
A preliminary version appears in CT-RSA 2010, Lecture Notes in Computer Science, Springer-Verlag, 2010.

Hash Function Combiners in TLS and SSL

Marc Fischlin Anja Lehmann Daniel Wagner

Abstract. The TLS and SSL protocols are widely used to ensure secure commu-
nication over an untrusted network. Therein, a client and server first engage in the
so-called handshake protocol to establish shared keys that are subsequently used
to encrypt and authenticate the data transfer. To ensure that the obtained keys
are as secure as possible, TLS and SSL deploy hash function combiners for key
derivation and the authentication step in the handshake protocol. A robust com-
biner for hash functions takes two candidate implementations and constructs a hash
function which is secure as long as at least one of the candidates is secure. In this
work, we analyze the security of the proposed TLS/SSL combiner constructions for
pseudorandom functions resp. message authentication codes.

1 Introduction

Hash functions are an important primitive for cryptographic protocols and are cur-
rently used for various tasks that require, among others, collision resistance or, in
keyed settings, behavior of a pseudorandom function or a MAC. However, recent attacks
[WYY05, WY05, CR08, SSA+09] against the most widely deployed hash functions MD5
and SHA1 caused a decrease of confidence, especially concerning long-term security.
Hence, approaches like robust combiners [Her05] which allow to obtain less vulnerable
hash functions are of great interest and have triggered a series of research [BB06, Pie07,
CRS+07, FL07, Pie08, FLP08].

In general, a hash combiner takes two hash functions H0, H1 and combines them
into a failure-tolerant function such that this function remains secure as long as at least
one of the two functions H0 or H1 is secure. For example, the classical combiner for
collision-resistance simply concatenates the outputs of both hash functions Comb(M) =
H0(M)∣∣H1(M). If a hash function is supposed to be used as a pseudorandom function
(PRF), then the exclusive-or of the outputs Comb(k0∣∣k1,M) = H0(k0,M)⊕H1(k1,M)
with independent keys k0, k1 yields a robust design. Combiners that preserve even
multiple properties in a robust manner where proposed in [FL08, FLP08].

Interestingly, the fact that combiners give better security assurances has been ac-
knowledged by the designers of TLS and its predecessor SSL, long before they have
been investigated more thoroughly by theoreticians. Both TLS and SSL use various
combinations of MD5 and SHA1 instead of relying only on a single hash function. The
specification of TLS even explicitly states: “In order to make the PRF as secure as
possible, it uses two hash algorithms in a way which should guarantee its security if
either algorithm remains secure” [TLS99] .

1

The SSL protocol [SSL94] was published in 1994 by Netscape to provide secure com-
munication between two parties over an untrusted network, and subsequently formed the
basis for the TLS protocol [TLS99, TLS06]. Nowadays, both protocols are ubiquitously
present in various applications such as electronic banking, online shopping or secure
data transfer. However, neither TLS nor SSL were accompanied with rigorous security
proofs. An important step was recently done by Morrissey et al. [MSW08] and Gajek et
al. [GMP+08] who gave the first security analysis of the handshake protocol of TLS. The
handshake protocol is the essential part of TLS/SSL as it allows a client and server to
negotiate security parameters, such as shared symmetric keys or trusted ciphers, without
having any common secrets yet. The established keys and cryptographic algorithms are
subsequently used to protect the data transfer, i.e., the confidentiality and authenticity
of the entire communication relies on the security of the key agreement. Thus, it is of
crucial importance that the handshake protocol provides reliable parameters. Ideally,
this statement should be fortified by comprehensive security proofs.

Our Results. In this work, we scrutinize the design of the (non-standard) hash com-
biners, deployed in the TLS and SSL handshake protocols, regarding the suitability for
the respective purposes. As already mentioned, secure key derivation is one of the main
tasks of the handshake phase. Both TLS and SSL use hash combiners to compute the
master secret out of the pre-master secret, which is assumed to be a shared random
string. To achieve secure key-derivation, robustness with respect to pseudorandomness
is required.

While TLS (mainly) reverts to the standard design for PRF combiners, i.e., it xors
the outputs of the two hashes, SSL applies the cascade H0(k, (H1(k,M)) as the pseudo-
random function for key derivation. For SSL we prove that the combiner is not robust
and not even preserving, i.e., even two secure PRFs may yield an insecure combiner.
This stems from the fact that both hash functions are invoked with the same master key.
By using individual keys for each underlying function, we show that the security of the
SSL combiner is somewhat between robustness and property-preservation. In the case of
TLS, we prove that the combiner is a secure PRF if either of H0, H1 is a pseudorandom
function. Interestingly, the TLS construction is neither optimal in terms of security nor
efficiency. We therefore also discuss possible tweaks to obtain better security bounds
while saving on computation.

TLS and SSL also use hash combiners for the finished message in the handshake pro-
tocol, which is basically a message authentication code generated for the shared master
secret and all previous handshake messages. This concludes the key exchange phase in
TLS/SSL and authenticates the previous communication. Ideally, the combiners used
for this purpose should be robust for MACs, i.e., rely only on unforgeability instead
of pseudorandomness of the hash function.1 We show that in TLS the combiner for

1The devil’s advocate may claim that we can already start from the assumption that one of the hash
function is a PRF, as we require this for the key derivation step anyway. However, it is a common
principle to revert to the minimal requirements for such sub protocols and their designated purpose.
Suppose, for example, that both hash functions turn out to be not pseudorandom, that key derivation
becomes insecure and confidentiality of the subsequently transmitted data is breached. Then, if one of

2

authentication requires the additional assumption of at least one hash function being
collision resistant. The combiner used in SSL is again neither robust nor preserving, due
to the same problem of using the master secret as key for both functions. We discuss
that a modified version which splits the key into independent halves, is a secure MAC
when at least one hash function is simultaneously unforgeable and collision resistant.

In summary, we give the first formal treatment of the hash combiners deployed
in the TLS and SSL protocols. Our results essentially show that the choices in TLS
are sound as they follow common design criteria for such combiners (but still leave
space for improvements), whereas the SSL design for combiners requires much stronger
assumptions. Our result, together with other steps like the security proofs in [MSW08,
GMP+08], strengthen the confidence in the important protocols TLS and SSL.

2 Preliminaries

In this section we present the preliminaries for our investigation of the combiners in
SSL/TLS.

2.1 Hash Functions and Their Properties

Since we give all results in terms of concrete security we adopt Rogaway’s approach
[Rog06] of defining hash functions as single instances (instead of families) and considering
constructive reductions between security properties. For security notions without secret
keys like collision-resistance the adversary is implicitly based on (the description of)
H, whereas for security properties involving secret keys like pseudorandomness or the
MAC property, the adversary also gets black-box access to the hash function H(k, ⋅)
with secret key k (we often write H(k∣∣⋅) if the key is simply prepended to the message).
In this case we call H a keyed hash function and usually denote the key space by K.

Most recent hash functions such as MD5, SHA1 apply the Merkle-Damg̊ard con-
struction [Mer90, Dam90] to obtain a variable-input length function out of a fixed-input
length compression function ℎ : {0, 1}n × {0, 1}ℓ → {0, 1}n and an initial vector IV. To
compute a digest one divides (and possibly pads) the message M = m0m1 . . .mk−1 into
blocks mi of ℓ bits and computes the digest H(M) = ivk as

iv0 = IV, ivi+1 = ℎ(ivi,mi) for i = 0, 1, . . . , k − 1.

Collision-Resistance. Let H : {0, 1}∗ → {0, 1}n be a hash function. The collision-
finding advantage of an adversary A is

Advcr
H(A) := Prob

[
(M,M ′)← A() : M ∕= M ′ ∧ H(M) = H(M ′)

]
.

We again note that, formally, for any hash function there is a very efficient algorithm
A with advantage 1, namely, the one which has a collision hardwired into it and simply

the function is nonetheless still a good MAC, a secure authentication step in the finished message via
the robust MAC-combiner would still guarantee authenticity of the designated partner.

3

outputs this collision. However, based on current knowledge it is usually infeasible to
specify this algorithm constructively (cf. [Rog06]).

Pseudorandomness. Let H : K × {0, 1}∗ → {0, 1}n be a keyed hash function with
key space K. We define the advantage of a distinguisher A as

Advprf
H (A) =

∣∣∣Prob
[
AH(k,⋅) = 1

]
− Prob

[
Af(⋅) = 1

]∣∣∣
where the probability in the first case is over A’s coin tosses and the choice of k

$← K,
and in the second case over A’s coin tosses and the choice of the random function
f : {0, 1}∗ → {0, 1}n.

Message Authentication (Unforgeability). Let H : K × {0, 1}∗ → {0, 1}n be
a keyed (deterministic) hash function with key space K. We define the forgeability
advantage of an adversary A as

Advmac
H (A) = Prob

[
k

$← K, (M,�)← AH(k,⋅) : H(k,M) = � ∧M not queried
]

Hash Function Combiners. A hash function combiner Comb for hash functions
H0, H1 “merges” the two functions H0, H1 into a single hash function. The combiner
is called preserving [Her05] for some property like collision-resistance if CombH0,H1 has
this property given that both hash functions have this property. In a sense, this ensures
a minimalistic security guarantee. The combiner is called robust [Her05] if it obeys the
property if at least one of the two functions H0, H1 has the corresponding property.
Note that, in terms of our concrete security statements, collision-resistance robustness
for example is formulated by demanding that the probability of finding collisions in a
combiner is bounded from above by the minimum of finding collisions for the individual
hash functions.

2.2 HMAC

Each hash function can be used as a pseudorandom function or MAC by replacing the
initial value IV with a randomly chosen key k of the same size. A more convenient
technique was proposed by Bellare et al. [BCK96a] with the HMAC/NMAC algorithms,
which are message authentication codes built from iterated hash functions. Recall that a
MAC takes a secret key k, message m and outputs a tag �. The HMAC algorithm takes,
in its more general version, two keys kin, kout and applies an iterated hash function H
like MD5 and SHA1 in a nested manner:

HMAC(kin, kout)(M) = H(IV, kout∣∣H(IV, kin∣∣M)) (1)

In practice, HMAC typically uses only a single key k from which it derives dependent
keys kin = k⊕ ipad and kout = k⊕ opad for fixed constants ipad = 0x3636 . . . 36, opad =
0x5c5c . . . 5c.

4

Originally, Bellare et al. [BCK96a] proved HMAC – resp. its theoretical counterpart
NMAC – to be pseudorandom functions when the underlying compression function ℎ
is pseudorandom and collision-resistant. Subsequently, the proof was restated on the
sole assumption that the compression function is pseudorandom [Bel06]. As the security
claims are given for NMAC, Bellare [Bel06] introduced the notion of a “dual” pseudo-
random function function ℎ̄ : {0, 1}n ×K → {0, 1}n with ℎ̄(m, k) = ℎ(k,m). If both ℎ̄
and ℎ are pseudorandom, the security of NMAC carries over to HMAC:

Lemma 2.1 Let ℎ : {0, 1}n × {0, 1}ℓ → {0, 1}n be a compression function with key
space {0, 1}n. Let IV ∈ {0, 1}n be a fixed initialization vector, and let HMAC : {0, 1}n×
{0, 1}∗ → {0, 1}n be defined as in (1). For any adversary A against HMAC that makes
q queries each of at most l blocks and runs in time at most t, there exist adversaries
A1,A2,A3 such that

Advprf
HMAC(A) ≤ 2Advprf

ℎ̄
(A1) + Advprf

ℎ (A2) +

(
q

2

)[
2l ⋅Advprf

ℎ (A3) + 2−n
]

where A1 makes a single query IV and runs in time at most t. A2 makes at most q
queries and runs in time at most t, while A3 makes at most 2 oracle queries and runs
in time at most O(lTℎ) where Tℎ denotes the time required for one evaluation of ℎ.

For the single-keyed HMAC-version, the security of ℎ̄ must hold for related-key at-
tacks as well. That is, the adversary is granted access to two oracles ℎ̄(k⊕opad, ⋅), ℎ̄(k⊕
ipad, ⋅) with dependent keys.

2.3 The SSL/TLS Handshake Protocol

The SSL and TLS protocols consist of two layers: the record layer and the handshake
protocol. The record layer encrypts all data with a cipher and session key that have been
negotiated by the handshake protocol. Thus the handshake protocol is a key-exchange
protocol layered above the record layer and initializes and synchronizes a cryptographic
state between a server and a client. Both versions of the handshake protocol, for TLS
and for SSL, vary mainly in the implementation of the exchanged messages, i.e., the
overall structure of the handshake part is the same and can be summarized as the
sequence of the following steps [Res01](see also Figure 1):

(1) The client conveys its willingness to engage in the protocol by sending a list of
supported cipher algorithms and a random number, that is subsequently used for
key-derivation.

(2) The server responds by choosing one of the proposed ciphers, and sending its certified
public key as well as a random nonce.

(3) The client verifies the validity of the received certificate and sends a randomly chosen
pre-master secret encrypted under the server’s public key.

(An alternative to having the client choose the pre-master secret is to engage in a key
exchange protocol like signed Diffie-Hellman. Since our analysis below only assumes
that the pre-master secret is random we omit the details about its generation.)

5

(4) Both client and server individually compute a master secret from the exchanged
random nonces and the pre-master secret. Once the master key is computed, it can
be used to obtain further application keys.

(5+6) Finally, the master secret is confirmed by the finished message, where each party
sends a MAC over the transcript of the conversation using the new master key. This
is also the first transmission which uses the secure channel for the derived keys.

Client Server
(1) Supported Ciphers, ClientRandom

−−→
(2) Chosen Cipher, ServerRandom, Certificate

←−−
(3) Encrypted Pre-Master Secret

−−→
(4) Key Derivation (4) Key Derivation

(master secret) (master secret)
(5) Finished Message

−−→
(6) Finished Message

←−−

Figure 1: Overview of the TLS/SSL handshake protocol [Res01]

3 Derivation of the Master Secret

In this section we analyze the functions that are deployed by TLS and SSL to derive a
secret master key from a shared pre-master key. The basic requirement of key derivation
is that the obtained key should be indistinguishable from a randomly chosen one. In
particular, the key-derivation function must be pseudorandom. For more discussion see
[Kra08]. We will show that the combiner proposed by TLS is PRF-robust, i.e., security
of one of the underlying hash function suffices, whereas the SSL combiner requires
assumptions on both hash functions in order to produce random looking output.

3.1 The PRF-Combiner used in TLS

The TLS key derivation obtains the master secret (ms) from the pre-master secret (pms)
by invoking the following hash combiner:

ms =

CombMD5,SHA1
TLS−prf (pms, “master secret”,ClientRandom∣∣ServerRandom)[0..47]

The pre-master secret is assumed to be a random value both parties have agreed upon,
and ClientRandom and ServerRandom are public random nonces exchanged in the hand-
shake protocol. By introducing a specific label (here “master secret”) to the input, the

6

combiner can subsequently be used for further (key-derivation) computations, while
guaranteeing distinct inputs for each application. The appendix [0..47] indicates that
the master secret consists of the first 48 bytes of the combiners output.

Basically, the combiner CombH0,H1

TLS−prf xors the output of a function P which gets called
twice based on two distinct hash functions H0 and H1. To this end, the combiner also
splits the key K = k0∣∣k1 with ∣k1∣ = ∣k0∣ into independent halves:

CombH0,H1

TLS−prf(k0∣∣k1,M) = PH0(k0,M)⊕ PH1(k1,M) (2)

The underlying function PHb
makes several queries to HMACHb

and produces byte
strings of (arbitrary) length that is a positive multiple of n.

PHb
(k,M) = HMACHb

(k,A(1)∣∣M) ∣∣ HMACHb
(k,A(2)∣∣M)∣∣ . . . (3)

with A(0) = M and A(i) = HMACHb
(k, (A(i− 1)).

Analysis of CombH0,H1

TLS−prf . We show that the TLS-combiner for key derivation is a
pseudorandom function if at least one of the two hash functions H0, H1 is based on a
pseudorandom compression function. To this end, we first show that PHb

inherits the
pseudorandomness of the underlying hash function.

Note that the PHb
construction uses the HMAC transform to obtain a PRF, which

gets keyed via the input data, out of a standard hash function Hb with fixed IV. It
was shown in [Bel06] that HMAC is a pseudorandom function, when the underlying
compression-function is a dual PRF, i.e., it has to be a secure PRF when keyed by
either the data input or the chaining value. Thus, while functional-wise HMAC uses the
cryptographic hash function only as a black-box, the security guarantee is still based
on the underlying compression function ℎb. We therefore consider each hash function
Hb : {0, 1}∗ → {0, 1}n as the Merkle-Damg̊ard iteration of a compression function
ℎb : {0, 1}n×{0, 1}ℓ → {0, 1}n. By applying Lemma 2.1 we can conclude that HMACHb

is a pseudorandom function, when ℎb is a dual PRF.
Next, we show that the design of the PH construction preserves the pseudorandom-

ness of HMACH . For a modular analysis – and for the sake of readability – we simplify
the description of PH by replacing HMAC and the hash function H by the same function
H, and prove that the modified function P′H is a pseudorandom function if H is. Further-
more, we make a rather syntactical change of P to obtain a function that is efficiently
computable on its own: According to the TLS specification, the P construction produces
output of arbitrary length from which the combiner takes as much bytes as required,
e.g., the first 48 bytes in case of the derivation of the master secret. In the following
we slightly deviate from that notation and assume that P gets also parametrized by an
integer c which indicates that an output of length c ⋅n is requested. Overall, we analyze
the following function P′:

P′H(k,M, c) = (4)

H(k,A(0) ∣∣ M) ∣∣ H(k,A(1) ∣∣ M) ∣∣ . . . ∣∣ H(k,A(c− 1) ∣∣ M)

where A(0) = M, A(i) = H(k, (A(i− 1)).

7

Lemma 3.1 Let H : {0, 1}n × {0, 1}∗ → {0, 1}n be a pseudorandom function with key
space {0, 1}n, and let P′H : {0, 1}n × {0, 1}∗ → {0, 1}c⋅n be defined by (4) above. For all
adversaries A running in time t, making q queries of length at most l and with c ≤ cmax ,
there exist an adversary ℬ such that

Advprf
P′ (A) ≤ Advprf

H (ℬ) + q ⋅
(
cmax

2

)
⋅ 2−n

where ℬ makes at most 2cmax ⋅ q queries, each of length at most l + n and runs in time
at most t+O(cmax).

Proof. Assume that there is an adversary A that can distinguish the function P′H(k, ⋅)
from a random function F : {0, 1}∗ → {0, 1}n with advantage Advprf

P′ (A). Given A we
show how to obtain an adversary ℬ against the underlying hash function H(k, ⋅). Recall
that A has black-box access to an oracle that is either the keyed construction P′H(k, ⋅, ⋅)
or a random function F : {0, 1}∗ → {0, 1}∗ (where, formally, F also takes the parameter
c as additional input and outputs strings of length cn). The distinguisher ℬ has to
simulate this oracle with the help of its own oracle, which is either the keyed hash-
function H(k, ⋅) or a random function f : {0, 1}∗ → {0, 1}n. To this end, for any query
(M, c) of A, the adversary ℬ mimics the construction P′ but replaces each evaluation of
the underlying hash function H by the response of its oracle on the corresponding query.
If A stops outputting its guess d, algorithm ℬ stops with output d too.

If the oracle of ℬ was the hash function H, then ℬ perfectly simulates the construction
P′. Thus, the output distribution of ℬ equals the one of A with access to P′:

Prob
[
ℬH(k,⋅) = 1

]
= Prob

[
AP′H(k,⋅,⋅) = 1

]
.

In the case that the oracle of ℬ was the truly random function f , we have to show that
processing its random answers in the P′ construction yields random values again. Recall
that for each query (M, c) the adversary ℬ now computes the sequence f(A(0)∣∣M) ∣∣
f(A(1)∣∣M) ∣∣ . . . ∣∣ f((A(c− 1)∣∣M) where A(i) = f(A(i− 1)) starting with A(0) = M .
As long as A(i) ∕= A(j) for all i ∕= j ∈ {0, 1, . . . c− 1} holds for each query, the function
f gets evaluated in the outer iterations on distinct and unique values, such that the
corresponding outputs from f are independently and uniformly distributed. Thus, it
remains to show that the probability for collisions on the A(i) values, which are derived
using f in a cascade, is small. Assume that for a query (M, c) a collision occurred,
i.e., there exist (unique) indices i∗ ∈ {0, . . . , c − 1} and j∗ ∈ {0, . . . , i∗ − 1} such that
f(A(i∗−1)) = A(j∗) but A(i∗−1) ∕= A(j) for all j = 0, 1, . . . , i∗−2. That is, f has never
been invoked on the value A(i∗ − 1) but maps to an value A(j∗) which is an previous
answer of (the cascade of) f . Since f is a truly random function, such a collision can
only occur with probability q ⋅

(
cmax

2

)
⋅ 2−n where q denotes the number of A queries and

cmax is the largest value for c that appeared in the simulation. Overall, the output
distribution of ℬf results from

Prob
[
ℬf = 1

]
≤ Prob

[
ℬf = 1

∣∣∣ no Collision
]

+ Prob[Collision]

= Prob
[
AF = 1

]
+ q ⋅

(
cmax

2

)
⋅ 2−n.

8

Thus, ℬ distinguishes H from f with probability:

Prob
[
ℬH(k,⋅) = 1

]
− Prob

[
ℬf = 1

]
≥ Prob

[
APH(k,⋅,⋅) = 1

]
− Prob

[
AF = 1

]
− q ⋅

(
cmax

2

)
⋅ 2−n.

This proves the claim. □

Putting Lemma 2.1 and Lemma 3.1 together, we now obtain that the pseudoran-
domness of ℎb is preserved by the corresponding construction HMACHb

and, in turn, by
P′HMACHb

which equals PHb
. Furthermore, XOR is a robust combiner for pseudorandom

functions, and thus, if least one of PH0 ,PH1 is a PRF, also CombH0,H1

TLS−prf provides out-
puts that are indistinguishable from random. This, together with the fact that the key
is divided into independent halves, implies the following theorem:

Theorem 3.2 Let Hb : {0, 1}n × {0, 1}∗ → {0, 1}n for b ∈ {0, 1} be a hash function
with underlying compression function ℎb : {0, 1}n × {0, 1}ℓ → {0, 1}n. Let CombH0,H1

TLS−prf
be defined as in (2). For all adversaries A running in time t, making q queries of length
at most l and such that c ≤ cmax , there exist adversaries A0,A1 such that

Advprf
CombTLS−prf

(A)

≤ min
{
Advprf

HMACℎ0
(A0),Advprf

HMACℎ1
(A1)

}
+ q ⋅

(
cmax

2

)
⋅ 2−n

where each of A0,A1 makes at most 2cmax ⋅ q queries of length at most l+n and runs in
time at most t+O(cmax(1+2q ⋅Tb̄)) where Tb̄ denotes the time required for one evaluation
of Pb̄ (as defined in (3)).

Improvements. When the combiner CombH0,H1

TLS−prf is used for key derivation, the un-
derlying construction P ensures that sufficiently many output bytes are produced. How-
ever for the purpose of range extension of a PRF, the construction P is neither optimal
in terms of efficiency nor security. Namely, if one assumes HMACH to be a secure PRF,
one could simply augment the input M by a fixed-length encoded counter ⟨i⟩, which
ensures distinct inputs for each PRF evaluation:

P∗Hb
(k,M) = HMACHb

(k,M ∣∣ ⟨1⟩) ∣∣ HMACHb
(k,M ∣∣ ⟨2⟩)∣∣ . . .

Replacing P with P∗ would result in better security bounds, as one gets rid of the
probability q ⋅

(
cmax

2

)
⋅ 2−n of a collision on the A(i) values. In terms of efficiency, the

above construction only requires half of the PRF evaluations as needed in the original
P function.

Another solution is to use solely the outputs of A(⋅), i.e., without feeding them into
HMAC again:

P∗Hb
(k,M) = A(1) ∣∣ A(2) ∣∣ A(3) ∣∣ . . .

9

with A(i) being the i-th cascade of HMAC(k,M) as defined in (3). With this construction
one inherits the same security bound as in the original solution, but invokes HMAC after
the first evaluation only one shorter inputs, e.g., 128 bits in the case of MD5 and 160
bits for SHA1, which decreases the computational costs.

3.2 The PRF-Combiner used in SSL

In the SSL protocol the following construction gets repeated until sufficient key material
for the master secret is generated:

ms = MD5(pms∣∣(SHA1(“A”∣∣pms∣∣ClientRandom∣∣ServerRandom))∣∣
MD5(pms∣∣(SHA1(“BB”∣∣pms∣∣ClientRandom∣∣ServerRandom))∣∣
MD5(pms∣∣(SHA1(“CCC”∣∣pms∣∣ClientRandom∣∣ServerRandom))∣∣ ⋅ ⋅ ⋅

Both functions get keyed by the input data, where in the case of the outer hash function
the key is prepended to the message, and for the inner hash the key is somewhat embed-
ded in the message. Due to length-extension attacks, key-prepending approaches must be
accompanied by prefix-free encoding, otherwise the hash function can not serve as a pseu-
dorandom function, as shown in [BCK96b]. For the analysis we assume that the hash
function takes care of that issue, and thus that a hash function Hb : {0, 1}∗ → {0, 1}n is
a secure PRF when keyed via the first n bits of the data input.

On a more abstract level, each repetition of the SSL-combiner above for prefixes
“A”, “BB”, “CCC” etc. can be represented as the following construction:

CombH0,H1

SSL−prf(k,M) = H0(k ∣∣ H1(k∣∣M)), (5)

e.g., where H1(k∣∣M) implements SHA1(“CCC”∣∣k∣∣M) for the fixed value “CCC”. To
be a robust combiner for pseudorandom functions, the SSL-combiner needs to be robust
for H0 and each such function H1. From now on we fix an arbitrary H1.

Analysis of CombH0,H1

SSL−prf . The cascade CombH0,H1

SSL−prf of two hash functions is not a
robust design for pseudorandomness, because as soon as the outer function becomes
insecure the combiner, too, can be easily distinguished from a random function: Consider
as an example the constant function H0(x) = 0n that maps any input to zeros, which is
obviously distinguishable from random. Then, also the combiner CombH0,H1

SSL−prf(k,M) =
H0(k∣∣H1(k∣∣M)) becomes a constant function, independently of the strength of the inner
hash function H1. Hence,

Proposition 3.3 The combiner CombH0,H1

SSL−prf is not PRF-robust.

Actually, CombH0,H1

SSL−prf is not even PRF-preserving, i.e., there exist two functions
H0, H1 that are both secure pseudorandom functions, but become easily distinguishable
when used in the SSL-combiner. The problem arises from the fact that the same secret

10

key is used for both functions, which contradicts the general design paradigm of provably
robust combiners.

For the counter example let H1 : K×{0, 1}∗ → {0, 1}n be a pseudorandom function.
Define H0(k, x) now as follows: if x = H1(k, 0n) then return 0n, else output H1(k∣∣1∣∣x).
Then H0 basically inherits the pseudorandomness of H1 because any distinguisher with
access to H0(k, ⋅) only retrieves replies H1(k∣∣1∣∣x) to queries x ∈ {0, 1}∗, unless it is able
to predict the value H1(k∣∣0n). The latter would contradict the pseudorandomness of H1,
though. But when both functions are combined into H0(k ∣∣ H1(k∣∣M)), the combiner
returns 0n for input 0n and is obviously therefore not a pseudorandom function.

In order to allow any reasonable statement about the security of the construction
CombH0,H1

SSL−prf , we assume in the following that the combiner splits the key into two
independent halves, and invokes the hash functions on distinct shares:

CombH0,H1

SSL−prf∗(k0∣∣k1,M) = H0(k0 ∣∣ H1(k1∣∣M))

Note that the first discussed counter example is still valid, as it did not require any
dependencies of the individual keys. Thus, even CombH0,H1

SSL−prf∗ is not a robust combiner
in general. However, the security can be considered to be somewhat above property-
preservation, since we can relax the assumption on one hash function while the combiner
still preserves the pseudorandomness property of the stronger function:

PRF + weakCR = PRF. In the case that the outer hash function H0 is a secure
pseudorandom function, the inner hash function only needs to ensure that for distinct
queries M ∕= M ′ of an adversary to the combiner, the function H0 gets evaluated on
different values too, i.e., H1(k,M) ∕= H1(k,M ′) holds for M ∕= M ′. Thus, it suffices
for H1 to be weakly collision-resistant, which is defined similarly to collision-resistance,
except that here the function is keyed with a secret key and the adversary only gets
black-box access to the function. Even though weakCR is a weaker assumption than
standard CR, and it is for fixed input-length functions implied by the MAC security, it
might suffer for variable length-inputs from the strong attacks against CR [Hir04]. In
particular, MD5 and SHA1 are still assumed to be good pseudorandom functions but
lack security against weakCR attacks, which was also the reason to restate the proof of
HMAC in [Bel06].

weakPRF +PRF = PRF. If the inner hash functionH1 is a pseudorandom function,
an adversary that queries the combiner gets to see images of H0 only for random domain
points. Thus, it is not necessary that the outer function is a full-fledged PRF as well. In
this case, already the assumption of H0 being a weak pseudorandom function is sufficient.
This notion weakens the regular concept of PRFs in the sense that the adversary is only
allowed to query the function an random inputs instead of values of his choice. Note
that a weakPRF is significantly weaker than a PRF, as e.g., they can exhibit weak input
points or be commutative.

insecure+insecure = PRF? One might ask if one can even start with two functions
that both are not full PRFs itself, but add up to a secure PRF when used in the

11

combiner construction. It turns out that the SSL combiner allows for two almost entirely
insecure hash functions to yield a secure PRF. However, this only holds for very artificial
and tailored hash functions, hence, the impact on the security statements for practical
considerations is quite limited. We also stress that this is not a particular benefit of the
SSL design, as we can obtain similar examples for the TLS combiner as well. We discuss
both examples in the Appendix A.

3.3 Application Key Derivation in TLS and SSL

Both combiners CombH0,H1

TLS−prf and CombH0,H1

SSL−prf are used to obtain a shared master secret
from a pre-shared key. However, subsequently, the same functions are deployed to derive
further keys, e.g., for encryption or message authentication. To this end, the freshly
computed master secret is used instead of the pre-master secret that was assumed to
be a random value. For TLS we have shown that the combiner CombH0,H1

TLS−prf provides
a master secret that is indistinguishable from random when at least one hash function
is a PRF. Thus, our result carries over to the application key derivation, that uses the
combiner with the derived master secret. The same holds for SSL, but under stronger
assumptions on the underlying hash functions.

4 Finished-Message

In this section we investigate the TLS/SSL combiners that are used to compute the
so-called finished -message of the handshake protocols. The finished message is the last
part of the key exchange and is realized by a message authentication code which is
computed over the transcript of the previous communication. Thus, the combiners that
are used for this application should optimally be robust for MAC, i.e., only rely on the
unforgeability property instead of the stronger PRF-assumption.

We note that the finished message itself is already secured through the negotiated
application keys. This complicates the holistic security analysis of this step. But since we
are at foremost interested in the design of the combiners and their designated purpose,
we only touch this issue briefly at the end of Section 4.1 (where we address this issue
for TLS; the same discussion holds for SSL).

4.1 The MAC-Combiner used in TLS

To compute the finished MAC, the TLS protocol applies the same combiner as for the
derivation of the master secret, but already uses the new master key. As the key is
known only at the very end of the protocol, the MAC cannot be computed iteratively
during the communication. To circumvent the need of storing the entire transcript until
the master secret is available, TLS hashes the transcript iteratively and then computes
the MAC over the short hash value only:

�finished =

CombMD5,SHA1
TLS−prf

(
ms, FinishedLabel, MD5(transcript)∣∣SHA1(transcript)

)
[0..11]

12

A further input to the combiner is the FinishedLabel which is either the ASCII string
“client” or “server”, which ensures that the MAC values of both parties are different,
otherwise an adversary could simply return a finished tag back to its sender. The
appendix [0..11] indicates again that the first 12 bytes of the combiner output are used
as the MAC.

Recall that the combiner CombH0,H1

TLS−prf is based on the construction P which produces
arbitrary length output by invoking the underlying hash function in an iterative and
nested manner. However, this range extension is only necessary when the combiner
is used for key derivation. To compute the finished message, only the first 12 byte of
the combiners output are used, which is shorter than the digests of both applied hash
functions (16 bytes for MD5 and 20 bytes for SHA1). Thus, we can omit the P part from
the construction and simplify the combiner as follows:

CombH0,H1

TLS−mac(k0∣∣k1,M) = (6)

HMACH0(k0, H0(M)∣∣H1(M)) ⊕ HMACH1(k1, H0(M)∣∣H1(M))

Verification for the above MAC-combiner is done by recomputing the tag and com-
paring it to the given tag.

Analysis of CombH0,H1

TLS−mac. We have already shown that the combiner construction

CombH0,H1

TLS−prf , which can be seen as the more complex version of CombH0,H1

TLS−mac, is robust
for pseudorandom functions. Thus, if one is willing to assume that at least one hash
function behaves like a random function, the combiner can be used directly as a MAC,
as well.

However, ideally, the combiner CombH0,H1

TLS−mac should be a secure MAC on the sole
assumption that at least one of the underlying hash functions H0, H1 is unforgeable
rather than being a pseudorandom function. Unfortunately, hashing the transcript
before the MAC gets computed, imposes another assumption on the hash functions
(even when starting from the PRF assumption), namely at least one hash function
needs to be collision-resistant. Otherwise an adversary could try to induce a collision
on the input to the HMAC functions, which immediately gives a valid forgery for the
entire MAC function. Under the assumption that such a collision is unlikely, we show
that the combiner CombH0,H1

TLS−mac is MAC-robust.
To this end, we first prove that the xor of two deterministic MACs (like HMACHb

)
invoked directly with the message yields a robust combiner:

CombH0,H1
⊕ (k0∣∣k1,M) = H0(k0,M)⊕ H1(k1,M) (7)

In the context of aggregate authentication, Katz and Lindell [KL08] gave a similar
result by showing that multiple MAC tags, computed by (possibly) different senders on
multiple (possibly different) messages, can be securely aggregated into a shorter tag by
simply xoring them.

Lemma 4.1 Let H0,H1 : {0, 1}n×{0, 1}∗ → {0, 1}n be deterministic message authenti-

cated codes, and let CombH0,H1
⊕ be defined by (7). For any adversary A against CombH0,H1

⊕

13

making at most q queries and running in time at most t, there exist adversaries A0,A1

such that
Advmac

Comb⊕(A) ≤ min
{
Advmac

H0
(A0),Advmac

H1
(A1)

}
where Ab for b = 0, 1 makes at most q queries and runs in time at most t + O(qTb̄)
where Tb̄ denotes the time for one evaluation of Hb̄.

Proof. We show that any adversary A against the combiner implies adversaries A0,A1

against both underlying MACs. Assume towards contradiction that an adversary AComb

after making q queries M1, . . . ,Mq to the CombH0,H1
⊕ (K, ⋅) oracle, outputs with some

probability a tuple (M∗, �∗) such that �∗ = CombH0,H1
⊕ (K,M∗) but M∗ was never

submitted to the combiner oracle. Given AComb we construct a MAC adversary Ab

against the MAC Hb for b ∈ {0, 1}. This adversary has oracle access to the function
Hb(kb, ⋅) and uses AComb in a black-box way to produce its forgery. To this end, Ab first
chooses a random key kb̄ for Hb̄ and then answers each query to the combiner with the
help of its oracle access and the knowledge of kb̄. When AComb holds, outputting a pair
(M∗, �∗), the adversary Ab computes its forgery (M∗, �∗b) with �∗b = �∗ ⊕ Hb̄(kb̄,M

∗).
As M∗ was not previously queried by AComb, the same holds for Ab. Furthermore,

as both MACs are deterministic, the value �∗ = H0(k0,M
∗) ⊕ H1(k1,M

∗) fixes two
well-defined tags for H0,H1. Thus, Ab’s output is equal to the value Hb(kb,M

∗) for
the unknown key kb and thereby constitutes a valid forgery. Since the adversary A
yields forgers A0,A1 for both MACs, it follows that the advantage cannot exceed the
advantage of the smaller of the two security bounds for the MACs. □

Complementing the above Lemma 4.1 with the probability of finding collisions on
the concatenated combiner H0(M)∣∣H1(M) yields Theorem 4.2.

Theorem 4.2 Let H0, H1 : {0, 1}n × {0, 1}∗ → {0, 1}n be hash functions, and let

CombH0,H1

TLS−mac be defined by (6). For any adversary A against CombH0,H1

TLS−mac making
at most q queries and running in time at most t, there exist adversaries A0,A1,ℬ0,ℬ1

such that

Advmac
CombTLS−mac

(A) ≤ min
{
Advmac

HMACH0
(A0),Advmac

HMACH1
(A1)

}
+ min

{
Advcr

H0
(ℬ0),Advcr

H1
(ℬ1)

}
where Ab for b = 0, 1 makes at most q queries and runs in time at most t+O(qTb̄) where
Tb̄ denotes the time for one evaluation of HMACHb̄

, and ℬb runs in time t+O(qTb).

Note that for both properties, unforgeability and collision-resistance, it suffices that
either one of the hash functions has this property (instead of one hash function with
obeying both property simultaneously). This is similar to the difference between weak
and strong combiners in [FL08].

So far, we have reduced the security of the combiner CombH0,H1

TLS−mac of H0, H1 to the
collision-resistance of the hash functions and the unforgeability of the HMAC transforms
HMACH0 and HMACH1 . Preferably, the security of HMACHb

should in turn only rely

14

on the unforgeability of the underlying hash resp. compression function. However, such
a reduction for the plain HMAC transform is still unknown. The previous results for
this issue either require stronger assumptions than MAC (yet, weaker than PRF), or
additional keying-techniques for the compression function. In the following, we briefly
recall the two most relevant approaches for our scenario.

An and Bellare [AB99] observed that HMAC can be used to build a VIL-MAC from
a FIL-MAC (i.e., from an unforgeable compression function) when the secret key en-
ters each compression function evaluation. As this result was shown for compression
functions in the dedicated-key setting, one needs to transform compression functions
without a dedicated-key input into keyed ones. This can be done as follows: Let
ℎ : {0, 1}n × {0, 1}ℓ → {0, 1}n be an unkeyed compression function. Then the keyed
analogue kℎ : {0, 1}n × {0, 1}n+ℓ′ → {0, 1}n is defined as kℎ(k, y, x) = ℎ(y, k∣∣x) where
k ∈ {0, 1}n is the secret key, y ∈ {0, 1}n the chaining value and x ∈ {0, 1}ℓ′ with
ℓ′ = ℓ − n the (shortened) message block2. This approach reduces the number of bits
that can be processed in each iteration but allows to use the SHA1 and MD5 compres-
sion functions, which do not possess a dedicated key-input. Starting from such a keyed
FIL-MAC, the HMAC variant that prepends kin (resp. kout at the final evaluation) to
each message block, is proven to be a secure VIL-MAC [AB99]. When HMAC is used
only with a single-key k, unforgeability of kℎ must hold against related key attacks
for kℎ(k ⊕ Δopad, ⋅) and kℎ(k ⊕ Δipad, ⋅). Overall, the first approach relies solely on
the unforgeability assumption, but comes with a reduced throughput, e.g., when using
SHA1, the HMAC variant that is keyed in each iteration, would require ≈ 1.5 times the
compression function evaluations of the standard HMACSHA1.

The second approach does not require any modification of HMAC, i.e., it has the
same efficiency, but makes stronger assumptions on the compression function: In [Bel06]
Bellare proved that NMAC is a secure MAC if the underlying compression function ℎ is
a privacy-preserving MAC (PP-MAC) and the iteration of ℎ is computationally almost
universal (cAU). The former resembles the indistinguishability notion for encryption and
requires that an adversary given a tag Mac(k,Mb) for chosen M0,M1 cannot determine
b. It was shown that PP-MAC is a weaker assumption than PRF and cAU is a milder as-
sumption than weakCR. Fischlin [Fis08] has shown that, alternatively, non-malleability
and unpredictability of the compression function suffices, too. In both cases, however, in
order to lift the security of NMAC to the single-key version of HMAC, one additionally
needs that the dual compression function ℎ̄ used to derive kin, kout somehow preserves
these conditions.

The Problem of Chopping. Theorem 4.2 states that the TLS-combiner for the
finished message is robust for message authentication codes even when starting from the
unforgeability assumption which is significantly weaker than assuming a PRF. However,
according to the TLS specification, not the entire output of the combiner is used as tag,

2Actually, An and Bellare proposed a transformation that keys the compression function via the
chaining value, which would not allow black-box usage of the underlying hash function. We therefor
swap the roles of chaining and key value, and assume that kℎ is a secure MAC when the key occupies
the first n bits of each input.

15

but only the first 12 bytes. Since the unforgeability notion is not closed under chopping
transformations, a shortened output of a MAC loses any security guarantees. To allow
usage of a chopped fraction of the combiners output, on either has to assume that one
of the underlying MACs is secure for truncation, or one needs to make the stronger
assumption that at least one of the two hash functions is a secure PRF.

Is Unforgeability Enough? When using MACs in a stand-alone fashion, unforge-
ability clearly gives sufficient security guarantees. However, in TLS (and SSL) the tag for
the finished message is computed under the master secret, from which further applica-
tion keys for encryption and authentication are derived. The tag itself is now encrypted
and authenticated with these derived keys. On one hand, this may help to prevent the
tag in the finished message from leaking some information about the master secret. On
the other hand, this causes critical circular dependencies between these values, possibly
even enabling leakage of entire keys. This problem has already been noticed in other
works (e.g., in [MSW08] where the analysis of the handshake protocol assumes that
the tag is sent without securing it with the application keys; or more explicitly in the
context of delayed-key authentication in [FL10]). It is beyond the scope of this work
about combiners, though.

4.2 The MAC-Combiner used in SSL

The SSL-construction for the finished message resembles the HMAC construction, but
appends the inner key to the message instead of prepending it. This stems from the
same problem as in TLS, namely that the MAC should be computed iteratively as soon
as the communication starts, although the necessary key is negotiated only at the end.
To obtain a robust design, SSL uses the concatenation of the HMAC-like construction
based on the MD5 and SHA1 functions:

�finished = HMAC∗MD5(ms,Label∣∣transcript) ∣∣ HMAC∗SHA1(ms,Label∣∣transcript)

where HMAC∗H is defined as:

HMAC∗H(k,M) = H(k∣∣opad∣∣ H(M ∣∣k∣∣ipad)) (8)

with opad, ipad being the same fixed patterns as in HMAC. The structure of HMAC∗

then allows to accomplish the bulk of the computation without knowing the key k.
Overall, the MAC combiner of SSL can be described as follows:

CombH0,H1

SSL−mac(k,M) = HMAC∗H0
(k,M) ∣∣ HMAC∗H1

(k,M) (9)

Analysis of CombH0,H1

SSL−mac. In contrast to the TLS-combiner, SSL uses the entire mas-
ter secret as key for both hash functions. This approach results in a construction
CombH0,H1

SSL−mac that is not even MAC-preserving, although concatenation is MAC-robust
when used with distinct keys for each hash function [Her05].

16

Proposition 4.3 The combiner CombH0,H1

SSL−mac is not MAC-preserving (and thus not
MAC-robust either).

Consider two secure MACs H0,H1, that on input of a secret key k and a message M
outputs a tag �b. Assume furthermore that both MACs ignore parts of their key, i.e.,
H0 ignores the left half of its input key and H1 ignores the right part. We now derive
functions H∗b that can still be unforgeable when used alone, but become totally insecure
when being plugged into the combiner. The first MAC H∗0 behaves like H0 but also leaks
the left half kl of the secret key, i.e., H∗0(k,M) = kl∣∣H0(k,M). The second function is
defined analogously, but outputs the right half of the key: H∗1(k,M) = kr∣∣H1(k,M).
Even though each tag is now accompanied with a part of the key, it remains hard to
create a forgery. When we use now both functions H∗0,H

∗
1 as in the SSL-combiner3 we

obtain: H∗0(k,M) ∣∣ H∗1(k,M) = kl∣∣�0∣∣kr∣∣�1 which allows to easily reconstruct the
entire secret key and subsequently forge tags for any message.

Improvements. In order to change the SSL-construction such that it becomes MAC-
robust, the key should be split among both underlying hash functions. The concate-
nation of HMAC∗H0

,HMAC∗H1
invoked with independent keys then clearly gives a secure

MAC, if at least one of the underlying functions is unforgeable. As SSL deviates from the
standard HMAC approach to build its MAC algorithms, the results from Section 4.1 do
not apply for HMAC∗. However, Dodis and Puniya scrutinized in [DP08] the minimal as-
sumptions of a compression function such that the corresponding iterated hash function
(with various keying approaches) yields a secure MAC. They showed that a MAC based
on the Merkle-Damg̊ard construction with the key appended to the message, requires
the compression function to be collision-resistant and unforgeable when it gets keyed by
the input data. It is also claimed that HMAC with an appended key requires the same
assumptions as the plain MD approach. Thus, the outer hash application in HMAC∗Hb

does not contribute to the security of the MAC, in the sense that it relaxes the under-
lying assumption and therefore can be omitted. Applying both discussed modifications
we obtain the following construction:

CombH0,H1

SSL−mac∗(k0∣∣k1,M) = H0(M ∣∣k0) ∣∣ H1(M ∣∣k1)

If it is desirable to save on communication, one can use the xor of the H0, H1 outputs
instead of the concatenation, while retaining the same security guarantees: In both cases
the proposed combiner is a robust MAC if at least one compression function is simul-
taneously collision-resistant and unforgeable. Note that this is a stronger assumption
than for the TLS combiner, where both properties can be possessed by possibly different
functions.

3Invoking the combiner directly on H∗b instead of HMAC∗H∗
b

still proves our statement as the HMAC

transform can inherit the behavior H∗. We omit the additional level for the sake of simplicity.

17

Acknowledgments

We thank the anonymous reviewers for valuable comments. The first two authors are
supported by the Emmy Noether Program Fi 940/2-1 of the German Research Founda-
tion (DFG).

References

[AB99] Jee Hea An and Mihir Bellare. Constructing VIL-MACsfrom FIL-MACs:
Message Authentication under Weakened Assumptions. Advances in Cryp-
tology — Crypto 99, Volume 1666 of LNCS, pages 252–269. Springer, 1999.

[BB06] Dan Boneh and Xavier Boyen. On the Impossibility of Efficiently Combin-
ing Collision Resistant Hash Functions. Advances in Cryptology — Crypto
2006, Volume 4117 of LNCS, pages 570–583. Springer, 2006.

[BCK96a] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for
message authentication. Advances in Cryptology — Crypto 1996, Volume
96 of LNCS, pages 1–15. Springer, 1996.

[BCK96b] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom Func-
tions Revisited: The Cascade Construction and Its Concrete Security. Pro-
ceedings of the Annual Symposium on Foundations of Computer Science
(FOCS) 1996, pages 514–523. IEEE Computer Society Press, 1996.

[Bel06] Mihir Bellare. New Proofs for NMAC and HMAC: Security without
Collision-Resistance. Advances in Cryptology — Crypto 2006, Volume
4117 of LNCS, pages 602–619. Springer, 2006.

[CR08] Christophe De Cannière and Christian Rechberger. Preimages for Reduced
SHA-0 and SHA-1. Advances in Cryptology — Crypto 2008, Volume 5157
of LNCS, pages 179–202. Springer, 2008.

[CRS+07] Ran Canetti, Ronald L. Rivest, Madhu Sudan, Luca Trevisan, Salil P. Vad-
han, and Hoeteck Wee. Amplifying Collision Resistance: A Complexity-
Theoretic Treatment. Advances in Cryptology — Crypto 2007, Volume
4622 of LNCS, pages 264–283. Springer, 2007.

[Dam90] Ivan Damg̊ard. A Design Principle for Hash Functions. Advances in Cryp-
tology — Crypto 1989, Volume 435 of LNCS, pages 416–427. Springer,
1990.

[DP08] Yevgeniy Dodis and Prashant Puniya. Getting the Best Out of Existing
Hash Functions; or What if We Are Stuck with SHA? Applied Cryptog-
raphy and Network Security (ACNS) 2008, Volume 5037 of LNCS, pages
156–173. Springer, 2008.

18

[Fis08] Marc Fischlin. Security of NMAC and HMAC Based on Non-malleability.
Topics in Cryptology — Cryptographer’s Track, RSA Conference (CT-
RSA) 2008, Volume 4964 of LNCS, pages 138–154. Springer, 2008.

[FL07] Marc Fischlin and Anja Lehmann. Security-Amplifying Combiners for Hash
Functions. Advances in Cryptology — Crypto 2007, Volume 4622 of LNCS,
pages 224–243. Springer, 2007.

[FL08] Marc Fischlin and Anja Lehmann. Robust Multi-Property Combiners for
Hash Functions. Theory of Cryptography Conference (TCC) 2008, Volume
4948 of LNCS, pages 375–392. Springer, 2008.

[FL10] Marc Fischlin and Anja Lehmann. Delayed-Key Message Authentication
for Streams. Theory of Cryptography Conference (TCC) 2010, LNCS.
Springer, 2010.

[FLP08] Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak. Robust Multi-
Property Combiners for Hash Functions Revisited. International Collo-
quium on Automata, Languages, and Progamming (ICALP) 2008, Volume
5126 of LNCS, pages 655–666. Springer, 2008.

[GMP+08] Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sadeghi, and
Jörg Schwenk. Universally Composable Security Analysis of TLS. ProvSec
2008, Volume 5324 of LNCS, pages 313–327. Springer, 2008.

[Her05] Amir Herzberg. On Tolerant Cryptographic Constructions. Topics in Cryp-
tology — Cryptographer’s Track, RSA Conference (CT-RSA) 2005, Volume
3376 of LNCS, pages 172–190. Springer, 2005.

[Hir04] Shoichi Hirose. A note on the strength of weak collision resistance. IEICE
Transactions on fundamentals of electronics communications and computer
sciences, 87(5):1092–1097, 2004.

[KL08] Jonathan Katz and Andrew Y. Lindell. Aggregate Message Authentication
Codes. Topics in Cryptology — Cryptographer’s Track, RSA Conference
(CT-RSA)’08, LNCS, pages 155–169. Springer, 2008.

[Kra08] Hugo Krawczyk. On Extract-then-Expand Key
Derivation Functions and an HMAC-based KDF.
http://webee.technion.ac.il/ hugo/kdf/kdf.pdf, 2008.

[Mer90] Ralph Merkle. One Way Hash Functions and DES. Advances in Cryptology
— Crypto 1989, Volume 435 of LNCS, pages 428–446. Springer, 1990.

[MSW08] Paul Morrissey, Nigel Smart, and Bogdan Warinschi. A Modular Secu-
rity Analysis of the TLS Handshake Protocol. Advances in Cryptology —
Asiacrypt 2008, Volume 5350 of LNCS, pages 55–73. Springer, 2008.

19

[Pie07] Krzysztof Pietrzak. Non-Trivial Black-Box Combiners for Collision-
Resistant Hash-Functions don’t Exist. Advances in Cryptology — Euro-
crypt 2007, Volume 4515 of LNCS, pages 23–33. Springer, 2007.

[Pie08] Krzysztof Pietrzak. Compression from Collisions, or why CRHF Combin-
ers have a Long Output. Advances in Cryptology — Crypto 2008, Volume
5157 of LNCS, pages 413–432. Springer, 2008.

[Res01] Eric Rescorla. SSL and TLS - Designing and Building Secure Systems.
Addison Wesley, 2001.

[Rog06] Phillip Rogaway. Formalizing Human Ignorance. Vietcrypt 2006, Volume
4341 of LNCS, pages 211–228. Springer, 2006.

[SSA+09] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen Lenstra, David
Molnar, Dag Arne Osvik, and Benne de Weger. Short Chosen-Prefix Col-
lisions for MD5 and the Creation of a Rogue CA Certificate. Advances in
Cryptology — Crypto 2009, Volume 5677 of LNCS, pages 55–73. Springer,
2009.

[SSL94] The SSL Protocol (Internet Draft). Technical report, K.E.B. Hickman,
1994.

[TLS99] The TLS Protocol Version 1.0. Technical Report RFC 2246, T. Dierks,
and C. Allen, 1999.

[TLS06] The TLS Protocol Version 1.2. Technical Report (TLS 1.2) RFC 4346, T.
Dierks, and C. Allen, 2006.

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash func-
tions. Advances in Cryptology — Eurocrypt 2005, Volume 3494 of LNCS,
pages 19–35. Springer, 2005.

[WYY05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in
the full SHA-1. Advances in Cryptology — Crypto 2005, Volume 3621 of
LNCS, pages 17–36. Springer, 2005.

A PRF-Combiner based on Insecure Hash Functions

In this section we discuss that even functions that in general exhibit no random behavior,
can yield a pseudorandom function when used in the TLS or SSL combiner. For both
examples we start from secure PRFs H0,H1 which we modify into functions H∗0,H

∗
1 that

lose their security when used in a stand-alone fashion.

20

Example for the SSL combiner CombH0,H1

SSL−prf Our example for SSL holds for the
weaker version of the combiner where both functions get keyed with the same master se-
cret, and which we showed to be neither PRF-robust nor preserving in general. Consider
the function H∗1(k,m) = k∣∣m that simply outputs its secret key and the message it was
invoked on. This function is clearly not pseudorandom. The second function H∗0(k,m)
parses each input as m = k′∣∣m′ and checks whether k = k′ holds. If so it outputs
H0(k,m), else 0n. When H∗0 is used alone, the probability of hitting an input among q
queries, whose prefix matches the secret key k ← {0, 1}n, is q ⋅ 2−n and thus negligible.
Hence, with overwhelming probability one merely gets replies 0n and can thus easily
distinguish this function from random. However, in the combination H∗0(k,H∗1(k,m)),
the outer function will always run in the “good” exceptional state where it behaves like
H0 and provides random values. Thus, we exploit the same weakness as in 3.2 where we
showed that the SSL combiner is not even PRF-preserving, but now use that peculiarity
to obtain a secure PRF out of insecure functions.

Example for the TLS combiner CombH0,H1

TLS−prf For TLS we can obtain a similar result

by constructing the following functions H∗0(k,m) = 0n/2∣∣H0(k,m)∣n/2 and H∗1(k,m) =

H1(k,m)∣n/2∣∣0n/2, where x∣n/2 denotes the leading n/2 bits of string x. Both functions
output strings that consist of a constant half and a random half, and are obviously easily
distinguishable from a truly random function. By merging them into the TLS combiner,
we obtain H∗0(k0,m) ⊕ H∗1(k1,m) which nullifies the constant parts and yields random
strings again.

21

