevitable
non-committing encryption [CFGN96,DN00]. Advantageously, in our protocol the number of
bits which have to be encrypted in a non-committing way is limited by the length of the
sender’s messages and the receiver’s choice, minimizing the usage of this encryption method.

We can extend our basic three-party protocol to more general n’s and a limited number t of
corrupt players. Although preserving the underlying cryptographic assumptions, the workload
of the extended protocol increases exponentially with the number of corrupt players as we
run many copies of our three-party protocol (yet, it remains within reasonable bounds for
small t’s). Hence, our protocol can tolerate up to t = O(log k) dishonest players for security
parameter k, where the exact bound on t depends on the relationship of the number n of
honest users and t. For example, if we simply have an honest majority n ≥ 2t + 1, then our
protocol tolerates up to t ≈ log log k bad parties; if n ≥ t2 + 2 then we achieve the bound
t = O(log k). The description of this second protocol has been delegated to Appendix A.

In our third protocol, which is based on ideas developed by Bellare and Micali [BM90],
we overcome the limitation t = O(log k) by moving from secure encryption in general to the
decisional Diffie-Hellman assumption. Our protocol utilizes UC homomorphic commitments
which we show how to realize efficiently with Shamir’s secret sharing and secure signatures
in case of static corruptions and honest majorities. These homomorphic properties of com-
mitments enable us to transfer well-known discrete-log based proof systems easily to the UC
setting, resulting in an efficient OT protocol in connection with the DDH assumption. Since
many practical RSA- or discrete-log-based proof systems in the stand-alone setting rely on
similar homomorphic properties, our commitment protocol may be useful for the design of
other efficient UC protocols in the multi-party setting.

The limitations of our commitment scheme, static corruptions and honest majorities,
of course carry over to our OT protocol if implemented with this commitment protocol.
However, given a UC homomorphic commitment scheme with stronger security properties,
our OT protocol could tolerate any number of corrupt parties in principle. Yet, even then,
our solution would only be secure against static corruptions —unless we allow reliable erasure
in which case it would withstand adaptive adversaries as well.

2 Preliminaries

We work in the universal composition framework of [Can01]. In this section we give an
overview over this framework, and refer the reader to [Can01] for a comprehensive intro-
duction. Then we recall some useful basic functionalities.

2.1 UC Framework

As explained in the introduction, executions of a protocol which securely realizes some ideal
functionality should be indistinguishable from executions with that functionality. This is
formalized by considering two experiments as described below.

In the first experiment, the real-life execution, a probabilistic polynomial-time adversary
A participates in a run of the interactive protocol π with a set of parties P1, . . . , Pn. All parties
are connected through point-to-point communication channels. The channels are public, i.e.,
2 Observe that stand-alone oblivious transfer in the two-party setting cannot be constructed from

black-box public-key encryption, even for static, honest-but-curious adversaries [GKM+00].
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the adversary can read all data transmitted between parties. The adversary is also responsible
for delivery of messages.

Each party is initially honest and follows the predetermined program of π. The adversary
may corrupt parties, either at the outset only (non-adaptive or static adversaries) or at
any point during the execution (adaptive adversaries). An adversary corrupting at most t
parties during any possible execution is called t-limited. Once a party is corrupted by A
the party hands over all internal data including its input, previous incoming and outgoing
communication and the content of the random tape to the adversary. If we allow reliable
erasure then the party may delete some of these data during the execution which then remains
hidden from the adversary in case of a corruption. If a party gets corrupted by the adversary
then the party follows the adversary’s instructions from then on. In particular, for so-called
malicious adversaries the party may now deviate from its program.

In the second experiment, the ideal-model execution, a probabilistic polynomial-time ad-
versary S (also called simulator) participates in an execution of (dummy) parties P1, . . . , Pn

with some ideal and trustworthy functionality F . All parties are only connected to the func-
tionality by secure channels and the simulator cannot read the content of transmissions. Once
an honest dummy party gets some input it immediately forwards this input to the functional-
ity which, at some point, may reply with output for some parties (including the simulator S).
If a party P1, . . . , Pn receives such a message from the functionality it copies it to its output
tape. We note that the simulator is responsible for delivery of these replies. Corruptions are
dealt with as in the real-life setting.

In both settings an interactive distinguisher, the probabilistic polynomial-time environ-
ment Z, is present. This environment can interact with honest parties by determining the
inputs and by reading the output of these parties. Additionally, Z can communicate with the
adversary A or S, respectively. This interaction with the adversary may range from passing
orders about corruptions to having the adversary report communications between parties. For
both worlds the way the environment interacts with the adversary and the parties are iden-
tical. That is, Z only sees the input/output behavior of honest parties and the interactions
with the adversary. In particular, if adversary A is t-limited and (non-)adaptive then so is
the simulator S.

At the end of an execution the environment should output a bit b indicating whether it
thinks it observes an execution in the real-life world with protocol π and adversary A (b = 0),
or in the ideal model with functionality F and adversary S (b = 1). The random variables
describing the output distributions are denoted by realπ,A,Z and idealF,S,Z , respectively.
Informally, A should not have much more power attacking the interactive protocol π than S
has in attacking the ideal functionality. Consequently, for a protocol π securely realizing F
the view of any environment should be essentially the same, and the random variables should
have roughly the same distribution:

Definition 1. A protocol π securely realizes a functionality F if for every adversary A there
exists a simulator S such that for every environment Z the random variables realπ,A,Z
and idealF,S,Z are computationally indistinguishable. If the random variables are identically
distributed then π securely realizes F in a perfect way.

An important setting, which captures the intuition that a universally composable protocol
can be used securely as a subprotocol, is the so-called hybrid model. There, an interactive pro-
tocol π is executed in presence of some ideal functionality G, meaning that parties P1, . . . , Pn

and the adversary also have access to ideal functionality G. Definition 1 straightforwardly car-
ries over to this setting saying that realGπ,A,Z and idealF,S,Z should be indistinguishable.
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The importance of the hybrid model becomes clear in light of the composition theorem
[Can01]. If a protocol π securely realizes a functionality F in the G-hybrid setting, and some
protocol ρ securely realizes G, then the protocol πρ (in which each call to G is replaced by
running ρ) securely realizes F . This can be extended to several functionalities G1,G2, . . .
and protocols ρ1, ρ2, . . . realizing these functionalities. Additionally, nesting of functionalities
(e.g., realizing G through ρ in some H-hybrid setting and further realizing H by a protocol σ
etc.) can be done up to constant depth.

On a technical note, protocol executions in the real-life and the ideal setting are always
accompanied by session IDs. These IDs are provided and maintained by the system and
enable the parties to distinguish between messages from different executions. Specifically,
each invocation of a copy of some protocol or some functionality, respectively, is assigned
a unique ID sid. For sake of readability we often omit mentioning these IDs for interactive
protocols and note that any transmission in an interactive protocol is implicitly tagged by
such a value sid as well as the identities of the sender and the receiver of the message.

2.2 Useful Functionalities

We usually show our OT protocols to be secure in the hybrid setting assuming some important
functionalities as building blocks.

One important functionality for message transmissions is Fauth. This functionality provides
integrity for transmissions in the sense that the adversary cannot tamper messages undetected,
nor can the adversary inject additional messages. Yet, the adversary still gets to read the
content of transmission between parties. This functionality is often assumed implicitly by
presuming authenticated channels between parties.

Another important functionality adding confidentiality to authenticated transmissions is
Fsmt. This functionality can be securely realized (in the Fauth-hybrid model) by CPA- or
CCA-secure public-key encryption for static adversaries, and by non-committing encryption
for adaptive adversaries [Can01] (or by assuming reliable erasure for semantically secure
encryption). In both cases the functionality merely reveals the length of the transmission to
the adversary.

Our protocols use two other basic functionalities, Fpke and Fsig, for secure public-key
encryption and secure signatures. Namely, Fpke allows to generate a public key enabling
everyone to create ciphertexts which only the key generating party can decrypt. With Fsig

a signer party can generate a verification key allowing to publicly verify signatures only
the signer can create. In [Can01,Can04] it has been shown that Fpke can be realized with
(non-committing) CCA-secure encryption schemes, and Fsig can be implemented through
chosen-message secure signature schemes.

3 Universally Composable OT for Three Parties

We first discuss the case of three parties. Since we presume honest majorities the adversary
can corrupt at most one of these three parties. The ideal functionality for oblivious transfer
which our protocol should realize securely is given in Figure 1. We note that this protocol
will then also provide the building block for larger n’s and limited t = O(log k).

3.1 The Protocol

The oblivious transfer protocol takes place between three parties: the sender S, holding two
messages m0,m1, the receiver R with selection bit b, and a helper H with no input. If there
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Functionality FOT

FOT proceeds as follows, running with two parties Pi, Pj and an adversary S, and parameterized
by a value κ:

– If receiving a message (ot-transfer, sid, Pi, Pj , m0, m1) with m0, m1 ∈ {0, 1}κ from some
party Pi store this message and ignore all further ot-transfer messages.

– If receiving a message (ot-choose, sid, Pi, Pj , b) from some party Pj check if a message
(ot-transfer, sid, Pi, Pj , m0, m1) has been stored. If not, ignore this message. If so, send
(ot-received, sid, Pi, Pj , mb) to Pj and ignore all future ot-choose messages.

Fig. 1.
`
2
1

´
-Oblivious Transfer Functionality FOT (adapted from [Can01])

are more than three parties then the helper position is filled in by the first party different
from S and R (where we assume some order of the parties).

From a bird’s eye view, the receiver and the helper each pick a random key and transfer
the pair of keys to the sender. This is done such that, on the one hand, the receiver only knows
one of the keys (where the order is determined by the receiver’s choice) and, on the other
hand, the sender remains oblivious about the owner of each key. The sender then encrypts
each message with one of the keys and returns the ciphertext pair to the receiver. The receiver
can decrypt message mb with his secret key while the other message is protected by the third
party’s secret key.

We describe our protocol formally in Figure 2. We assume that the sender has already
published a public key of an encryption scheme. Initially, the receiver and the helper both
locally pick secret random string k0 and k1, respectively. Then they encrypt their string with
the public key of S, confidentially exchange the ciphertexts and R also determines a random
order of the ciphertexts which is only revealed to H. Both parties then transmit the re-ordered
ciphertexts to the sender S.

In addition, R secretly sends a bit to S indicating another re-ordering of the ciphertexts.
This bit, together with the first ciphertext re-arrangement between R and H, ensures that the
receiver’s string k0 is encapsulated in the right ciphertext and that R later gets the message
mb. Viewed differently, the receiver’s choice b is randomly split between the helper and the
sender such that neither of the two parties alone can deduce b.

The sender waits to receive a ciphertext pair from each other party (and stops if it receives
pairs that do not match). Then it sorts the ciphertexts according to R’s request and decrypts
them to obtain the strings (K0,K1) = (kb, kb⊕1) where b remains hidden from S. It masks
the messages by m0 ⊕K0 and m1 ⊕K1 and confidentially returns them to R. The receiver
unmasks the message mb via k0 = Kb, yet mb⊕1 remains scrambled by H’s secret string k1.

3.2 Security

We prove security of our scheme in the (Fpke,Fsmt,Fauth)-hybrid model. We note that no
further cryptographic assumption is required given these ideal interfaces, and executions of
our protocol in this setting are even perfectly indistinguishable from ideal-model executions
with functionality FOT. Of course, in order to realize functionality Fpke for example, cryp-
tographic primitives are usually needed and the realization “only” guarantees computational
indistinguishability.
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Protocol OT3 in the (Fpke,Fsmt,Fauth)-hybrid model

– Setup:
• Upon receiving (ot-transfer, sid, S, R, m0, m1), the sender S generates a key pk by calling
Fpke. S sends pk to the receiver R and the helper party H, each time via Fauth.

• H echos the key received by S via Fauth to R, and R aborts if the keys do not match.

– Key Exchange Step:
• Receiver R gets as input (ot-choose, sid, S, R, b). It picks a string k0 ← {0, 1}κ and a bit

α← {0, 1}, computes a ciphertext c0 of k0 under public key pk via Fpke, and sends (c0, α)
to the helper H over the Fsmt channel.

• Having obtained (c0, α) helper H chooses a string k1 ← {0, 1}κ and generates an Fpke-
ciphertext c1 of k1 under pk. It returns c1 to R by Fsmt.

• R and H then locally sort (c0, c1) according to α to (cα, cα⊕1) and send this ciphertext
pair (cα, cα⊕1) to S via Fauth.

• The receiver also computes β ← α⊕ b and transmits β to S over Fsmt.

– Transfer Step:
• The sender waits to receive the same pair (cα, cα⊕1) from R and H; if it receives distinct

pairs, then the sender aborts. The sender also expects to get a bit β from R.
• The sender S re-orders (cα, cα⊕1) to (cα⊕β , cα⊕β⊕1) and decrypts the pair to strings

(K0, K1) = (kα⊕β , kα⊕β⊕1) by Fpke. If any of the decryptions fails or does not yield a
κ-bit string, then the sender aborts.

• The sender masks the messages by C0 ← K0⊕m0 and C1 ← K1⊕m1, and sends (C0, C1)
to receiver R over Fsmt.

• Receiver R, upon getting (C0, C1), unmasks Cb with Kb = kα⊕β⊕b = k0 to obtain message
mb. The receiver outputs (ot-received, sid, S, R, mb).

Fig. 2.
`
2
1

´
-Oblivious Transfer Protocol for Three Parties

The formalization in the hybrid model also abstracts the required properties of the prim-
itives, allowing to switch between different implementations in case of adaptive and static
corruptions. That is, we prove security in the presence of adaptive adversaries, guaranteeing
security of the overall protocol if the functionalities Fpke, Fsmt, Fauth are implemented by
adaptively secure protocols. This also provides security against static adversaries but in this
case the functionalities can also be realized by protocols which are merely secure against
static corruptions. For instance, to realize functionality Fsmt for adaptive adversaries only
non-committing encryption schemes are known to work; for static corruptions CPA- or CCA-
secure encryption schemes suffice.

Theorem 1. Protocol OT3 securely realizes functionality FOT in the (Fpke, Fsmt, Fauth)-
hybrid model in a perfect way. This holds for n ≥ 3 parties and t-limited malicious, adaptive
adversaries, t ≤ 1.

Proof. We construct an ideal-model simulator S as follows. S runs a black-box simula-
tion of the hybrid adversary A which is supposed to interact with ideal functionalities
Fpke,Fsmt,Fauth and the parties running the protocol. At the same time, S runs an exe-
cution with functionality FOT in the ideal model. Recall that in this ideal setting none of the
other functionalities is present.
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For the black-box simulation S runs a virtual copy of the protocol execution for A and
forwards all commands and reports between the environment Z and A. It simulates each
honest party up to the point when the adversary asks to corrupt this party (if at all). In case
of corruption the simulator corrupts the corresponding party in the ideal model, learns the
internal state and modifies and augments these data appropriately before handing it over to
A in the black-box simulation.

To show that our protocol realizes the functionality perfectly it thus suffices to show that
the black-box simulation generates the same adversarial view as in an actual attack for any
inputs. Then the environment’s output has the same distribution in both cases.

In the hybrid setting the adversary and the honest parties communicate with the function-
alities Fpke,Fsmt,Fauth over which the simulator has full control in the black-box simulation.
In particular, the only information available to the adversary A about the execution are data
sent over Fauth between honest parties, the (length of) encryption requests forwarded by Fpke

to A, and internal data of corrupted parties. The latter may include information previously
transmitted securely over Fsmt.

We next describe how the simulator emulates the adversary in the black-box simulation.
For this we define the simulator’s steps for each honest party and for corruptions of these
parties:

Simulation of Sender. S simulates an honest S by simply following the prescribed program,
i.e., if the dummy sender in the ideal model passes a message to the ideal functionality then S
generates a key pair via Fpke, waits to receive ciphertext pairs, decrypts them and masks the
messages. The only exception lies in the final step if S is supposed to transmit (C0, C1) to the
already corrupted receiver. Recall that this is the only case where A immediately learns these
information sent over Fsmt at this point. If both parties are honest then the simulator does
not have to pass any information to A about this communication (as it is virtually invisible
to A in the hybrid model).

To simulate the transmission of (C0, C1) to a corrupted receiver first note that S knows
both α and β, from the communication between R and the simulated H, and the commu-
nication between R and S. Furthermore, it knows the strings K0,K1 from decrypting the
ciphertexts. The simulator sets b← α⊕ β and sends (ot-choose, sid,S,R, b) to the function-
ality FOT in the ideal model to receive message mb. The simulator sets Cb ← Kb ⊕mb and
Cb⊕1 ← {0, 1}κ and sends (C0, C1) in the name of S to R over Fsmt.

If the adversary requests to corrupt the sender, then S first corrupts S in the ideal model
and learns the sender’s input (ot-transfer, sid,S,R,m0,m1). The simulator then reveals the
input and all the internal random coins to A; no adaption is necessary for these genuine
values. In addition, if (C0, C1) has already been sent then R must still be honest and the
simulator can simply claim that the transmission over the adaptively secure channel was
(K0 ⊕m0,K1 ⊕m1).

Simulation of Receiver. In order to simulate an honest receiver the simulator runs a copy
of R’s program, with the only difference that S initially substitutes R’s unknown input b by
b̃ = 0. This possibly causes the simulated receiver to later send β̃ = α instead of β = α ⊕ b
(unless R is corrupted before).

If the adversary asks to corrupt R then S corrupts the party in the ideal model and learns
the input (ot-choose, sid,S,R, b). If this corruption happens before the receiver is supposed
to send β then handing over the internal coin tosses and b to the adversary complies with the
transmitted data. Assume that the receiver has already sent the substituted β̃ to S. Since the
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sender is still honest the simulator is able to claim that β = α⊕ b has been transmitted over
Fsmt instead of β̃.

Finally, suppose the corruption of R takes place after S has supposedly sent the masked
messages, in which case the adversary has not seen these values transmitted over Fsmt (yet).
Due to the corruption of the receiver in the ideal model the simulator learns the functionality’s
message (ot-received, sid,S,R,mb). The other values including β are faked as before and
this time the simulator also sets Cb ← Kb ⊕mb and Cb⊕1 ← {0, 1}κ and claims that R has
received (C0, C1).

Simulation of Helper. The simulator simply runs a copy of H and reveals all internal data to
A if H is corrupted; no external input is provided to H.

Analysis. If all parties remain honest throughout the execution or if the adversary corrupts
only H then the input-dependent transmissions β and (C0, C1) sent over Fsmt are hidden
perfectly from A. Hence, the simulation perfectly mimics A’s view in an actual attack carried
out in the hybrid model, and therefore the environment’s output is identically distributed in
both cases.

If the sender is corrupted then, except for β̃, all values received by S and its internal
data comply with the input and have the same distribution as in an actual attack. Since α
is only sent via Fsmt between honest parties R and H, and as (cα, cα⊕1) and (kα, kα⊕1) are
independent of α, from the adversary’s viewpoint the fake β̃ = α and the expected β = α⊕ b
are both uniformly distributed. Therefore, the simulation in case of corruption of S is perfect,
too.

Suppose finally the adversary corrupts the receiver R. First note that H’s secret string k1

is protected information-theoretically from R via Fpke. Then, since H is honest and hands
(cα, cα⊕1) over to S for verification, either cα⊕β (if α ⊕ β = 1) or cα⊕β⊕1 (if α ⊕ β = 0)
must encrypt k1. Here, α, β are the values sent by R to H and S, respectively. Moreover, the
simulator predicts b ← α ⊕ β, and for this choice, Kb⊕1 = k1. Hence, the randomly chosen
Cb⊕1 has the same distribution as Cb⊕1 = k1⊕mb⊕1, and this case is also simulated perfectly.

ut

3.3 Variations

Several variations for the protocol above apply. Unless mentioned differently, similar modifi-
cations work in the case of more than three party as well.

1-out-of-N Oblivious Transfer. The basic protocol can be easily extended to a chosen 1-out-of-
N oblivious transfer. Assume that the sender holds N messages m0,m1, . . . ,mN−1 ∈ {0, 1}κ
and the receiver would like to retrieve number b ∈ {0, 1, . . . , N − 1}. Our protocol can be
modified as follows to implement this OT variant.

The receiver chooses again a string k0 and encrypts it to c0. The receiver picks a random
integer α← {0, 1, . . . , N−1} which it sends together with c0 to H, and sets β ← b−α mod N .
This time the helper selects N − 1 strings k1, . . . , kN−1, encrypts them to c1, . . . , cn−1 and
returns these ciphertexts to R. Both parties order the ciphertexts to (cα, cα+1 mod N , . . . ,
cα+N−1 mod N ) and send them to S.

Besides the ciphertexts the sender also waits to get β from R. It arranges the ciphertexts to
(cα+β mod N , cα+β+1 mod N , . . . , cα+β+N−1 mod N ), decrypts them to (K0,K1, . . . ,KN−1) and
masks the messages by Ci = mi⊕Ki. It returns these values (C0, C1, . . . , CN−1) over a secure
channel to R who unmasks Cα+β mod N = Cb with k0 to recover mb.
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Rabin’s OT. It is easy to modify our protocol into one realizing Rabin’s OT functionality
where the receiver either gets the sender’s message m or receives ⊥. This is accomplished by
using m0 = m and m1 = ⊥ in the protocol above and letting the sender choose the bit β at
random instead.

Re-Using the Public Key. The sender’s public key pk can be re-used for several transfers
from the sender if each invocation has a unique sub session ID ssid; see [CR03] for more
details about such sub session IDs and joint state of functionalities. In this case the parties
merely execute the protocol starting at the key exchange step for each transmission. This
time, however, for each set of three parties (possibly with different receiver and helper) the
sub session ID ssid and parties’ identities are prepended to the encryptions of k0, k1. Then
a malicious receiver cannot resubmit a ciphertext of a helper from some other execution
undetected.

4 DDH-Based UC Oblivious Transfer

As mentioned in the introduction the description of our extended three-party protocol to
tolerate up to t = O (log k) corrupt players is given in Appendix A. In this section we
present a UC oblivious transfer protocol which tolerates more than logarithmically many
dishonest parties. While our protocol in principle withstands any number of corruptions given
appropriate building blocks, our solution merely tolerates non-adaptive adversaries. Adaptive
security can be achieved if we allow reliable data erasure.

Like the scheme in [GMY04] the resulting protocol here is a derivation of the protocol
by Bellare and Micali [BM90]. As in the Bellare-Micali protocol we have the sender first
generate and send an element X = gx of a group 〈g〉, such that the discrete logarithm x is
only know to the sender. The receiver, holding bit b, next generates a pair W0 = gvX−b and
W1 = W0X such that it knows only one of the disrete logarithms, namely, log Wb = v. The
receiver returns the pair W0,W1 to the sender who thus remains oblivious about the bit b in
an information-theoretical sense. The sender encrypts the messages m0,m1 with the ElGamal
scheme, using W0 and W1, respectively, as the public keys. The receiver can then decrypt mb

from the encryption under key Wb.
In order to ensure universal composition of the basic protocol the transmissions of the value

X and of the pair W0,W1 are each accompanied by proofs of knowledge. In the first case this
is a Schnorr-type proof of knowledge of a discrete logarithm [Sch91]; in the second case this
corresponds to a proof of knowledge of one out of two discrete logarithms [CDS95]. Both
protocols follow the well-known commitment-challenge-response structure, and to implement
them in the UC framework efficiently, we present a homomorphic UC commitment scheme
that is used for the initial commitment.

Below, we start by presenting our homomorphic UC commitment protocol. Given such a
functionality we explain how to efficiently prove statements about discrete logarithms in the
UC framework, and then use these proofs to construct our oblivious transfer protocol. We note
that helper parties are only required in the implementation of the homomorphic commitment
funtionality, while the discrete-log based protocol can be realized between the sender and the
receiver only (in presence of an ideal homomorphic commitment functionality).

Since the suggested implementation of the efficient UC homomorphic commitment scheme
merely tolerates non-adaptive adversaries and dishonest minorities. Hence, if implemented
with this commitment protocol, we require n ≥ 2t + 1 players and the assembled protocol
achieves security only against static corruptions, even if we presume reliable deletion of data.
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4.1 UC Homomorphic Commitments in the Multi-Party Case

In the multi-party setting with honest majority, a universally composable commitment scheme
can be constructed along the lines of [BGW88]. Namely, start with Shamir’s (t, 2t)-threshold
secret sharing scheme [Sha79] where one can reconstruct a shared secret x from t + 1 shares,
yet any t or less shares are independent of x. In this scheme the dealer chooses a random
polynomial f of degree t over a sufficiently large field such that f(0) = x. The dealer then
distributes xi ← f(Pi) to party Pi (for some unique identity Pi 6= 0). To reconstruct the
secret one interpolates the polynomial from t + 1 shares and then evaluates it at 0.

Shamir’s scheme has an additional feature useful in our context. Namely, the reconstruc-
tion algorithm is able to detect efficiently if, given more than t + 1 shares, any two subsets
would reconstruct to distinct secrets (in which case the algorithm returns ⊥). This can be
checked by reconstructing the polynomial from t + 1 shares and then verifying that the poly-
nomial evaluates to the right values for the other shares. We remark that this requires that
identities of the parties are unchangeably associated to the shares.

For our homomorphic commitment scheme we also need a universally composable signa-
ture scheme Fsig. According to [Can04] such a signature scheme can be derived from chosen-
message secure signature schemes which, in turn, exist if one-way functions exist. We presume
that the public verification key of the committer has already been reliably transmitted to each
party, i.e., either by broadcast, or by sending it to each auxiliary party and to the receiver
and letting the helpers forward a copy to the receiver for verification.

Basic UC Commitment Protocol. The basic version of a universally composable commitment
protocol for n ≥ 2t+1 goes as follows. To commit to a value x to some party Pj , the committer
Pi first computes shares x1, x2, . . . , x2t of x and, for each share xi, also derives a signature
σi by Fsig. The committer sends, over secure channels Fsmt, share xi and signature σi to the
i-th of the first 2t parties other than the sender (but possibly including the receiver Pj). Each
share holder informs Pj when it has received a share with a valid signature but keeps the
actual value and the signature secret. The receiver outputs a receipt about a commitment
taking place if it has obtained 2t of such confirmations.

To open the commitment, party Pi requests the other parties to reveal their shares. All
auxiliary parties then forward their previously obtained share together with the signature to
Pj via Fsmt. If all 2t of these shares carry valid signatures then party Pj runs the reconstruction
to derive some value x; it accepts x if and only if x 6= ⊥.

We do not prove formally that the protocol above is a universally composable commitment
scheme against non-adaptive adversaries. The basic properties for such a protocol [CF01],
extraction and equivocability, can be easily seen. We note that the proof relies on static
corruptions as we need to be able to derive the value x from shares sent by a malicious sender
to honest parties in the commitment phase. Adaptive adversaries, however, may be able to
send out inconsistent shares at first and adapt those values later after corrupting some parties.

Homomorphic UC Protocol. Shamir’s polynomial-based scheme also allows to perform ad-
ditions on shares, i.e., having shared x1, . . . , xn via x`,1, . . . , x`,2t among the same parties
computing, say, x`,1 + · · ·+ x`,n locally generates a share of x1 + · · ·+ xn. This homomorphic
property carries over to the universally composable commitment, allowing the committer to
open any linear combination

∑
a`x` of committed values x1, . . . , xn for known a1, . . . , an.

When applying the homomorphic properties of the sharing scheme some care with regard
to the signatures is necessary, though. For example, in the opening step the commitment
scheme reveals only sums of the secrets but possibly not the individual values. We solve this
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Functionality Fhcom

Fhcom proceeds as follows, running with parties P1, . . . , Pn and adversary S, and parameterized
by an Abelian group (A, +).

– Upon receiving a message (hcom-commit, sid, Pi, Pj , x1, . . . , xn) for x1, . . . , xn ∈ A from some
party Pi, send (hcom-receipt, sid, Pi, Pj , n) to Pj and S. Ignore all further hcom-commit

messages.
– If receiving a message (hcom-open, sid, Pi, Pj , a1, . . . , an) for a1, . . . , an ∈ N0 from party

Pi, check that some message (hcom-commit, sid, Pi, Pj , x1, . . . , xn) has been received
from Pi before. If not, then ignore. Else compute y ←

Pn
i=1 aixi in A, and send

(hcom-open, sid, Pi, Pj , a1, . . . , an, y) to Pj and S.

Fig. 3. Homomorphic Commitment Functionality Fhcom

by having the committer in the opening phase sign the sums
∑

a`x`,k of Pk’s shares and send
this signature to Pk. Then Pk can open the sum of the shares and prove correctness to the
receiver by the additional signature. Party Pk will, however, disclose the individual shares
with the initial signature if the sender’s signature for the sum is invalid. The full protocol
HCom is given in Figure 9 in Appendix B.

Proposition 1. Protocol HCom securely realizes functionality Fhcom in the (Fsig, Fsmt, Fauth)-
hybrid model in a perfect way. This holds for n ≥ 2t + 1 parties and t-limited malicious,
non-adaptive adversaries.

We remark that, following the functionality’s description, our protocol allows to com-
mit only once to a set of values. Yet, the committer is able to decommit to several linear
combinations of these values.

Proof. The proof is again conducted by black-box simulation. The situation is slightly easier
here as we merely deal with static corruptions. We assume that at least one of the two parties,
the sender or the receiver, is honest; else the simulation is trivial.

Suppose the sender is malicious but the receiver is honest, and therefore at most t− 1 of
the helpers can be dishonest. Then the simulator lets each honest party follow its program.
If the receiver in the simulation outputs a receipt (hcom-receipt, sid, Pi, Pj , n), then for
each ` = 1, . . . , n the simulator looks up the first t + 1 shares x`,k sent to honest parties Pk

(with valid signatures). It runs the reconstruction algorithm on these t + 1 values to derive
some value x` (which may not comply with the shares delivered to other honest parties). The
simulator submits a commitment message to the ideal functionality for the obtained values
x1, . . . , xn.

In the opening step we proceed according to the program. If the simulated receiver finally
receives 2t messages for values (a1, . . . , an) it reconstructs 2t shares yk as the actual receiver
would, and from this it reconstructs some value y. Only if y 6= ⊥ we have the sender in the
ideal model send (hcom-open, sid, Pi, Pj , a1, . . . , an) to the functionality.

We claim that the simulation is perfect. To see this note that the first t + 1 shares sent to
honest helpers pin down some values x1, . . . , xn (as the corruptions are static the correspond-
ing shares cannot be changed later). Also, if the malicious sender in the simulation is able to
decommit to a value y 6= ⊥ then it must hold y =

∑
a`x` for the extracted values x1, . . . , xn.

Otherwise the reconstruction algorithm on all 2t shares would output an error message. On
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the other hand, the simulator only orders the sender to open
∑

a`x` in the ideal model if the
simulated sender successfully decommits to some y 6= ⊥.

Next assume that the receiver is malicious but the sender remains uncorrupted. Then the
simulator picks values x̃1, . . . , x̃n ← 0 on behalf of the sender at the beginning and otherwise
follows the prescribed program. In particular, the simulated sender transmits signed shares
of these dummy values to the (at most) t corrupt helpers.

Later, when the simulator learns a correct opening y for values (a1, . . . , an) in the ideal
model, it first computes dummy shares ỹk ←

∑
a`x̃`,k. Then it replaces the at least t shares

for honest parties with shares ỹk such that reconstruction with all 2t shares ỹk yields y. This
can be done by taking t predetermined values (including all values sent to corrupt parties),
adding y as the point at 0 and interpolating a polynomial at those points. This polynomial
then gives consistent values for the remaining honest parties. In addition, the sender signs all
2t shares. Note that malicious helpers cannot foist incorrect shares into the execution as the
corresponding values have to be signed.

Note that the simulation is perfect, too, because there are at most t dishonest helpers and
since the t dummy shares do not determine the true values. Also, the other shares have been
sent over the secure channel Fsmt to honest users, allowing the simulator to claim different
values and signatures later.

Finally, suppose that both the sender and the receiver are honest. Then the simulation in
case of an honest sender and corrupt receiver works here as well (where the receiver simply
follows the program honestly). ut

4.2 Efficient Proofs for Discrete Logarithms

Given a universally composable homomorphic commitment scheme we show how to build
efficient proof systems for discrete-logarithm statements. In the sequel we presume that q is
a prime and that g is a generator of a group of order q in which the decisional Diffie-Hellman
problem (given gx, gy, gz decide if z = xy mod q) is intractable. Moreover, let the additive
group of the homomorphic commitment scheme be (A,+) = (Zq,+).

Proving Knowledge of Discrete Logarithms. We start by transforming Schnorr’s basic protocol
[Sch91] of proving knowledge of a discrete logarithm x of some group element X = gx into
a UC protocol. In the original protocol the input to the prover and the verifier are the
description of the group, some generator g of order q and an elementX = gx; the prover also
gets x. The prover first chooses r ∈ Zq, computes R ← gr and sends R to the verifier. The
verifier returns a random challenge c ← Zq and the prover replies with y ← r + cx mod q.
The verifier accepts if and only if RXc = gy.

We modify the protocol as follows. The prover, getting (dlzk-prove, sid, Pi, Pj , X, x) as
input, picks r as before and commits to r and x (in this order) by the UC commitment
scheme. Additionally, instead of sending R = gr in the first step the prover also commits to R
(using an independent instance of our UC commitment, possibly not homomorphic, or by first
hashing R to Zq and committing to the hash value together with r, x). The verifier, getting
input (dlzk-verify, sid, Pi, Pj , X), chooses c← Zq as before and sends it over Fauth. But this
time the prover decommits to y ← r + cx mod q by the homomorphic commitment scheme,
i.e., sends (hcom-open, sid, Pi, Pj , 1, c) to functionality Fhcom. The prover also decommits to
R and the verifier accepts iff the decommitments R, y received by Fhcom satisfy RXc = gy.
In this case, the verifier outputs (dlzk-verified, sid, Pi, Pj , X). We call these steps DLZK.
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Functionality Fdlzk

Fdlzk proceeds as follows, running with two parties Pi, Pj and an adversary S, and parameterized
by a group 〈g〉 of order q generated by g:

– If receiving a message (dlzk-verify, sid, Pi, Pj , X) from a party Pj store this message and
forward it to S. Ignore all subsequent dlzk-verify messages.

– If receiving a message (dlzk-prove, sid, Pi, Pj , X, x) from some party Pi check that a mes-
sage (dlzk-verify, sid, Pi, Pj , X) has been recorded. If not ignore, else verify that gx = X.
If so, deliver (dlzk-verified, sid, Pi, Pj , X) to S and Pj and halt. Else ignore the message.

Fig. 4. Proving Knowledge of Discrete Logarithms Through Functionality Fdlzk

The proof idea is that the simulator can extract the discrete logarithm of a malicious
prover by inspecting the communication with the underlying commitment functionality. This
reveals (possibly incorrect) values r, x, R satisfying RXc = gy, but with probability 1 − 1/q
over the choice of c it must hold x = log X. On the other, the equivocability property of the
commitment enables the simulator to commit to dummy values and later adapt the openings.

Proposition 2. Protocol DLZK realizes functionality Fdlzk in the (Fhcom,Fauth)-hybrid model
for any t ≤ n and t-limited malicious, adaptive adversary.

Note that, in the proposition, we presume that we are given a commitment functionality
Fhcom secure against adaptive corruptions. While such protocols can be designed in prin-
ciple [Can01] our efficient solution in the previous section merely withstand non-adaptive
adversaries. Hence, if implemented with this scheme our protocol here is also bound to static
corruptions.

Proof. We again construct S by black-box simulation techniques. We remark that simulating
an honest verifier (and adapting values in case of corruption) is trivial. So is the case of the two
parties being corrupt from the start of the execution. Therefore, we focus on the simulation
of the prover and the case of a corrupt prover and honest verifier.

The simulator can fake the honest prover’s actions in a simulation of the (Fhcom,Fauth)-
hybrid model as follows. Having received (dlzk-verify, sid, Pi, Pj , X) from the functionality
the simulator claims that the prover has committed before to random r̃ ← Zq, x̃ ← 0 and
R̃ ← gr̃X−c, i.e., the simulator sends a hcom-receipt message to the verifier in the black-
box simulation. Then it waits to receive the verifier’s challenge c and in the opening step the
simulator reveals valid values ỹ ← 1· r̃+c·x̃ = r̃ and R̃. If the verifier in the simulation accepts
and outputs (dlzk-verified, sid, Pi, Pj , X) then we let the simulator deliver this message in
the ideal model as well.

If the prover gets corrupted later then the simulator first learns the true value x = logg X
in the ideal model and adapts the internal values r̃, x̃ to r ← r̃ − cx mod q and x. Note that
still ỹ = r + cx mod q and R = R̃. Similarly, if the prover gets corrupted during the proof we
can easily adapt the values accordingly.

If the prover is already controlled by the adversary at the beginning of the simulation but
the verifier is still honest, then the simulator learns X from the input and (possibly incorrect)
values r, x, R through the universally composable commitments. The simulator sends a ran-
dom challenge c← Zq in the simulation and waits to receive valid answers y, R, i.e., which sat-
isfy RXc = gy. If so, it sends (dlzk-prove, sid, Pi, Pj , X, x) on behalf of the malicious prover
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in the ideal model to the proof functionality. S also delivers (dlzk-verified, sid, Pi, Pj , X)
in the ideal model to Pj and lets the verifier output this message in the simulation.

Note that in case of a corrupt prover, for x 6= logg X, there is at most one c ∈ Zq

satisfying RXc = gr+cx for the committed values. Hence, except with probability 1/q the
simulator sends the “right” x = logg X to the functionality. In this case, the simulation is
perfectly indistinguishable from an actual attack. ut

Proving Or-Statements. In our oblivious transfer protocol we also require the receiver to
prove that it knows one of two discrete logarithms. This is accomplished with help of the
or-protocol of [CDS95]. The common input to the prover and the verifier are W0,W1 and X
where the prover also knows w and a bit b such that W0 = gwX−b and W1 = W0X. The aim
of the prover is to convince the verifier that he indeed knows such values without revealing b.
We show how to achieve this in the (Fhcom,Fauth)-hybrid setting for any t ≤ n and adaptive
adversaries.

Functionality Fdlor

Fdlor proceeds as follows, running with two parties Pi, Pj and an adversary S, and parameterized
by a group 〈g〉 of order q generated by g:

– If receiving a message (dlor-verify, sid, Pi, Pj , X, W0, W1) from some party Pj check that
W1 = W0X. If not ignore, else store this message and ignore all further dlor-verify

messages. Also, send (dlor-verify, sid, Pi, Pj , X, W0, W1) to S.
– If receiving a message (dlor-prove, sid, Pi, Pj , X, W0, W1, w, b) from some party Pi check

that a message (dlor-verify, sid, Pi, Pj , X, W0, W1) has been stored. If so and W0 =
gwX−b, then deliver (dlor-verified, sid, Pi, Pj , X, W0, W1) to Pj and S and halt. Else
ignore the message.

Fig. 5. Proving Knowledge of One of Two Logarithms Through Functionality Fdlor

In our protocol DLOR the verifier gets (dlor-verify, sid, Pi, Pj , X,W0,W1) as input. The
prover with input (dlor-prove, sid, Pi, Pj , X,W0,W1, w, b) picks r0, r1, cb⊕1 ← Zq at random
and computes R0 ← gr0(g−wX)bcb⊕1 and R1 ← gr1(gwX)−cb⊕1(1−b). The prover commits to
r0, r1, (1− b)w, bw (in this order) and R0, R1 by Fhcom.

The verifier sends a challenge c ← Zq via Fauth and the prover divides c into c = c0 +
c1 mod q for the previously selected value cb⊕1. The prover replies with c0, c1 over Fauth and
decommits to R0, R1 and y0 ← r0 + c0(1− b)w mod q and y1 ← r1 + c1bw mod q via Fhcom,
i.e., by sending (hcom-open, sid, Pi, Pj , 1, 0, c0, 0) and (hcom-open, sid, Pi, Pj , 0, 1, 0, c1). The
verifier checks that W1 = W0X, R0W

c0
0 = gy0 , R1W

c1
1 = gy1 and c = c0 + c1 mod q for the

decommitted values. If so, it outputs (dlor-verified, sid, Pi, Pj , X,W0,W1).

Proposition 3. Protocol DLOR realizes functionality Fdlor in the (Fhcom,Fauth)-hybrid model
for any t ≤ n and t-limited malicious, adaptive adversary.

Proof. The black-box simulation works as follows. We remark that the simulation of an honest
verifier and the adaption of the verifier’s internal state in case of a corruption are again trivial.

To simulate the honest prover the simulator first waits to be informed in the ideal model
about (dlor-verify, sid, Pi, Pj , X,W0,W1). Then the simulator claims that a commitment of
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the prover has taken place and expects to receive the challenge c from the (possibly malicious)
verifier. S prepares the answers by picking r̃0, r̃1, c0 ← Zq and letting c1 ← c−c0 mod q, R̃0 ←
gr̃0W−c0

0 and R̃1 ← gr̃1W−c1
1 . It claims to have committed to values r̃0, r̃1 and w̃0, w̃1 ← 0,

such that opening these values as linear combinations (1, 0, c0, 0) and (0, 1, 0, c1) together with
R̃0, R̃1 yields a valid decommitment. Moreover, the communication has the same distribution
as in the hybrid model.

If the adversary asks to corrupt the prover then the simulator first learns (w, b) and can
adapt the values as rb ← r̃b−cbw mod q and rb⊕1 ← r̃b⊕1. Substituting also w̃0, w̃1 = 0 by the
correct values (1− b)w, bw yields a consistent adversarial view, having the same distribution
as in the hybrid model.

We next show that, with high probability, the simulator can extract the input (w, b) from
a malicious prover in the simulation when impersonating the honest verifier. Suppose towards
contradiction that the prover commits to values r0, r1, w0, w1, R0, R1 but w0 6= logg W0 and
w1 6= logg W1. By the first verification equation we have logg R0+c0 logg W0 = r0+c0w0 mod q
and, because w0 − logg W0 6= 0, there exists a single c0 ∈ Zq such that the committed values
satisfy this equation. This follows analogously for w1 6= logg W1 and c1. Hence, once the
prover has committed to values such that w0 6= logg W0 and w1 6= logg W1, there exists only
one c = c0 + c1 mod q for which the verification equations are fulfilled. In conclusion, except
with probability 1/q the simulator learns w0 = logg W0 or w1 = logg W1, and the simulator
simply submits wb and the corresponding bit b to the ideal functionality. ut

Note that the simulation above does not guarantee that the simulator extracts the right
bit b. For instance, if the malicious prover knows x = logg X then it can switch from input
(w, 0) to (w − x mod q, 1) and vice versa. However, as we will later see this also requires
knowledge of x and is therefore infeasible if the verifier chooses X secretly at random. In fact,
this will be shown implicitly via the DDH assumption.

4.3 Oblivious Transfer Under the DDH Assumption

We show how to realize functionality FOT in the (Fdlor,Fdlzk,Fauth)-hybrid model. Our pro-
tocol —as is— only withstands non-adaptive adversary; extending this to adaptive adversaries
is possible if we allow reliable erasure, as discussed afterwards.

The full protocol is given in Figure 6. We have the sender create X with secret logarithm
x = logg X and the receiver chooses W0,W1 = W0X such that it knows logg Wb (but not
logg Wb⊕1) for the selection bit b. We also let both parties prove knowledge via our ideal
discrete-log functionalities. Then, the sender encrypts both messages such that one can de-
crypt ma if and only if one knows logg Wa for a = 0, 1. By this, it follows that the receiver
can only retrieve one of the messages. In the protocol we assume for simplicity that the κ-bit
messages have already been encoded in the group generated by g.

Theorem 2. Protocol OTDDH securely realizes functionality FOT in the (Fdlor, Fdlzk, Fauth)-
hybrid model under the decisional Diffie-Hellman assumption. This holds for n parties and
t-limited malicious, non-adaptive adversaries, t ≤ n.

Proof. Once more, we construct our ideal-model simulator S via black-box simulation of A
mounting an attack on the protocol in the hybrid model. We can presume that A either asks
to corrupt the sender or the receiver at the beginning; else one can regard this as a simulation
of an honest sender with a malicious receiver who follows the program trustworthily.

17



Protocol OTDDH in the (Fdlor,Fdlzk,Fauth)-hybrid model

– Upon receiving (ot-transfer, sid, S, R, m0, m1) the sender picks x, y ← Zq at random and
computes X = gx, Y = gy. It sends X to R over Fauth and both parties engage in a proof for
X via Fdlzk.

– The receiver gets (ot-choose, sid, S, R, b) as input and chooses w ← Zq and computes W0 =
gwX−b and W1 = W0X. It sends (W0, W1) to S via Fauth.

– The sender and receiver call functionality Fdlor with inputs (dlor-verify, sid, R, S, X, W0, W1)
and (dlor-prove, sid, R, S, X, W0, W1, w, b), respectively.

– The sender computes C0 ← m0W
y
0 and C1 ← m1W

y
1 and transmits (Y, C0, C1) over Fauth to

R.
– The receiver computes mb ← CbY

−w and outputs (ot-received, sid, S, R, mb).

Fig. 6. Oblivious Transfer based on DDH

Corrupt Sender. In the first case the adversary A corrupts the sender. Then the simulator
waits to receive X from the sender and learns the sender’s secret value x from the subprocedure
call for Fdlzk in the hybrid model. On behalf of the receiver in the simulation, the simulator
picks w ← Zq and sends W0 = gw and W1 = W0X. In the hybrid model, the simulator can
easily simulate the interactions with functionality Fdlor.

After receiving C0, C1 and Y from the malicious sender the simulator computes m0 ←
C0Y

−w and m1 ← C1Y
−w−x and sends these two messages in the sender’s name in the ideal

model through (ot-transfer, sid,S,R,m0,m1). Clearly, because the distribution of the data
in the simulation is independent of the receiver’s input b, these steps perfectly simulate an
attack in the ideal model.

Corrupt Receiver. Suppose A corrupts the receiver. Then the simulator first follows the
prescribed program of the sender for the simulation. The simulator also learns the receiver’s
bit b from the invocation of Fdlor and can then submit (ot-choose, sid,S,R, b) to the OT
functionality to retrieve message mb. The simulator returns Y , Cb ← mbY

w and Cb⊕1 ← gz

for a random z ← Zq to the receiver.
We show that the simulation of an honest sender it computationally indistinguishable from

an actual attack. For this we are given a DDH tuple (gx, gy, gz) of group elements where z is
either random or equals xy mod q. We are supposed to distinguish between these two cases,
and we use an allegedly successful environment Z telling apart executions in the ideal and
the hybrid model. We next describe our procedure D to refute the DDH assumption under
the condition that S remains honest.
D follows the simulator’s strategy but use the given values (gx, gy, gz) instead. More

precisely, D reads all communications between the environment and the parties, including
the messages m0,m1 written on the sender’s input tape. D first recovers some (w, b) such
that W0 = gwX−b and W1 = W0X from the receiver’s input to the call to functionality Fdlor.
Note that D does not need to know x for the call to Fdlzk as the simulator and D have full
control over this functionality and its inputs in the hybrid model. Then D sends Y ← gy

for the unknown y together with C0 ← m0Y
w(gz)−b and C1 ← m1Y

w(gz)1−b. D outputs
whatever the environment outputs.

If the given values (gx, gy, gz) are of the form z = xy mod q then our reply is identically
distributed to the honest sender in an actual attack in the hybrid model. If, on the other
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hand, z is random then Cb⊕1 is a random element, independent of mb⊕1. Hence, in this case
the distribution of the data is the same as in a simulation. By the DDH assumption it follows
that the absolute difference of probabilities of Z outputting 0 (or 1) in either experiment
must be negligible.

Analysis. We can now put the pieces together. For a given bit a ∈ {0, 1} let Prob[Z = a | real ]
be the probability that Z outputs a when interacting with A in the real-life setting. Analo-
gously, let Prob[Z = a | ideal ] be the probability that Z outputs a when interacting with S
in the ideal world. Let SHon be the event that the sender remains honest and let SCor be the
complementary event of S getting corrupted. Then,

Prob[Z = a | real ]− Prob[Z = a | ideal ]
= Prob[Z = a ∧ SCor | real ] + Prob[Z = a ∧ SHon | real ]
− Prob[Z = a ∧ SCor | ideal ]− Prob[Z = a ∧ SHon | ideal ]

= Prob[SCor] (Prob[Z = a |SCor, real ]− Prob[Z = a |SCor, ideal ])
+ Prob[SHon] (Prob[Z = a |SHon, real ]− Prob[Z = a |SHon, ideal ])

where the last equation follows since the decision about corrupting S for the non-adaptive
adversary A does not depend on the model.

As discussed above, the probabilities of Z = a in case of SCor for both settings are identical
and cancel out. For an honest sender the absolute difference of the probabilities for Z = a
are negligible by the DDH assumption and the argument above. Hence, the overall (absolute)
difference must be negligible, showing that our protocol securely realizes the functionality. ut

The protocol above remains secure against adaptive adversaries if we add another step
where the sender erases x, y ∈ Zq immediately after (Y, C0, C1) has been computed. We call
this protocol OTerase

DDH. The additional step guarantees that the simulated sender can deny to
know the secrets to unmask mb⊕1. Otherwise, the values X, Y pin down x, y and therefore
Cb⊕1 and mb⊕1.

Proposition 4. Protocol OTerase
DDH securely realizes functionality FOT in the (Fdlor, Fdlzk,

Fauth)-hybrid model under the decisional Diffie-Hellman assumption. This holds for n parties
and t-limited malicious, adaptive adversaries, t ≤ n, assuming reliable erasure.

Proof. The proof is an easy extension of the previous proof for Theorem 2. Adaptive cor-
ruptions are straightforwardly dealt with according to the additional step erasing x, y. Also,
if the receiver gets corrupted after the simulator has sent W0,W1 then we can change the
simulator’s value (w, 0) to (w − x mod q, 1) if necessary. Here, the value x is either known
from the zero-knowledge proof via Fdlzk for a malicious sender, or chosen by S as part of the
simulation of an honest sender.

The major difference to the non-adaptive case is that, there, we used the fact that the
probability of S getting corrupted is independent of the model. Here we slightly change the
definition and let SCor be the event that S gets corrupted before (Y, C0, C1) has been sent.
Accordingly, SHon is the event that S remains honest, at least till (Y,C0, C1) has been sent.
Then Prob[SCor | real ] = Prob[SCor | ideal ] because, up to the point where (Y, C0, C1) is
transmitted, the simulation and a real attack have the same distribution. Hence, the same
holds for SHon and therefore the result follows as before. ut
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A OT for a Restricted Number of Corrupted Parties

The basic protocol for three parties in Section 3 does not directly transfer to the multi-
party case. For example, if the adversary is allowed to corrupt two out of five parties, then
she can always corrupt two of the three parties executing the basic protocol and learn more
information than intended. Yet, we can still use the three-party protocol as a building block to
derive an oblivious transfer protocol as long as the number of corrupted parties is sufficiently
small. For example, our protocol works if roughly t ≈ log log k parties can be corrupt for
security parameter k while we still have an honest majority n ≥ 2t+1. Or, up to t = O(log k)
players may be dishonest if at the same time t is about a square root of n.

A.1 A Modified Oblivious Transfer Functionality

We slightly change the FOT functionality to FOT∗3
to capture the case of two or more corrupted

parties among the three players running our basic protocol. This new functionality takes as
input the name of a third party in addition to the sender’s and receiver’s identity. These
identities allow to mimic the additional information available to the adversary if, say, the
sender and the helper in an execution with an honest receiver are corrupt such that the
adversary learns the receiver’s choice b.
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Specifically, functionality FOT∗3
accepts the same messages as before but takes two further

messages from the adversary at any time: (sender-panic, sid, S,R,H) and (receiver-panic, sid,
S,R,H). If the functionality receives a message sender-panic then it checks that the sender
S is still honest, that the receiver R and the helper H are corrupt, and that it has already
received a message (ot-transfer, sid, S,R,H, m0,m1) from S. If so, it sends a message
(sender-dump, sid, S,R,H, m0,m1) to the adversary. Else it ignores the message. Analo-
gously, the functionality responds to a receiver-panic message from the adversary with
(receiver-dump,sid, S,R,H, b) if the receiver is honest but the sender and the helper are not,
and if it has already received a message (ot-choose, sid, S,R,H, b) from the receiver before.3

Proposition 5. Protocol OT3 securely realizes functionality FOT∗3
in the (Fpke, Fsmt, Fauth)-

hybrid model in a perfect way. This holds for n ≥ 3 parties and t-limited malicious, adaptive
adversaries, t ≤ n.

Proof. The proof follows the one for the case of single corruptions closely. We only explain
how to extend the simulation to the case of multiple corruptions; the first corruption is dealt
with as before. If the simulated adversary demands to corrupt a second party then the ideal-
model simulator first corrupts the corresponding party in the ideal setting and then proceeds
as follows:

First Sender, now Receiver. If the sender has been corrupted before and now the adversary
A asks to corrupt the receiver, then the simulator has already provided A with the sender’s
internal view (including m0,m1). The only critical data of the receiver is the input bit b and
the related transmissions of α, β; all other values can be copied from the genuine simulation.
If β has not been sent yet, then the simulator can easily fake R’s view for b. Else the adversary
has learned β, but since the third party H is still honest, S can simply claim that α← β ⊕ b
has been transmitted over Fsmt from R to H before. This perfectly simulates a true execution.

First Receiver, now Sender. Suppose that the receiver is corrupt when the adversary and
ideal-model simulator next corrupt the sender. Then S has already provided A with the
receiver’s internal view, possibly including already the masked messages C0, C1.Note that the
adversary may choose α⊕ β to be different from R’s original input b.

Now the simulator learns the sender’s input m0,m1. If (C0, C1) has not been sent to R
yet, then faking S’s internal view is straightforward. Else, the only critical information about
S’s input is the pair (C0, C1) which has already been communicated to the corrupted receiver
(in which case A sees these values, too). Although the receiver is able to recover mα⊕β from
Cα⊕β , the string Kα⊕β⊕1 = k1, allegedly chosen by the helper before, is still information-
theoretically hidden from the adversary via Fpke at this point. So S can claim that cα⊕β⊕1

has decrypted to Kα⊕β⊕1 ← Cα⊕β⊕1 ⊕mα⊕β⊕1, implying a perfect simulation.

Helper and Another Party. If A asks to corrupt a second party, and H is among these two
parties, then S first corrupts the corresponding second party in the ideal model. Then, it
immediately issues a sender-panic or receiver-panic command —depending on which of
the three parties is honest— in order to receive the input of this party. Given this data the
simulator proceeds as in one of the two previous cases to adapt the information. Afterwards it

3 The names 〈party〉-panic and 〈party〉-dump have been borrowed from the Unix/Linux world for
unrecoverable system errors detected by the kernel (kernel panic) and a snapshot of the memory
content written to disk in case of an error (core dump).
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can easily modify A’s view with these adjustments. We again stress that, although the sender
or the receiver reveals its input in the dump reply, this party is formally not corrupted.

In any of the three cases corruption of the remaining third party is easy to simulate. ut

A.2 Protocol for More Than Three Parties

The basic idea of extending our three-party protocol is to run several executions of FOT∗3
.

These executions are divided into T sets where each set consists of t runs of FOT∗3
. Each

execution of the functionality in such a set is carried out with a different auxiliary party, yet
helpers may assist in more than one set.

Compiling Sets of Helpers. For the choice of the T sets of helper parties we assume that there
is a selection function Select(n, t) which takes n and t as input and returns (the description
of) T sets P1,P2, . . . ,PT , each set comprising t helper parties different from sender and
receiver. The sets need not be disjoint, yet it is guaranteed that, no matter which t − 1
helpers the adversary will corrupt, there will always be a set Pi where all helpers remain
honest.4 Furthermore, 2T must be polynomial in the security parameter k because in each
execution we transfer messages of size κ · 2T . We call such an algorithm Select admissible.

For example, let t ≤ 1
2 log2(c log2 k) for some constant c, and assume we have an honest

majority n ≥ 2t + 1. Consider each of the at most T =
(
2t−1

t

)
≤ 22t = O (log k) subsets

of t players among the first 2t − 1 parties different from S and R, and let Select output a
description of these T sets. Clearly, since the adversary can control at most t− 1 of the 2t− 1
parties there must be a set with honest helpers among these T sets. Note that, although T
is exponential in t, for small parameters like (n, t) = (5, 2) the number of invocations of our
functionality FOT∗3

and the expansion factor of the messages are merely (Tt, 2T ) = (6, 8).
As another example, let t = O(log k) and suppose only about a square root of the n ≥ t2+2

players can be corrupted. Then the selection process divides the first t2 ≤ n − 2 auxiliary
parties into disjoint sets of size t and outputs descriptions of these T = t = O(log k) sets. As
the adversary can corrupt at most t − 1 players in these disjoint sets, there must exist a set
which contains honest helpers only. For values (n, t) = (6, 2) or (11, 3) this yields a reasonable
overhead of (Tt, 2T ) = (4, 4) and (9, 8), respectively.

Protocol Description. Once the subsets have been selected, the parties start the executions
with functionality FOT∗3

. We first explain how the sender partitions its messages m0,m1; the
case T = 3 is exemplified in Figure 7. The sender first prepares 2T−1 copies of each message
m0,m1 and labels each copy by a string r ∈ {0, 1}T . Message mr equals m0 if r contains an
even number of 1-bits, e.g., if r = 011, else mr is set to m1. Next, each message mr is randomly
partitioned into mr = mr[1]⊕mr[2]⊕ . . .⊕mr[T ]. For each i = 1, 2, . . . , T we combine 2T−1 of
these parts mr[i] to strings M0[i] and M1[i], respectively, where M0[i] contains those strings
mr[i] for which the i-th bit r[i] in r = r[1]r[2] . . . r[T ] equals 0, and M1[i] consists of the
remaining 2T−1 parts. See again Figure 7.

The sender takes message pair (M0[i],M1[i]) for the executions with auxiliary parties in
Pi for i = 1, 2, . . . , T . In each of these T subprotocols the sender splits M0[i] into t random
parts M0[i, j] subject to M0[i] = M0[i, 1]⊕M0[i, 2]⊕ . . .⊕M0[i, t]. Analogously for M1[i]. The

4 We can assume that the adversary corrupts either the sender or the receiver in an execution,
otherwise the simulation becomes trivial. This leaves at most t− 1 additionally corruptions for the
sets P1, . . . ,PT .
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Fig. 7. Splitting messages m0, m1 in protocol OTlog for T = 3

receiver, on the other hand, partitions its choice b only into b = b[1] ⊕ b[2] ⊕ . . . ⊕ b[T ] but
does not further split the bits b[i] and uses the same bit b[i] in each of the executions with
the helpers in Pi.

The sender and the receiver then engage in t invocations of FOT∗3
for each set Pi. In each

execution one of the helpers Hj ∈ Pi assists the two parties. In this invocation the sender
uses pair (M0[i, j],M1[i, j]) while the receiver uses b[i] as input. At the end, the receiver thus
obtains Mb[i][i, j] for all j = 1, 2, . . . , t, which allows him to reconstruct Mb[i][i]. Given these T
parts the receiver can extract all values mr[i], i = 1, 2, . . . , T , for r = b[1] . . . b[T ] and therefore
mb[1]⊕...⊕b[T ] = mb.

The partitioning and expansion of m0,m1 into T strings M0[i] and M1[i] on the one hand
ensures that, if one knows only one of the two strings M0[i],M1[i] for each i = 1, 2, . . . , T ,
then one can reconstruct either m0 or m1 but not both. This follows because if one knows
Mb[i][i] for b[1], . . . , b[T ] then one has all the pieces to assemble mb = mb[1]...b[T ]. Yet, for each
other mr with r = r[1] . . . r[T ] 6= b[1] . . . b[T ] at least one part is missing, e.g., for the smallest
j such that r[j] 6= b[j] string mb[1]...r[j]...b[T ][j] is not included in Mb[j][j]. This can be easily
verified for the example given in Figure 7.

On the other hand, if a party knows one of the strings, Mb[i][i] for every b[1], . . . , b[T ], and
one is unaware of at least one of the choices b[j], then one is completely oblivious about the
message m0 or m1 this party can reconstruct. This can been seen because either choice for
b[j] allows to switch between m0 and m1 (because flipping one bit in r changes mr = m0 to
mr = m1 and vice versa). Again, see Figure 7.

The first property allows the simulator to determine which of the two messages the adver-
sary is able to reconstruct. Since there is an honest user in each of the T sets of helpers, the
simulator gets to know all choices b[1], . . . , b[T ] of a malicious receiver, and can conclude that
the adversary learns mb[1]...b[T ] but not the other message. With the second property, and
the fact that there is a set of honest helpers only, the simulator can determine both message
parts M0[j],M1[j] for some j and is therefore able to extract both messages m0,m1 from a
malicious sender.
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Protocol OTlog in the FOT∗3
-hybrid model

– Upon receiving (ot-transfer, sid, S, R, m0, m1) and (ot-choose, sid, S, R, b), respectively, the
sender and the receiver locally run Select(n, t) to get T sets P1, . . . ,PT of t parties each.

– The sender defines for any string r ∈ {0, 1}T a message mr to be mr[1]⊕...⊕r[T ], i.e., to be the
message m0 or m1, depending on the even or odd number of bits in r. For each r the sender
picks T pieces mr[i] at random such that mr = mr[1]⊕mr[2]⊕ . . .⊕mr[T ]. The sender further
defines M0[i] to be concatenation of all 2T−1 strings mr[i] such that the i-th bit r[i] in r equals
0; define M1[i] analogously for each i = 1, 2, . . . , T .

– The receiver picks random bits b[i] subject to b = b[1]⊕ b[2]⊕ . . .⊕ b[T ].
– For each of the T subsets Pi do the following:

– Subprotocol for M0[i], M1[i], b[i],Pi:

• The sender, holding M0[i], M1[i], picks M0[i, j] for j = 1, 2, . . . , t at random such that
M0[i] = M0[i, 1]⊕M0[i, 2]⊕ . . .⊕M0[i, t]. Analogously for M1[i].

• For each party Hj in Pi parties S, R and Hj execute the FOT∗3
functionality with inputs

(ot-transfer, sid, S, R, Hj , M0[i, j], M1[i, j]) for S and (ot-choose, sid, S, R, Hj , b[i]) for
R. By this, the receiver gets Mb[i][i, j] for j = 1, 2, . . . , t.

• R computes Mb[i][i] = Mb[i][i, 1]⊕Mb[i][i, 2]⊕ . . .⊕Mb[i][i, t].

– Having obtained Mb[i][i] from all T subprotocols the receiver finally extracts mb[1]...b[T ][i] from
the values Mb[i][i] and computes mb = mb[1]...b[T ] = mb[1]...b[T ][1] ⊕ . . . ⊕ mb[1]...b[T ][T ]. The
receiver outputs (ot-received, sid, S, R, mb).

Fig. 8.
`
2
1

´
-Oblivious Transfer for More Than Three Parties

Theorem 3. Let Select(n, t) be an admissible selection algorithm. Then protocol OTlog

securely realizes functionality FOT in the FOT∗3
-hybrid model in a perfect way for n parties

and t-limited malicious, adaptive adversaries.

Recall that Select(n, t) is for example admissible if t = O (log k) and n ≥ t2 + 2 or if
t ≤ 1

2 log2(c log2 k) and n ≥ 2t + 1.

Proof. As in the proof of Theorem 1 we again present an ideal-model simulator S via black-
box construction. Yet, in the hybrid model except for the invocation of FOT∗3

no information
is exchanged between the parties, and the simulator only has to provide the corresponding
output to corrupted parties calling the functionality.

Simulation of Sender. To simulate an honest sender S assumes that the sender’s input is
m̃0 = m̃1 = 0κ and otherwise follows the prescribed program. In particular, S also divides
the messages m̃0, m̃1 into random parts M̃0[i], M̃1[i] for i = 1, 2, . . . , T , and further splits
these parts into strings M̃0[i, j], M̃1[i, j] for j = 1, 2, . . . , t in each subprotocol execution.

Before we describe the simulation in detail we need some notations. We enumerate all
invocations of FOT∗3

according to i ∈ {1, 2, . . . , T}, the set Pi of helpers, as well as according
to j ∈ {1, 2, . . . , t}, the number of the third party Hj in Pi running FOT∗3

with the sender
and the receiver. We call this execution (i, j). By execution ensemble i we refer to the set of
executions (i, j) for j = 1, 2, . . . , t.
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If we are at some point in the simulation we call an execution (i, j) open if the receiver has
not received a message (ot-received, sid,S,R, ∗) yet, and if no 〈party〉-dump message has
been sent to the adversary so far. Any other execution is called closed. We call the execution
ensemble i open if some execution (i, j) is still open, or if there are executions (i, j), (i, k)
such that no dump-messages have been sent to the adversary in these executions, but the
receiver has submitted distinct choices to FOT∗3

. Else the ensemble is called closed. Note that
in an open ensemble in which all individual executions are closed, the adversary has retrieved
different parts M̃0[i, j] and M̃1[i, k] for j 6= k and is neither able to reconstruct M̃0[i] nor
M̃1[i]. However, the adversary may still corrupt further parties in this ensemble and enforce
dump-messages later to recover one of these messages.

We presume for simplicity that the adversary has corrupted the receiver at the outset. If
not, since the sender is still honest, the adversary does not see any data in the execution up
to the corruption step. Once the simulator has made up the receiver’s internal view when the
adversary asks to corrupt the receiver, we can think of these emulated choices as now being
sent by a malicious receiver honestly following its program. The simulator then adapts the
sender’s view accordingly, as described next.

The ideal-model simulator proceeds as follows. As explained above, it uses the fake mes-
sages m̃0 = m̃1 = 0κ to run the invocations of FOT∗3

(also answering panic-requests according
to the specification). This is done as long as there are open ensembles. Only if this is going
to change then the simulator prepares to submit a message on behalf of R in the ideal model.
We remark that the simulation up to this point is perfect. If there is still an open ensemble
i then the adversary is still missing pieces to assemble M̃0[i] and M̃1[i] and thus m̃0 and m̃1,
and the random parts the adversary has seen so far have the same distribution as in an actual
attack.

Now assume that the last ensemble i is going to be closed because of an ot-choose-
message or a panic-message in execution (i, j). For each ensemble we look at the executions
in which the helper parties are still honest (and thus all panic-messages have been ignored
so far). By choice of the T sets there must always be such an execution in each ensemble
(as the adversary can only corrupt t− 1 helpers). Furthermore, as each ensemble k is or will
be closed, the choices b[k] submitted by the receiver to FOT∗3

in such executions with honest
helpers in one ensemble are all consistent. Hence, for every k = 1, 2, . . . , T the simulator can
determine the unchangeable bit b[k] and compute b = b[1] ⊕ . . . ⊕ b[T ]. It is clear that the
receiver cannot obtain Mb[i]⊕1[i] from these execution ensembles k.

The simulator next sends the extracted bit b to the functionality in the ideal model to re-
trieve the original message mb of the honest sender. Now it prepares the answers M̃0[i, j], M̃1[i, j]
for the final execution (i, j) by adding mb via exclusive-or to the values at positions r with
r[1]⊕ . . .⊕ r[T ] = b in M̃b[i][i, j] and M̃b[i]⊕1[i, j] and leaving any other values unchanged. It
returns the adapted value M̃0[i, j] or M̃1[i, j] chosen by the receiver (or both if it replies with
a dump-message to a panic-message).

Note that xoring mb to the corresponding values in M̃b[i][i, j] and M̃b[i]⊕1[i, j] consistently
changes m̃b = 0κ to mb, and thus perfectly simulates an ideal execution for these parts. Also,
since there must exist an execution with an honest helper in each ensemble k, the adversary
misses at least one of the t pieces M̃b[k]⊕1[k, l] for some l. This implies that M̃b[k]⊕1[k] for
all k and therefore m̃b⊕1 are hidden information-theoretically from the adversary, and the
distribution of the fake values M̃b[k][k, l] are perfectly indistinguishable from genuine values
for the unknown mb⊕1.

If the adversary asks to corrupt the sender then the simulator corrupts the sender in
the ideal world to learn both messages m0,m1. If there is still an open ensemble i then the
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adversary has not yet learned M0[i, j],M1[i, k] for some known j, k. Take the smallest of such
indices j, k and add m0 to all positions r in M0[i, j],M1[i, l] with an even number of 1-bits,
and m1 for those r’s with an odd number of 1-bits. This adapts the values from m̃0, m̃1 = 0κ

to m0,m1 in a completely indistinguishable way.
Next assume that the sender is getting corrupted and that all ensembles are closed. If the

receiver is still honest then the simulation is trivial as the adversary has not yet seen any
values sent form FOT∗3

to honest parties. We therefore presume that the receiver is controlled
by the adversary. As the ensembles are closed this in turn implies that mb has already been
sent to R, that the simulator knows the receiver’s choices b = b[1]⊕ . . .⊕b[T ] in the ensembles,
and that m̃b and the related values have been changed to mb already.

In addition, for any i = 1, 2, . . . , T the adversary lacks knowledge of some piece M̃b[i]⊕1[i, j].
For each r ∈ {0, 1}T with r[1] ⊕ . . . ⊕ r[T ] = b ⊕ 1, the simulator now chooses the smallest
index i with r[1] = b[1], . . . , r[i−1] = b[i−1] but r[i] = b[i]⊕1. For this index, and the missing
piece M̃b[i]⊕1[i, j], the simulator adds mb⊕1 to the position r. Note that such an index i must
exist and alters m̃b⊕1 = mb⊕1 via the entries in the previously hidden pieces M̃b[i]⊕1[i, j].
Then, revealing these adapted values mimics a corruption in the real world perfectly.

Simulation of Receiver. Next we discuss how to simulate an honest receiver. Similar to the
previous case the simulator uses b̃ = 0 as input and follows the prescribed program of R. That
is, the simulator divides b̃ into b̃ = b̃[1]⊕ . . .⊕ b̃[T ] and uses b̃[i] in the i-th ensemble. Similar
to the previous case we presume that the sender is malicious, else the adversary does not see
any information about the execution in the hybrid model.

The simulator now has to provide functionality FOT in the ideal model with two input
messages of which one will be delivered to the honest receiver. The simulator, however, does
not know beforehand the receiver’s choice in the ideal setting, and must therefore be able to
extract both messages from the adversarial controlled sender in the simulation.

In each execution ensemble i the simulated receiver retrieves a string Mb̃[i][i] from the
malicious sender. In some ensembles the adversary may successfully call a receiver-panic
to learn the bit b̃[i]. Yet, by the constructions of the T sets, there must exist a set in which all
t helpers remain uncorrupted (forever). In this ensemble k any panic-request is and will be
ignored, and the simulator waits till the sender transmits (M0[k, l],M1[k, l]) in all executions
l = 1, 2, . . . , t to functionality FOT∗3

. From these values it assembles M0[k] and M1[k]. The
values Mb̃[i][i] for i 6= k in combination with M0[k],M1[k] enable the simulator to recover
mb̃[1]...0...b̃[T ] and mb̃[1]...1...b̃[T ], yielding messages m0 and m1. The simulator submits these
two values in the ideal model on behalf of the dishonest sender.

Note that the set of values b̃[i] for i 6= k in the simulation has the same distribution
as an actual choice by the honest receiver in a protocol execution; only the distribution of
value b[k] = b ⊕ b[1] ⊕ . . . ⊕ b[T ] = b ⊕ b̃[k] could possibly be different. Yet, the adversary
and the environment cannot tell these choices apart because value b̃[k] is perfectly hidden.
Furthermore, given values b̃[i] = b[i] for i 6= k the receiver in an actual protocol execution
would receive either m0 or m1 (depending on b and b[k]). Here, m0,m1 are the same messages
the simulator submits in the ideal model such that the receiver gets the same message mb

in the ideal model. Hence, in the simulation and in the ideal world the receiver outputs the
same message mb.

Finally, it remains to discuss corruption requests for the receiver. If the adversary wants
to take control over the receiver then there exists an execution ensemble k in which some
execution (k, l) is still open or, if all executions are closed, in which all auxiliary parties are
and will be honest. In any case, at least one of the bits b̃[k] has again remained hidden from

27



the adversary so far. The simulator, learning the receiver’s input b in the ideal model, can
now substitute b̃[k] such that b = b̃[1]⊕ . . .⊕ b̃[T ] before handing these values to the adversary
in the simulation. Since the adversary has been perfectly oblivious about b̃[k] this simulation
of the corruption is perfect, too.

Simulation of the helper parties is again easy as they do not actively participate in the
protocol. This shows that the overall simulation is perfectly indistinguishable. ut

B Homomorphic Commitment Protocol

In this section we present our UC homomorphic commitment protocol.

Protocol HCom for Abelian group (A, +) in the (Fsig,Fsmt,Fauth)-hybrid model

– Commitment:
• Upon receiving (hcom-commit, sid, Pi, Pj , x1, . . . , xn) the committer first generates a veri-

fication key vk of Fsig and sends it to the receiver Pi and to all 2t helper parties via Fauth.
The helper parties echo the key to the receiver over Fauth and the receiver stops if any of
the keys do not match.

• The committer then computes shares x`,1, x`,2, . . . , x`,2t of all values ` = 1, 2, . . . , n
as well as signatures σk of (x1,k, . . . , xn,k) via Fsig for k = 1, 2, . . . , 2t. It sends
(commit, x1,k, . . . , xn,k, σk) to party Pk over Fsmt (where Pk is the k-th party different
from the committer).

• Receiving (commit, x1,k, . . . , xn,k, σk) from Pi party Pk first checks the signature σk by
Fsig. If the signature is invalid then Pk sends out (commit-error, n) to the receiver over
Fauth. Otherwise, if the signature is valid, then party Pk sends (commit-ok, n) to Pj over
Fauth.

• Only if the receiver gets 2t messages (commit-ok, n) from P1, . . . , P2t then it outputs
(hcom-receipt, sid, Pi, Pj , n).

– Opening:
• When getting (hcom-open, sid, Pi, Pj , a1, . . . , an) as input, the committer Pi computes y ←Pn

`=1 a`x` and yk ←
P

a`x`,k for k = 1, 2, . . . , 2t. Additionally, it computes signatures τk

of (a1, . . . , an, yk). Send (open, a1, . . . , an, yk, τk) over Fsmt to each Pk.
• Party Pk, when receiving (open, a1, . . . , an, yk, τk), verifies that yk =

P
a`x`,k for the

previously received values and also checks the signature τk for (a1, . . . , an, yk). If all
tests succeed then it sends (open-ok, a1, . . . , an, yk, τk) to Pj over Fsmt; else it sends
(open-error, a1, . . . , an, x1,k, . . . , xn,k, σk), i.e., reveals all shares including the signature.

• The receiver waits to receive 2t messages including values (a1, . . . , an), either of type
open-ok or of type open-error. Having received such values the receiver checks the signature
in each message with the help of Fsig and vk, i.e., the receiver verifies that τk is valid or that
σk is valid. If so, for each open-error message the receiver reconstructs yk ←

P
a`x`,k and

checks with these parts and the ones in open-ok that the reconstruction algorithms yields
y 6= ⊥. If all tests succeed then the receiver outputs (hcom-open, sid, Pi, Pj , a1, . . . , an, y).

Fig. 9. Universally Composable Homomorphic Commitment Scheme

28


