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Abstract. We explore the security of blind signatures under aborts where the user or the signer may
stop the interactive signature issue protocol prematurely. Several works on blind signatures discuss
security only in regard of completed executions and usually do not impose strong security requirements
in case of aborts. One of the exceptions is the paper of Camenisch, Neven and shelat (Eurocrypt 2007)
where the notion of selective-failure blindness has been introduced. Roughly speaking, selective-failure
blindness says that blindness should also hold in case the signer is able to learn that some executions
have aborted.
Here we augment the work of Camenisch et al. by showing how to turn every secure blind signature
scheme into a selective-failure blind signature scheme. Our transformation only requires an additional
computation of a commitment and therefore adds only a negligible overhead. We also study the case of
multiple executions and notions of selective-failure blindness in this setting. We then discuss the case
of user aborts and unforgeability under such aborts. We show that every three-move blind signature
scheme remains unforgeable under such user aborts. Together with our transformation for selective-
failure blindness we thus obtain an easy solution to ensure security under aborts of either party and
which is applicable for example to the schemes of Pointcheval and Stern (Journal of Cryptology, 2000).
We finally revisit the construction of Camenisch et al. for simulatable adaptive oblivious transfer pro-
tocols, starting from selective-failure blind signatures where each message only has one valid signa-
ture (uniqueness). While our transformation to achieve selective-failure blindness does not preserve
uniqueness, it can still be combined with a modified version of their protocol. Hence, we can derive
such oblivious transfer protocols based on unique blind signature schemes only (in the random oracle
model), without necessarily requiring selective-failure blindness from scratch.

1 Introduction

Blind signatures, proposed by Chaum [5], allow a signer to interactively sign messages for users such that
the messages are hidden from the signer. Since their introduction many blind signatures schemes have been
proposed [1,3,5,6,9,16–18,21,22], and they typically share two basic security properties: blindness says that
a malicious signer cannot decide upon the order in which two messages have been signed in two executions
with an honest user, and unforgeability demands that no adversarial user can create more signatures than
interactions with the honest signer took place.

The security requirements for blind signatures have been formalized by Juels et al. [16] and by Pointcheval
and Stern [22]. Although these widely used definitions give basic security guarantees, blindness only holds in
a restricted sense when it comes to aborted executions. That is, prior work does not guarantee blindness in
case the signer is able to learn which of two executions aborted (even if one execution aborts only after the
protocol has concluded)”. However, in e-cash scenarios an honest user, unable to eventually derive a valid
coin, will most likely complain to the malicious bank afterwards.

Recently, Camenisch et al. [7] consider a stronger kind of aborts where a cheating signer may be able
to make the user algorithm fail depending on the message being signed,1 and where the malicious signer is
informed afterwards which execution has failed (if any). Considering for example a voting protocol based on
blind signatures [7, 10], a malicious administrator can potentially deduce information about votes (possibly
also for non-aborted executions) by causing some voters to abort and consulting the subsequent complaints.

1 Ultimately, since the malicious signer causes the abort, this can be seen as a more general case of signer aborts.



As for user aborts and unforgeability, albeit the definitions [16] and [22] are identical in spirit, the “one-
more” notion in [22] leaves two possible interpretations: either the adversarial user is deemed to generate
one more signature than executions with the signer have been initiated (i.e., even counting executions in
which the user aborts), or the malicious user needs to output one more signature than executions have
been completed (i.e., allowing user aborts). In fact, this ambiguity re-appears in many works about blind
signatures, some explicitly counting initiated executions [3, 9, 15], some emphatically referring to completed
executions [6, 16,18,21] and some remaining vague, too [1, 7, 14].

For both cases, user and signer aborts, the stronger notions are desirable of course. For a blind signature
scheme used to sign coins in an e-cash system, for instance, a malicious signer may otherwise abort executions
deliberately and, by this, may be able to revoke unlinkability of coins. Vice versa, if unforgeability says that
no adversarial user is able to create more signatures than interactions with the signer have been initiated,
and no requirement about aborted sessions is imposed, then an adversarial user could potentially derive more
signatures from such aborted executions. The signing bank could generally charge users for executions, which
have stopped early. Yet, if the connection in the signing process breaks down accidently, the honest user is
most likely unable to derive the coin and would hence be reluctant to pay for the transaction The bank may
then gracefully waive the fee for such aborted executions, but still needs to handle forgery attempts.

Related Work. As mentioned before, Camenisch et al. [7] have already considered the limitations of the
standard blindness notion. They have introduced an extension called selective-failure blindness in which the
a malicious signer should not be able to force an honest user to abort the signature issue protocol because
of a certain property of the user’s message, which would disclose some information about the message to
the signer. They present a construction of a simulatable oblivious transfer protocols from so-called unique
selective-failure blind signature schemes (in the random oracle model) for which the signature is uniquely
determined by the message. Since the main result of the work [7] is the construction of oblivious transfer
protocols, the authors note that Chaum’s scheme [5] and Boldyreva’s protocol [3] are examples of such
selective-failure blind schemes, but do not fully explore the relationship to (regular) blindness.

Hazay et al. [15] present a concurrently-secure blind signature scheme and, as part of this, they also intro-
duce a notion called a-posteriori blindness. This notion considers blindness of multiple executions between
the signer and the user (as opposed to two sessions as in the basic case), and addresses the question how
to deal with executions in which the user cannot derive a signature. However, the definition of a-posteriori
blindness is neither known to be implied by ordinary blindness, nor implies it ordinary blindness (as sketched
in [15]). Thus, selective-failure blindness does not follow from this notion.

Aborts of players have also been studied under the notion of fairness in two-party and multi-party
computations, especially for the exchange of signatures, e.g. [2, 11, 13]. Fairness should guarantee that one
party obtains the output of the joint computation if and only if the other party receives it. Note, however,
that in case of blind signatures the protocol only provides a one-sided output to the user (namely, the
signature). In addition, solutions providing fairness usually require extra assumptions like a trusted third
party in case of disputes, or they add a significant overhead to the underlying protocol.

Our Results. We pick up the idea of selective-failure blindness to deal with signer aborts and expand the
work of Camenisch et al. [7] towards its relationship to blindness and further constructions of such schemes.
We first show that selective-failure blindness is indeed a strictly stronger notion than regular blindness. We
also extend the notion of selective-failure blindness to multiple executions, particularly addressing aborts of
a subset of executions. We give two possible definitions for the multi-execution case and prove them to be
equivalent. We then show that blindness in the basic case of two executions suffices to guarantee security in
the case of many sessions and discuss the relation to a-posteriori blindness [15].

Next we present a general transformation which turns every secure blind signature scheme into a selective-
failure blind scheme. Our transformation only requires an additional commitment of the message, which
the user computes before the actual protocol starts and which the user then uses in the original protocol



instead of the message itself.2 Since the commitment is non-interactive, our transformation inherits important
characteristics of the underlying protocol like the number of moves and concurrent security.

It should be noted, though, that the transformation destroys uniqueness (i.e., that each message has
only one valid signature per key pair), as as required by [7] to derive oblivious transfer from such blind
signatures. However, we show that our transformation is still applicable if we modify the oblivious transfer
protocol of [7] slightly. Hence, we can now easily obtain an adaptive oblivious transfer from any unique
blind signature scheme such that the protocol is simulatable in presence of failures. Put differently, we show
that selective-failure blindness is not necessary to obtain such oblivious transfer protocols, but uniqueness is
sufficient. We note that like the original protocol in [7] this result is in the random oracle model.

We finally study the case of user aborts and show that every three-move blind signature scheme is
unforgeable under user aborts. While this is clear for two-move schemes like Chaum’s protocol [5] our result
shows that this remains true for other schemes like the ones by Pointcheval and Stern [22]. We show that, in
general, this does not hold for schemes with four or more moves, assuming the existence of a secure two-move
blind signature scheme. It remains open if there is a non-trivial and efficient transformation to take care of
user aborts for schemes with more than three moves.3

In summary, our transformation to achieve selective-failure blindness, together with the result about user
aborts, shows that any scheme with two or three moves can be efficiently turned into one, which is secure
under aborts (of either party).

2 Blind Signatures

To define blind signatures formally we introduce the following notation for interactive executions between
algorithms X and Y. By (a, b) ← 〈X (x),Y(y)〉 we denote the joint execution of X and Y, where x is the
private input of X and y defines the private input of Y. The private output of X equals a and the private
output of Y is b. We write Y〈X (x),·〉∞(y) if Y can invoke an unbounded number of executions of the interactive
protocol with X in arbitrarily interleaved order. Accordingly, X 〈·,Y(y0)〉1,〈·,Y(y1)〉1(x) can invoke arbitrarily
ordered executions with Y(y0) and Y(y1), but interact with each algorithm only once.

Definition 1 (Blind Signature Scheme). A blind signature scheme consists of a tuple of efficient algo-
rithms BS = (KGBS, 〈S,U〉 ,VfBS) where

Key Generation. KGBS(1n) for parameter n generates a key pair (skBS, pkBS).

Signature Issuing. The joint execution of algorithm S(skBS) and algorithm U(pkBS,m) for message m ∈
{0, 1}n generates an output σ of the user (and some possibly empty output λ for the signer), (λ, σ) ←
〈S(skBS),U(pkBS,m)〉.

Verification. VfBS(pkBS,m, σ) outputs a bit.

It is assumed that the scheme is complete, i.e., for any n ∈ N, any (skBS, pkBS) ← KGBS(1n), any message
m ∈ {0, 1}n and any σ output by U in the joint execution of S(skBS) and U(pkBS,m) we have VfBS(pkBS,m, σ) =
1.

Security of blind signature schemes is defined by unforgeability and blindness [16, 22]. An adversary
U∗ against unforgeability tries to generate k + 1 valid message-signatures pairs after at most k completed
interactions with the honest signer, where the number of executions is adaptively determined by U∗ during
the attack. To identify completed sessions we assume that the honest signer returns a special symbol ok
when having sent the final protocol message in order to indicate a completed execution (from its point of
view). We remark that this output is “atomically” connected to the final transmission to the user.

2 This idea has been conjectured by Hazay et al. [15] to also work for a-posteriori blindness. We are not aware of
any formal claim or proof in the literature that using a commitment indeed provides security against aborts.

3 By trivial transformations we refer for instance to a solution which ignores the underlying scheme and simply runs,
say, Chaum’s protocol.



The blindness condition says that it should be infeasible for a malicious signer S∗ to decide which of two
messages m0 and m1 has been signed first in two executions with an honest user U . If one of these executions
has returned ⊥ then the signer is not informed about the other signature either.

Definition 2 (Secure Blind Signature Scheme). A blind signature scheme BS = (KGBS, 〈S,U〉 ,VfBS)
is called secure if the following holds:

Unforgeability. For any efficient algorithm U∗ the probability that experiment UnforgeBS
U∗(n) evaluates to 1

is negligible (as a function of n) where

Experiment UnforgeBS
U∗(n)

(skBS, pkBS)← KGBS(1n)
((m1, σ1), . . . , (mk+1, σk+1))← U∗〈S(skBS),·〉∞(pkBS)
Return 1 iff

mi 6= mj for 1 ≤ i < j ≤ k + 1, and
VfBS(pkBS,mi, σi) = 1 for all i = 1, 2, . . . , k + 1, and
S has returned ok in at most k interactions.

Blindness. For any efficient algorithm S∗ (working in modes find, issue and guess) the probability that the
following experiment BlindBS

S∗(n) evaluates to 1 is negligibly close to 1/2, where

Experiment BlindBS
S∗(n)

(pkBS,m0,m1, stfind)← B∗(find, 1n)
b← {0, 1}
stissue ← B∗〈·,U(pkBS,mb)〉

1,〈·,U(pkBS,m1−b)〉1(issue, stfind)
and let σb, σ1−b denote the (possibly undefined) local outputs
of U(pkBS,mb) resp. U(pkBS,m1−b).

set (σ0, σ1) = (⊥,⊥) if σ0 = ⊥ or σ1 = ⊥
b∗ ← B∗(guess, σ0, σ1, stissue)
return 1 iff b = b∗.

3 Selective-Failure Blindness

In this section we review the definition of selective-failure blindness and show that selective-failure blindness
is a strictly stronger requirement than the basic blindness property. Second, we discuss how to extend
selective-failure blindness to multiple executions.

3.1 Definition

Camenisch et al. [7] put forward the notion of selective-failure blindness, which says that a malicious signer
S∗ cannot force the user algorithm U to abort based on the specific message and that blindness should also
hold in case the signer is able to learn that some executions have aborted. This is formalized by informing
S∗ which instance has aborted (i.e., if the left, the right, or both user instances have failed):

Definition 3. A blind signature scheme BS = (KGBS, 〈S,U〉 ,VfBS) is called selective-failure blind if it is
unforgeable (as in Definition 2) and the following holds:

Selective-Failure Blindness. For any efficient algorithm S∗ (which works in modes find, issue and guess)
the probability that experiment SFBlindBS

S∗(n) evaluates to 1 is negligibly close to 1/2 where

Experiment SFBlindBS
S∗(n)

(pkBS,m0,m1, βfind)← S∗(find, 1n)
b← {0, 1}



βissue ← S∗〈·,U(pkBS,mb)〉
1,〈·,U(pkBS,m1−b)〉1(issue, βfind)

and let σb, σ1−b denote the (possibly undefined) local outputs
of U(pkBS,mb) resp. U(pkBS,m1−b).

define answer as: left if only the first execution has failed,
right if only the second execution has failed,
both if both executions have failed,
and (σb, σ1−b) otherwise.

b∗ ← S∗(guess, answer, βissue)
Return 1 iff b = b∗.

3.2 Relation to Regular Blindness

We first prove formally the fact that selective-failure blindness implies regular blindness. Then we separate
the notion by turning a secure blind signature scheme into a one which is still secure but provably not
selective-failure blind.

Proposition 1. Every selective-failure blind signature scheme BSSF is also a secure blind signature scheme.

The claim follows easily and the formal proof is given in the full version.

Proposition 2. If there exists a secure blind signature scheme BS, then there exists a secure blind signature
scheme BSSF which is not selective-failure blind.

Proof. We modify BS slightly into a scheme BSSF which is identical to BS, except that we modify the key
generation algorithm and add a break condition into the user algorithm. More precisely, let BS = (KGBS,
〈S,U〉 ,VfBS) be a secure blind signature scheme. We define the new blind signature scheme BSSF as

KeyGen. KGSF first sets mmax = 1n as the maximum of the lexicographical order over n-bit strings. It then
executes the key generation algorithm of the underlying blind signature scheme (skBS, pkBS)← KGBS(1n)
and returns (skSF, pkSF) = (skBS, (pkBS,mmax)).

Signing Protocol. The interactive signing protocol remains unchanged except for one modification. The
user algorithm checks after the last move of the protocol (and after computing the signature σ) that
m ≤ mmax and, if so, returns the signature σ, and ⊥ otherwise.

Verification. The verification algorithm returns the result of VfBS.

The modified scheme is clearly complete, as the case m > mmax for an honest signer never occurs and
because the initial protocol is complete. Obviously, if the blind signature scheme BS is unforgeable, then
BSSF is also unforgeable. This is easy to see as the malicious user may simply ignore the break condition.

Concerning blindness, first note that the malicious signer S∗ is allowed to choose the public key and thus
to pick some other value m∗max. As a malicious signer S∗ is not informed which of the executions has failed (if
any), setting some other value m∗max than the predetermined maximum and possibly causing an abort does
not lend any additional power to S∗. To see this, note that the user algorithm does not abort prematurely if
m > mmax. Hence, from the (malicious) signer’s point of view, the interaction is indistinguishable from an
honest execution. It therefore follows that BSSF still satisfies blindness.

We finally show that the modified scheme does not fulfill selective-failure blindness. Consider an malicious
signer S∗ in experiment SFBlindBS

S∗(n). In the first step the adversary S∗ computes a key pair (skBS, pkBS)←
KGBS(1n), it sets m∗max = 10n−1 and picks two messages m0 = 0n,m1 = 1n such that m0 ≤ m∗max < m1.
It outputs a public key pkSF = (pkBS,m

∗
max) together with the message m0,m1 as defined in the first step

of the experiment. Next, S∗ has black-box access to two honest user instances (as described in experiment
SFBlindBS

S∗(n)) where the first algorithm takes as input (pkSF,mb) and the second user algorithm receives
(pkSF,m1−b). In both executions S∗ acts like the honest signer with key skSF = skBS. Then S∗ is eventually
informed which of the executions has failed, i.e., receives left or right (as S∗ has access to honest user
instances, the case where both executions fail cannot occur by the completeness condition). The adversary
S∗ returns b∗ = 1 if the left instance has failed, otherwise it returns b∗ = 0.

It follows straightforwardly that the adversary S∗ succeeds in predicting b with probability 1. ut



3.3 Selective-Failure Blindness for Multiple Executions

The presumably natural way to extend selective-failure blindness to an arbitrary number of executions with
user instances would be as follows. The malicious signer chooses q messages as well as a public key pkBS and
interacts with q user instances. We denote by π be a random permutation over {1, 2, . . . , q}. The i-th user
instance is initiated with the message mπ(i) and the public key pkBS. If at least one of the user instances
aborts, then the adversary is given a binary vector v of length q indicating which of the user algorithms
aborted. In the case that each execution allows the user to create a valid signature, then the adversary is
given all message-signature pairs in non-permuted order.

In the final step the adversary tries to link a message-signature pair to an execution. There are two
possible venues to formalize this. The first one, which we believe reflects much better the idea that the
adversary should not be able to determine the order of signed messages, is to ask the adversary two output
two indices i0, i1 such that π(i0) < π(i1). The second version would be to ask the adversary to predict the
connection much more explicitly, demanding to output indices (i, j) such that π(i) = j. Note that for the
case of two executions both notions are equivalent.

Here we give the “order-based” definition and show in in the full version that the two definitions are
equivalent, assuming the following strengthening: During the signature issuing and in the final processing
phase we give the malicious signer access to an oracle Reveal which for input i returns π(i) and the user’s
signature σi if the execution has already finished successfully. This corresponds to the case that some coins
in e-cash systems may have been spent meanwhile. Note that the reveal oracle takes as input a state strev

where each signature is stored. The adversary’s final choice i0, i1 must not have been disclosed, of course.
Definition 4. A blind signature scheme BS = (KGBS, 〈S,U〉 ,VfBS) is called multi-execution selective-failure
blind if it is unforgeable (as in Definition 2) and the following holds:
Multi-Execution SF-Blindness. For any efficient algorithm S∗ (working in modes find, issue, and reveal)

the probability that experiment MSFBlindBS
S∗(n) returns 1 is negligibly close to 1

2 , where
Experiment MSFBlindBS

S∗(n)
(pkBS,M, βfind)← S∗(find, 1n) where M = (m1, . . . ,mq) with mi ∈ {0, 1}n
Select a random permutation π over {1, 2, . . . , q}
βissue ← S∗〈·,U(pkBS,mπ(1))〉1,...,〈·,U(pkBS,mπ(q))〉1,Reveal(·,π,strev)(issue, βfind)

and let σπ(1), . . . , σπ(q) denote the (possibly undefined) local outputs
of U(pkBS,mπ(1)), . . . ,U(pkBS,mπ(q)), immediately stored in strev

once an execution finishes (strev is initially set to (⊥, . . . ,⊥));
Reveal(·, π, strev) is an oracle, which on input i returns (π(i), strev

i ).
Return to S∗ all signatures v = (σ1, . . . , σq) iff all executions

have yielded valid signatures; otherwise return a vector v ∈ {0, 1}q
where the i-th entry is 1 if the i-th signature is valid, and 0 otherwise.

(i0, i1)← S∗,Reveal(·,π,strev)(reveal, v, βissue)
Return 1 iff π(i0) < π(i1) and S∗ has never queried Reveal about i0, i1.
The definition of multi-execution selective-failure blindness for the case q = 2 covers the standard def-

inition of blindness. An adversary A breaking blindness can be used to build an adversary S∗ breaking
multi-execution selective-failure blindness as follows. The malicious signer S∗ executes A in a black-box way
and follows the blindness experiment until S∗ receives either the signatures σ0, σ1 or the vector v. In case
these two valid signatures are given to S∗, it forwards both pairs to A and otherwise it outputs ⊥. Finally,
S∗ outputs the decision bit b′ returned by A. The definition of selective-failure blindness is (semantically)
identical to the definition of multi-execution selective failure blindness for the case q = 2.

Proposition 3. A blind signature scheme which is selective-failure blind, is also multi-execution selective-
failure blind.

The proof appears in the full version. The idea is that one is able to guess the two challenge values i0, i1
chosen by S∗ with sufficiently high probability in advance and one can thus reduce it to the two-execution
case.



3.4 Relation to A-Posteriori Blindness

In the following we discuss the relation between selective-failure blindness and a-posteriori blindness [15].
Roughly speaking, a-posteriori blindness advocates that blindness only needs to hold for non-aborted sessions.
Hazay et al. formalize this basic idea in an experiment where the adversary first outputs a public key pk
together with a message distribution M. The malicious signer then concurrently interacts with ` honest
user instances, where each user instance gets as input the public key pk and a message sampled according
to M. Afterwards, when the signer has finished all ` interactions, it receives `′ message-signature pairs in a
randomly permuted order, where 1 ≤ `′ ≤ ` denotes the number of non-aborted executions. The adversary
wins the game if it associates one non-aborted execution to a messages-signature pair. A detailed discussion
about a-posteriori blindness in the concurrent setting is given in [15].

From a syntactically point of view there are numerous differences between the definition of selective-failure
blindness and a-posteriori blindness. Firstly, the adversary in our security definition picks the messages,
whereas in the experiment of a-posteriori blindness it only chooses a message distribution. Secondly, in
contrast to a-posteriori blindness, the malicious signer in our case receives the information which of the user
instances have aborted. In an e-cash scenario, this corresponds to the case where a user (who may have
completed all rounds of the protocol) could not derive a valid coin and informs the signing bank about this
problem. Thirdly, we propose two different notions of multi-execution selective-failure blindness. The first
definition (Definition 4) is an ordering-based definition where the adversary has to distinguish the order of
two different executions. The second definition (see the full version) is a prediction-based definition where
the malicious signer has to link an execution to a message-signature pair.

Finally, the attacker in our definitions has access to a reveal oracle that discloses the message used during
a specific execution. Such an oracle is also not considered in the definition of a-posteriori blindness. In the
real world, this oracle represents side information the signer obtains, e.g., customer A opens up a bank
account before customer B. Then customer B cannot withdraw coins before having opened up an account
and every meanwhile spent coin has to be from customer A. Note that these side information provide the
malicious signer also with information about the non-aborted executions. From a technical point of view, the
reveal oracle allows us to prove the equivalence between selective-failure blindness for two executions and for
multiple executions, as well as the equivalence of the two types of multi-execution selective-failure blindness
definitions.

A natural question is whether the definition of a-posteriori blindness and the definition of multi-execution
selective-failure blindness are equivalent for the special case of two executions. To answer this question we
briefly recall the counter example of Hazay el al. which shows that a-posteriori blindness does not imply reg-
ular blindness. This example consists of a scheme that satisfies a-posteriori blindness but that easily violates
blindness. In this scheme, the honest user algorithms validates the first received message from the signer. In
the case that this message is improper, then it sends the message m to the signer and aborts afterwards. Since
a-posteriori blindness only guarantees blindness for non-aborted sessions, this scheme remains a-posteriori
blind. However, it follows easily that this scheme is not blind. Hence, a-posteriori blindness cannot be equiv-
alent to selective-failure blindness, because selective-failure blindness does imply regular blindness.

4 From Blindness to Selective-Failure Blindness

In this section we show how to turn every secure blind signature scheme BS into a selective-failure blind
signature scheme BSSF. The high-level idea is to modify BS slightly into BSSF by executing BS with a
non-interactive commitment com of the message m (instead of the message itself).

Definition 5 (Commitment Scheme). A (non-interactive) commitment scheme consists of a tuple of
efficient algorithms C = (KGcom,Com,Vfcom) where

Key Generation. Algorithm KGcom(1n) on input the security parameter outputs a key pkcom.
Commitment Phase. Algorithm Com takes as input pkcom as well as m ∈ {0, 1}n and outputs (decom, com)←

Com(pkcom,m).



Verification. Vfcom(pkcom,m, decom, com) outputs a bit.

It is assumed that the commitment scheme is complete, i.e., for any n ∈ N, any pkcom ← KGcom(1n), for any
message m ∈ {0, 1}n and any (decom, com)← Com(pkcom,m) we have Vfcom(pkcom,m, decom, com) = 1.

Security of commitment schemes is defined by secrecy and unambiguity. Secrecy guarantees that the
receiver cannot learn the message from the commitment and unambiguity says that the sender cannot
change the message anymore once the commitment phase is over. Here we use a slightly different way to
define secrecy compared to the literature, but it is easy to see by a hybrid argument that our definition is
equivalent:

Definition 6 (Secure Commitment). A (non-interactive) commitment scheme C = (KGcom,Com,
Vfcom) is called secure if the following holds:

Secrecy. For any efficient algorithm R∗real (working in modes find and guess) the probability that experiment
SecrecyCR∗real(n) evaluates to 1 is negligibly close to 1/2.

Experiment SecrecyCR∗real(n)
(m0,m1, pkcom, βfind)← R∗real(find, 1n)
b← {0, 1}
comb ← Com(pkcom,mb) and com1−b ← Com(pkcom,m1−b)
b∗ ← R∗real(guess, βfind, com0, com1)
Return 1 iff b = b∗.

Unambiguity. For any efficient algorithm S∗real the probability that experiment UnambiguityCS∗real(n) evaluates
to 1 is negligible.

Experiment UnambiguityCS∗real(n)
pkcom ← KGcom(1n)
(m,m′, decom, decom′)← S∗(pkcom)
Return 1 iff

Vfcom(pkcom,m, decom,Com) = 1 and
Vfcom(pkcom,m

′, decom′,Com) = 1 as well as m 6= m′.

Note that such commitment schemes exist under standard assumptions like pseudorandom generators [19]
or hash functions [8]. In order to use a commitment in a blind signature scheme —which we defined to take
messages of n bits— we need that the commitment scheme is length-invariant, meaning that for n-bit
messages the commitment itself is also n bits. This can always be achieved by using a collision-resistant hash
function (with n bits output) on top.

Construction 1 (Selective-Failure Blind Signature Scheme BSSF). Let BS = (KGBS, 〈S,U〉 ,VfBS) be
a blind signature scheme and let C be a length-invariant commitment scheme. Define the blind signature
scheme BSSF through the following three procedures:

Key Generation. The generation algorithm KGSF(1n) executes the key generation algorithm of the blind
signature scheme BS, (skBS, pkBS) ← KGBS(1n). It also runs the key generation algorithm for the com-
mitment scheme, pkcom ← KGcom(1n). It returns the private key skSF = skBS and the public key pkSF =
(pkBS, pkcom).

Signature Issue Protocol. The interactive signature issue protocol for message m ∈ {0, 1}n is described
in Figure 1.

Signature Verification. The verification algorithm VfSF(pkSF,m, σ
′) for σ′ = (σ, decom, com) returns 1 iff

VfBS(pkBS, σ, com) = 1 and Vfcom(pkcom,m, decom, com) = 1.

Theorem 1. If BS is a secure blind signature scheme and C is a secure, length-invariant commitment
scheme, then the scheme BSSF in Construction 1 is a selective-failure blind signature scheme.



Signer S(skSF) User U((pkBS, pkcom),m)

(decom, com)← Com(pkcom,m)

S(skBS) U(pkBS, com)
msg1←−−−−−−−−−−−−−−

...

msgn−−−−−−−−−−−−−−→ compute σ = σ(com)

Output m,σ′ = (σ, decom, com)

Fig. 1. Issue protocol of the blind signature scheme BSSF

We note that, if the starting blind signature scheme provides statistical blindness, and the commitment
scheme is also statistically-hiding, then the derived protocol achieves selective-failure blindness in a statistical
sense. This can be seen from the proof of the theorem, which is split into two claims, covering unforgeability
and selective-failure blindness:

Claim 1: BSSF is unforgeable.

In the proof we distinguish between two cases. The first case occurs if the adversary U∗ succeeds in
outputting k + 1 valid pairs mi, σ

′
i = (σi, decomi, comi) such that the commitments comi are pairwise

different. But then we can break the unforgeability of the underlying blind signature scheme BS. In the
second case U∗ succeeds and at least two commitments comi, comj (with i 6= j) are identical. But then we
can break the unambiguity of the commitment scheme C.

Proof. Assume to the contrary that the resulting selective-failure blind signature scheme BSSF is not un-
forgeable. Then there exists an adversary U∗ breaking unforgeability with noticeable probability, i.e., on
input pkSF the algorithm U∗ returns k + 1 valid signatures σ′i = (σi, decomi, comi) for messages mi after at
most k interactions with the honest signer S. Note that here we do not deal with user aborts and count any
initiated interaction; the case of counting only completed interactions is taken care of in the next section.

We first take a look at the success probability of U∗, we have

ψ(n) := Prob
[
ForgeBSSF

U∗ (n) = 1
]

where ψ(n) is noticeable. This probability can be separated according to the two exclusive events that U∗
succeeds and all commitments comi are different, with the corresponding probability denoted by ψ0(n),
and into the case where ASF succeeds and at least two commitments are identical (with probability ψ1(n))
According to our assumption that ψ(n) is noticeable, ψ0(n) or ψ1(n) (or both) must be noticeable.

We next construct out of U∗ algorithms AUNF and AUNA against unforgeability of BS and unambiguity
of the commitment scheme C.

Attacking Unforgeability. The adversary AUNF takes as input the public key pkBS of the blind signature
scheme BS and works as follows. It executes the key generation algorithm of the commitment scheme pkcom ←
KGcom(1n) and runs a black-box simulation of U∗ on input pkSF = (pkBS, pkcom). The signer instances in the
attack of U∗ are simulated with the help of the external signer instances accessible by AUNF, i.e., adversary
AUNF relays the communication between U∗ and its signer instance oracle S(skBS) (as described in experiment
ForgeBS

U∗). When U∗ finishes its attack, it outputs k + 1 message-signatures pairs mi, σ
′
i after at most k

interactions. Now AUNF parses each σ′i as (σi, decomi, comi) and returns the k + 1 pairs comi, σi and stops.



Assume that ψ0(n), the probability that U∗ succeeds and all comi’s are distinct, is noticeable. Then,
since the simulation is perfect from the viewpoint of U∗, adversary AUNF succeeds in outputting k + 1 valid
pairs comi, σi for distinct “messages” comi with noticeable probability, too, contradicting the unforgeability
property of the underlying blind signature scheme. Note also that the numbers of initiated and completed
executions are identical in both cases.

Attacking Unambiguity. In order to break the unambiguity of C, the adversary AUNA takes as input the
public key pkcom of the commitment scheme C and works as follows. It executes the key generation algorithm
of the blind signature scheme (skBS, pkBS) ← KGBS(1n) as well as a the honest signer algorithms S(skBS)
and runs a black-box simulation of U∗ on input pkSF = (pkBS, pkcom). Note that running the program of
the honest signer on input skBS simulates each execution with a signer instance. Algorithm U∗ eventually
returns k + 1 message-signature pairs (mi, σ

′
i) after at most k interactions with S. The adversary AUNA

then checks if there are valid signatures with comi = comj for some i 6= j and, if so, outputs two tuples
(mi, decomi, comi), (mj , decomj , comj) such that mi 6= mj and comi = comj . If not, it outputs a failure
message.

For the analysis note that the simulation again perfectly mimics the original attack of U∗. Hence, if ψ1(n)
is noticeable, then such comi = comj with valid decommitments for mi 6= mj appear with noticeable proba-
bility, and the commitment adversary AUNA therefore finds an ambiguous commitment with this probability,
too. But this clearly violates the security of the commitment scheme C. ut

Claim 2: BSSF is selective-failure blind.

The high-level idea of the proof is as follows. We again distinguish between two cases. In the first case the
adversary ASF succeeds with noticeable probability and both message-signature pairs are valid. But then we
show how to break the blindness property of the underlying blind signature scheme BS. We next argue that
in the case where ASF succeeds with noticeable probability and forces at least one of the user algorithms to
fail, then we are able to break the secrecy of the commitment scheme (because then the only information
available to the signer are the commitments of the messages).

Proof. Assume towards contradiction that the resulting blind signature scheme BSSF is not selective-failure
blind, and that there exists a successful adversary ASF against selective-failure blindness. Let

δ(n) := Prob
[
SFBlindBS

ASF
(n) = 1

]
= 1

2 + ε(n)

where ε(n) = δ(n) − 1
2 is noticeable. We divide the success case according to the two exclusive events that

ASF succeeds and that both message-signature pairs are valid (event valid) and into the case where ASF

succeeds and at least one of the signatures is not valid (event ¬valid). Then,

Prob
[
SFBlindBS

ASF
(n) = 1

]
− 1

2

= Prob[ valid] ·
(

Prob
[
SFBlindBS

ASF
(n) = 1

∣∣∣ valid]− 1
2

)
+ Prob[¬valid] ·

(
Prob

[
SFBlindBS

ASF
(n) = 1

∣∣∣¬valid
]
− 1

2

)
.

According to our assumption that δ(n) is noticeable, either the first term, denoted δ0(n), or the second term
δ1(n) has to be noticeable (or both are noticeable). We next turn ASF into algorithms Ablind and Acom against
regular blindness and secrecy of the commitment scheme, respectively.

Attacking Blindness. The adversary Ablind works as follows. It runs a black-box simulation of ASF, which ini-
tially outputs two messages (m0,m1) together with a public key pkSF. The adversary Ablind extracts pkBS and
pkcom from pkSF and calculates the commitments (and decommitments) (decom0, com0) ← Com(pkcom,m0)
and (decom1, com1)← Com(pkcom,m1). It outputs com0, com1 and pkBS. It is given access to user instances



U(pkBS, comb) and U(pkBS, com1−b) for a unknown bit b and relays the communication between these in-
stances and ASF. If, at the end, at least one of the (external) user algorithms fails, then Ablind outputs a
random bit and stops. Otherwise, it augments σ0, σ1 to σ′0 = (σ0, decom0, com0) and σ′1 = (σ1, decom1, com1)
and returns the two signatures σ′0, σ

′
1 (obtained by the external user algorithms) to ASF. The final output of

Ablind consists of the bit b∗ returned by ASF.
Note that Ablind simulates the experiment SFBlindBS

ASF
(n) by executing the blindness experiment for the

underlying blind signature scheme BS and by computing the commitments internally. Hence, the case where
both message-signature pairs are valid is the one where experiment SFBlindBS

ASF
(n) is identical to experiment

BlindBS
Ablind

(n). If one of the signatures is invalid, then Ablind returns a random bit. Therefore, the success
probability of Ablind in experiment BlindBS

Ablind
(n) can be calculated as:

Prob
[
BlindBS

Ablind
(n) = 1

]
= Prob[ b = b∗ ∧ ¬valid] + Prob[ b = b∗ ∧ valid]
= Prob[ b = b∗ | valid ] · Prob[ valid] + Prob[ b = b∗ | ¬valid ] · Prob[¬valid] .

= Prob[ valid] · Prob[ b = b∗ | valid ] + 1
2 · (1− Prob[ valid])

= Prob[ valid] · Prob
[
SFBlindBS

ASF
(n) = 1

∣∣∣ valid]+ 1
2 · (1− Prob[ valid])

= 1
2 + Prob[ valid] ·

(
Prob

[
SFBlindBS

ASF
(n) = 1

∣∣∣ valid]− 1
2

)
= 1

2 + δ0(n).

According to our assumption that δ0(n) is noticeable it follows that Ablind breaks the blindness of the
underlying blind signature scheme BS with noticeable probability. This, however, contradicts our assumption
that BS is a secure blind signature scheme.

Attacking Secrecy of the Commitment. In order to break the secrecy of the commitment scheme C, the
adversary Acom executes a black-box simulation of ASF, which initially outputs two messages (m0,m1) as
well as a public key pkSF. The adversary Acom extracts the keys pkcom and pkBS from pkSF and outputs
(m0,m1, pkcom) for the secrecy experiment of the commitment scheme. It then receives two commitments
com0, com1, one for message mb and the other one for message m1−b (without knowing which commitment
corresponds to which message).

The adversary now runs (in the role of the honest user U(pkBS, com0) and U(pkBS, com1)) the selective-
failure blindness experiment with ASF. At the end of the issue protocol each user instance returns either a
signature for the commitment or ⊥. In the case that both user algorithms return a valid signature, then
Acom outputs a random bit b∗ and stops. Otherwise, if both user algorithms have failed, then Acom sends
the value both to ASF. In the case that the first user algorithm has failed, then Acom returns left to ASF and
else (if the second user algorithm has failed), it forwards right to ASF. The final output of Acom consists of
the bit b∗ returned by ASF.

The adversary Acom simulates the experiment of selective-failure blindness perfectly, up to the point
where it obtains the (possibly undefined) signatures. Given that at least one of them is invalid, the simulation
corresponds to the case SFBlindBS

ASF
(n) (given ¬valid) for the same choice b as in the commitment experiment.

Else, Acom outputs a random bit. A simple calculation similar to the previous case now shows that

Prob
[
SecrecyCR∗real(n) = 1

]
= 1

2 + δ1(n).

If δ1(n) is noticeable, it follows that Acom breaks the secrecy of the commitment scheme with noticeable
probability, contradicting the security of C. ut



5 Unforgeability and User Aborts

In this section we consider executions in which an adversarial controlled user may abort sessions and the
unforgeability requirement with respect to initiated or completed executions with the signer. For sake of
distinction we call the requirement where the adversary has to find k + 1 valid message-signature pairs
after k initiated executions weak unforgeability, and the originally given definition charging only completed
executions unforgeability under user aborts.

We show in the following that every three-move blind signature scheme, which is weakly unforgeable is
also unforgeable under user aborts. Note that in three-move schemes, for a meaningful protocol, the first
message is always sent by the signer. As such we may think of two-move schemes as having an additional
first move in which the signer simply sends an empty message (although the claim for two-move schemes
follows straightforwardly anyway).

We remark that we leave the scheduling of transmissions fully up to the adversary controlling the users,
i.e., the adversary decides when to send messages to the signer and when the signer’s messages are delivered to
the user. Only the signer’s output ok is given immediately after the signer’s final message has been delivered.

Theorem 2. Every secure blind signature scheme with at most three moves is unforgeable under user aborts.

The proof idea is that we can delay the delivery of the user’s message in an execution till we can be sure
that the adversary completes this execution. If the execution is not completed, then we can simply disregard
the original user message, finish the protocol ourselves as an honest user and create another valid signature
in addition to the forgeries of the adversary. The full proof appears in the full version.

We note that the result above is optimal in the sense that for four or more moves no such claim can be
made (if there are secure schemes with two moves):

Proposition 4. Every secure blind signature scheme BS with two moves can be converted into a secure blind
signature scheme BSUuA with four moves, which is weakly unforgeable but not unforgeable under user aborts.

The claim follows by adding two dummy messages at the end, one from the user to signer and one from the
signer to the user, such that a malicious user can abort before these dummy messages are exchanged and is
still able to derive a signature. The proof appears in the full version.

The previous proposition does not rule out that there is a transformation turning schemes with four or
more moves into unforgeable ones under user aborts. An apparent approach is to ignore the original protocol
and two run a scheme, which already has this property (like Chaum’s two-move blind signature scheme in
the random oracle model). Yet, it is preferable of course to have a lightweight transformation adhering to the
basics of the underlying protocol (like the avoidance of random oracles or general but expensive multi-party
protocols).

6 Selective Failures and Adaptive Oblivious Transfer

Camenisch et al. [7] also show how to construct an adaptive oblivious transfer protocol out of any unique
selective-failure blind signature scheme (in the random oracle model). Roughly speaking, uniqueness means
that each message has only one signature per public key. More formally, a blind signature scheme is unique
[7, 12] if for every (possibly maliciously chosen) public key pkBS and every message m ∈ {0, 1}∗, there exists
at most one signature s ∈ {0, 1}∗ such that VfBS(pkBS,m, s) = 1.

In this section we focus on the question whether our transformation turning every blind signature into one
with selective-failure blindness is applicable. We have already mentioned in the introduction that the initial
commitment destroys uniqueness of the blind signature scheme because each message may have several valid
signatures per key pair. Here we show that is nonetheless possible to build an adaptive k-out-of-N oblivious
transfer protocol out of any unique blind signature scheme by applying our transformation. The following
construction is a modification of the protocol in [7] and, because of the problems with uniqueness, we have to
prove the security of this construction from scratch, digging also into the proof of selective-failure blindness
for our transformation.



6.1 Simulatable Adaptive Oblivious Transfer

Oblivious Transfer (OT), proposed by Rabin [23], is an interactive protocol between a sender S and a receiver
R. The sender in this protocol gets as input N messages m1, . . . ,mN and the receiver R wishes to retrieve the
message mc. OT protocols must satisfy the following two security properties: firstly, the sender S does not
find out the receiver’s choice c ∈ {1, . . . , N} and, secondly, the receiver only obtains mc and does not gain any
information about the other messages mi for i 6= c. For adaptive k-out-of-N oblivious transfer, OTNk×1, the
receiver requests k of these N messages in rounds where the i-th choice is based on the previously obtained
messages. We refer the reader to [7, 20] for more information.

As in [7] we consider the real-world/ideal-world paradigm for both sender and receiver security (simu-
latable oblivious transfer). This paradigm compares the execution of an OT protocol in the real-world with
an ideal implementation (see for example [4]). In the real-world experiment, both parties jointly execute the
interactive protocol, whereas in the ideal-world the functionality is realized through a trusted third party. In
our case this means that the sender first hands over the messages to the trusted party, and then the receiver
can adaptively obtain messages. To capture failures we let the ideal-world sender in each retrieval also send
a bit b, indicating whether the transfer should succeed or abort. We note that this bit is independent of the
choice of the receiver, reflecting the fact that the abort should not depend on the receiver’s input. Due to
the limited space, we review the formal security definition in the full version.

6.2 Construction

Sender SI(m1, . . . ,mN ) : Initialization Receiver RI :

(pkSF, skSF)← KGSF(1n)
pkSF−−−−−−−−−−−−−−→ parse pkSF as (pkBS, pkcom)

for i = 1, . . . , N
(decomi, comi)← Com(pkcom, i)

check that comi 6= comj
com1, . . . , comN←−−−−−−−−−−−−−− s.t. comi 6= comj for all i 6= j

for all i 6= j

for i = 1, . . . , N
si ← 〈S(skBS),U(pkBS, comi)〉
Ci ← H(i, si)⊕mi

C1, . . . , CN−−−−−−−−−−−−−−→
set S0 ← skBS set R0 ← (pkSF, (comi, Ci)i)
output S0 output R0

Sender ST(Si−1) : Transfer Receiver RT(Ri−1, Ri) :

parse Si−1 as skBS parse Ri−1 as (pkSF, (comi, Ci)i)

execute S(skBS)
Unique-BS←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

execute scj ← U(pkBS, comcj )

if VfBS(pkBS, comci , sci) = 0
then mci ← ⊥
else mci ← Cci ⊕H(i, sci)

output Si = Si−1 output Ri = (Ri−1,m
′
ci)

Fig. 2. A k-out-of-N oblivious transfer protocol using a random oracle H and any unique blind signature scheme BS.

Our construction, depicted in Figure 2, is a modification of the OTNk×1 protocol of Camenisch et al. and
consists of a black-box construction using any unique (not necessarily selective-failure) blind signature



scheme. The sender in the first step of the protocol generates a key-pair for the blind signature scheme
and sends it to the receiver. The receiver, in return, hands N distinct commitments (for values 1, 2, . . . , N ,
represented as n-bit-strings each) over to the sender. These commitments serve as “messages” for the sig-
nature generation. Note that distinctiveness of the commitments holds with high probability by the binding
property.

After the sender has verified that all commitments are distinct, it encrypts each message in its database by
xor-ing the message mi with H(i, si), where i is the index of the i-th commitment comi and si is the unique
signature of message comi under pkBS. The sender can easily compute this signature locally by running the
signature issue protocol with the help of the signing key and an honest user instance for “message” comi.

After having finished the initialization phase, both parties engage in a transfer phase that consists of a
run of the unique blind signature scheme. In the case that the receiver wishes to obtain the i-th message
mi, then it has to choose the commitment comi (as the message to be signed) during the signature issue
protocol.

From a high-level point of view unforgeability guarantees that the receiver cannot receive more messages
than interactions took place (sender’s security) and blindness guarantees that the sender cannot tell which
message has been signed (receiver’s security).

Theorem 3. If the unique blind signature scheme BS is unforgeable then the OTNk×1 scheme depicted in
Figure 2 is sender-secure in the random oracle model.

The proof of this (and the following) theorem appears in the full version.

Theorem 4. If BS is a secure blind signature scheme and C is a secure, length-invariant commitment
scheme, then the OTNk×1 scheme depicted in Figure 2 is receiver-secure in the random oracle model.
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