Practical Memory Checkers for
Stacks, Queues and Deques

Marc Fischlin

Fachbereich Mathematik (AG 7.2) / Informatik
Johann Wolfgang Goethe-Universitat Frankfurt am Main
PSF 111932
60054 Frankfurt/Main, Germany

e-mail: marc @informatik.uni-frankfurt.de
URL: http://www.uni-frankfurt.de/ roessner/group/marc/marc.html

Abstract. A memory checker for a data structure provides a method
to check that the output of the data structure operations is consistent
with the input even if the data is stored on some insecure medium. In
[8] we present a general solution for all data structures that are based
on insert(z, v) and delete(j) commands. In particular this includes stacks,
queues, deques (double-ended queues) and lists. Here, we describe more
time and space efficient solutions for stacks, queues and deques. Fach
algorithm takes only a single function evaluation of a pseudorandomlike
function like DES or a collision-free hash function like MD5 or SHA for
each push/pop resp. enqueue/dequeue command making our methods
applicable to smart cards.

1 Introduction

A memory checker guarantees that the data that is retrieved from memory is
consistent with the data inserted before. Consider for example a stack and the
sequence push(a), push(b), pop, push(a), push(c), pop, pop. Then the expected
output is —, —, b, —, —, ¢, a, where — denotes “no output”. Assume that the
elements are kept on some insecure memory. Then an adversary, e.g. a virus,
might tamper the content of the stack and thus produce a wrong output. Another
source for errors can be a buggy program implementing the data structure.
Using a memory checker, one will detect errors with high probability, regardless
whether the errors are malicious or accidently.

We give some applications of memory checkers. Assume that a bank customer
withdraws money from an automatic teller machine using his smart card. The
bank keeps track of the operations by enqueuing every transaction, while the
smart card contains only a small hash value for the memory checker. At the end
of a month, the customer prints this sequence of transactions at the machine
(using the smart card). Then the memory checker gives a fast method to verify
that the output is correct and no further unauthorized transactions have been
made.

In the previous example, all operations are enqueued before they are de-
queued again. Consider a job queue on a computer system, e.g. the printer
schedule queue. Here, insertions and deletions may alternate. Suppose that a
clever user has found a possibility to manipulate the job queue and to make his
jobs to be processed before others — or even to cancel other jobs. If the system
runs a memory checker for queues (in a secure part), it can detect such errors.

Note that error detection with a memory checker is one-sided in the following
sense: If the bank customer detects some error, he cannot use the faulty output
protocol to accuse the bank of fraud, because he could have produced such a
protocol himself. So the checker model can only be used to detect errors and to
perform some countermeasures for the future.

At first glance, cryptographic signature or authentication schemes seem to be
sufficient for designing memory checkers. Nevertheless, given a signature or mes-
sage authentication code (MAC) z for the current content (v1, ..., v,) of a queue
and some element v that shall be enqueued, in some settings the cryptographic
scheme must be able to compute the signature (or MAC) for (v1, ..., v,,v) from
z and v without accessing vy,...,v,. Consider for example the data structure
queue and the cipher block chaining mode of DES [1,12], i.e. the message au-
thentication code for 21,...,z, € {0,1}%*is

{DESa(ml) ifn=1
yTn) = .

BC-MAC,(z1,... =
CBC C ($1 DES, (CBC—MACa(mla st mn—l) ® m”) else

Here, DES, denotes the DES function with secret key @ and « @ y denotes the
bitwise exclusive-or of and y. Inserting an element at one end of the queue and
deleting at the other isn’t possible without reading all elements inserted so far.
Even if it were possible, this would cause a large overhead.

Related work. The memory checker model was introduced by Blum et al. in [6]
and refined in [8]. Blum et al. present checkers for stacks and queues, but their
solution is based on e-biased hash functions (see [11] for a definition). We use
their ideas, but we don’t exploit special properties of the underlying function
family. That is, one can use any family inluding practical families like DES. In
particular, the small and fast memory checker algorithm can be easily added to
a smart card where algorithms for such a family are already implemented.

Recently, so called incremental schemes were introduced by Bellare, Gold-
reich and Goldwasser [2,3]. Informally, an M-incremental signature or authen-
tication scheme allows to produce a signature (or MAC) to some document M
very fast, given a signature to document M’ where M is obtained by applying
a text modification in M to M’. The similarity to memory checkers is obvious.
Hence, we derive efficient memory checkers if an M-incremental scheme fullfils
the following conditions:

— The modifications correspond to the data structure operations, e.g. for stacks
we have text modifications “append-at-the-end” and “delete-from-the-end”.

— As explained above, to update a signature the scheme merely needs the
element that is inserted or deleted.

— The scheme is secure against so called message substitution attacks, i.e. one
cannot produce a forgery even if one is allowed to tamper the message before
an update step.

Incremental authentication schemes that support single block insertion and dele-
tion were given in [3] and a more space and time efficient one in [8]. The latter
one fullfils the abovementoned properties, but it produces about nlogn bits
authentication code, where n is the number of elements.

Ezact security. We follow the paradigm of [5] presenting results in terms of exact
security. The notion of exact security can be roughly described as follows: Let
A be an adversary for the checker model with parameters ¢ (running timet),
q (number of data operations) and ¢ (success probability). From A we derive
a distinguisher with running time ¢', number of oracle queries ¢’ and success
probability ¢’ for the function family used by the checker. Here, # ¢’ ¢’ are
determined by t,¢,¢€. So, if you consider the function family to be (¢/,¢', €)-
secure, you can immediately derive the checker’s security level exactly.

2 Notations and Definitions

First, we define function families. Let F be a set of functions with the same
domain {0, 1}' and the same range {0, 1}*. Each function f € F is associated
to a key. We write f, for the function f specified by key a. Choosing a function
f from F' at random means choosing at random with equal probability a key a
from the set of all keys and setting f := f,. For example, the DES family consists
of the DES function with input and output length 64, where each functions is
specified by some 56 bit DES key. Given a function f with domain {0,1}! and n
strings z1, ..., , we sometimes write f(z1,...,2,) instead of f(z1 - z2---z,).

Let Map(X,Y) denote the family of all functions mapping X to Y where the
key describing a function is the concatenation of all | X| function values in some
fixed order. Let F' C Map(X,Y) be a function family. Informally, a family F' is
pseudorandom, if a random function f € F behaves almost like a true random
function and f(z) can be evaluated fast for all € X. It is widely believed that
DES has this property. More formally, let ¥ C Map(X,Y) be a function family
and D a probabilistic algorithm. We write Df € {0, 1} for the output of D with
oracle access to a function f € F. Given two families F, G C Map(X,Y), the
advantage of algorithm D distinguishing F' and G is defined as

Advp(F,G) = Probsep [Df = 1] — Probyeg[D? = 1],

where the probabilities are taken over the internal coin tosses of D and the
random choice of f € F'resp. ¢ € G. Algorithm D is called a (¢, q, €)-distinguisher
if it makes at most ¢ steps in the standard RAM model, makes at most ¢ oracle

! Formally, ¢ includes the running time and the description size of the adversary’s
algorithm. For simplicity, in this paper we only consider the running time (measured
in terms of number of RAM steps).

queries and achieves Advp (F, Map(X, Y)) > ¢. A family is called (t, ¢, €)-secure
if there is no (¢, ¢, €)-distinguisher for this family.

Finally, we give an informal definition of collision-free hash functions. See
[7] for a formal treatment. A function h : {0,1}® — {0,1}* with b > k + 1 is
a collision-free hash function, if it is infeasible to find @ # &' such that h(z) =
h(z'). Candidates in practice include MD5 and SHA, where b = 512 and k = 128
resp. k = 160. It is well known [7,10] that given a collision free hash function h,
one can easily derive a collision-free iterated hash function H : B* — {0, 1}* for
B :={0,1}*"%*-1 Namely, let z1,...,2, € B and set

h(0%,0, z4) ifn=1
h(H(21,...,2n-1),1,2,) else

H(zq,...,2p) ::{

Finding a collision for H implies finding a collision for h.

3 Memory Checkers

We briefly review the definition of a memory checker [6,8]. A memory checker
filters the interaction between a user and a data structure storing the data to
some insecure memory. See figure 1. An execution is divided into rounds. At the
beginning of each round, the checker gets the next user operation, e.g. a push(v)
command, and performs some local computation, including arbitrary interaction
with the data structure. Qur checkers presented below only compute a function
value, increment and decrement counters and pass the operation (perhaps adding
some time stamp) to the data structure. At the end of the round, the checker shall
return the output to the user before reading the next operation (or return “—” if
the operation doesn’t produce an output). The execution ends, when there are
no more input operations left and the checker has finished its “postprocessing”.
If some error occurs the checker shall output BUGGY with high probability
during or immediately after the execution. Conversely, if the execution is correct
the checker shall never output BUGGY.

T

User Checker Memory/Data Structure

Fig. 1. The memory checker model

We stress that the local memory of the checker cannot be read or tampered
neither by the user nor the adversary. From a theoretical point of view, our

checkers remain valid if we allow the adversary to read the checker’s memory
except for the secret key specifying the function. Though in practice, in this case
a DES checker producing a 64 bit check code might be for example vulnerable
to birthday attacks.

To capture the worst case for the checker, we assume that the adversary
totally controls the insecure memory and the input/output behaviour of the
data structure. Furthermore, he controls the user and therefore chooses the user
operations passed to the checker. The adversary works adaptively, i.e. he bases
his decision on the previous steps of the protocol. A checker is called on-line if it
detects an error immediately after it occured, i.e. before reading the next input
operation. Otherwise it is called off-line. All our checkers presented below are off-
line. Furthermore, a checker is called noninvasive if the insecure memory contains
only values specified by the user operations (assuming that the adversary doesn’t
tamper this content and that the data structure works correctly). Else it is called
tnvasive. Our checkers for stacks and deques are invasive as they add some time
stamp, while our checkers for queues are noninvasive.

Definition 1. A memory checker C' for a data structure D is (t, g, €)-secure
iff for every adversary A making at most ¢ steps and passing at most ¢ user
operations to C', the probability that A returns a wrong value and C' doesn’t
output BUGGY is less than e. Additionally, the checker never outputs BUGGY
if the output is correct for all operations.

We assume that all values are from {0,1}" and for stacks and deques we
suppose that these data structures are capable of storing pairs from {0,1}" x
{0, 1}V, Our checker will use the N extra bits to append a time stamp to every
value. The inital configurations of stacks, queues and deques are empty.

4 Checkers for Stacks, Queues and Deques based on DES

In this section we define checkers for stacks, queues and deques, i.e. queues
that allow to enqueue and dequeue at both sides. The checkers are all based on
pseudorandomlike functions like DES. If the value length exceeds 64 bit DES
input length, one can use for example the CBC construction [5] to stretch the
input length to some multiple of 64 bits.

For the rest of this section, let F' be an arbitrary family of functions mapping

{0, 1} to {0, 1}¥ with key length k.

4.1 A Checker for Stacks

We define an off-line checker for stacks. The private memory of the checker
contains the following values:

— an N-bit time counter s, which 1is initialized with 0
— an N-bit position counter p, which 1is initialized with 0
— a k-bit key a of a function family F' specifying a function f; in F

— an L-bit value 7, which is initialized with 0¥

The key a is chosen at random in a preprocessing phase. The code 7 will be
updated every time an element is pushed or popped. If all retrieved values are
correct, we will have 7 = 0% at the end of the execution.

For an user command push(v) the checker works as follows: Tt pushes the
values (v, s) to the memory, computes 7 := 7@ f,(v,p, s) and increments s and
p. For a pop command, the checker pops a pair (v,s,) from the memory and
verifies that s > s,. If not, it outputs BUGGY. Otherwise it passes v to the
user, decrements p and computes 7 := 7@ fo(v,p, Sv)-

As the checker maintains a counter p for the number of elements in the stack,
we may presume wlog. that the adversary never outputs “empty” unless the stack
really is. If no more user operations are left, the checker empties the memory in
a verification phase. It pops all elements and proceeds as above (without passing
values to the user), until p = 0 and the stack is empty. We’ll discuss the practical
consequences of this overhead caused by the verification phase in section 6.

Note that the checker is deterministic — except for the random choice of
the key a. The following lemma states that for F = R = Map({0, 1}/, {0, 1}%),
errors will be detected with high probability:

Lemma 2. Let f, be a random function in R = Map({0,1}},{0,1}F), I > n +
2N. If an error occurs, we have T = 07 at the end of the execution with probability
2=F where the probability is taken over the random choice of f, and the coin

tosses of the adversary. If every output is correct, the final value of T will be 0"
for any function family F C Map({0,1}*,{0,1}L).

Proof. If no error occurs, every pushed value (v, s) is retrieved from the memory
again (at the same position), so xoring these function values equals 0. In this
case we have 7 = 0% at the end of the execution regardless of the function family.

Assume that an error occurs. We sort the sequence of push and pop commands
according to the position. Namely, let v; ; be the value that the i*® push command
for position j inserts. Let w; ; the value that is returned the next time a value is
read from position j. Let the corresponding time values be s, ; resp. sy, ;. Then
for every position j we have a sequence of m; pairs, on which the function f, is
evaluated:

(vj,l)ja Svj,1)a(wj,1aja S’Wj,l)) HRE (vj,mj)ja Svj,mj)a(wj,mjaja Swj,mj)

Since an error occured, there exists i, j such that (v;;, j, sy, ,) # (W), J, Sw,,;)-
We show that there must be a tuple that appears an odd number of times (or
the checker detects an error immediately).

As the time stamps s,,, for # = 1,...,m; are in increasing order, we
have (vj .z, j, $v,.) # (Vjy, J, 50;,) for all z < y. Hence, the triples (v, j, 50,)
can only appear for an even number of times, if there’s a permutation 7 over
{1,...,m;} implying a bijection between {(v;.,J,sv;.) | z=1,..,m;} and
{(11)j7y,j, Suwj) | y=m(1),... m(my) } Assume for contradiction that z > y :=
m(x) for some x. Then (vjz,j,5u;,) = (Wjy,J, Sw,;,) As the checker verified

that Sw;, Was less than the current counter s at the time wj, was returned, we
derive the contradiction Sy;, > 8 > Su,,. Hence, n(x) = « for all z, but this
is a contradiction to our assumption (v;,j, sv;,) # (Wji,J, $w,). Thus, there
exists some tuple that appears an odd number of times.

Let M = {(v1,p1,51),---, (Ym,Pm, Sm)} be the set of all triples that appear
an odd number of times. Since there is such a triple, we have m > 1. At the end of
the execution, 7 equals 0L @ f,(v1,p1,51) @ - ® fa(Vm, Pm, Sm). The probability
that

fa(vm;pm; Sm) = fa(vlgpm;sl) D '@fa(vm—lgpm—l; Sm—l)

and therefore 7 = 0% is equal to the probability that some random value from
{0, 1}* equals a fixed element in {0, 1}¥. This probability is 2%, O

Theorem 3. Let F C Map({0,1},{0,1}F), I > n + 2N, be a function family
which is (t, q, €)-secure. Then the checker for stacks described above is (t', ¢, €')-

secure, where t' =t —cq, ¢ = Lq and ¢ = ¢ + 2L for some small constant

P)
ce IN.

Suppose that we use DES. As ¢q will be small in comparison to ¢, we have
t &~ t'. Additionally, ¢’ and ¢ differ only by a factor 2 and 2=F = 2754 is almost
zero. Thus, the checker is roughly speaking as secure as DES.

Proof. Assume that there is an adversary A with running time #' that passes at
most ¢’ user operations to C' and achieves success probability at least ¢/. From A
we construct a distinguisher D for F and R = Map({0, 1}}, {0, 1}¥) with running
time ¢, making at most ¢ oracle queries and advantage at least ¢. Wlog. we
presume that A never returns a timer value that is equal to or greater than the
timer value of the checker — since such errors will be detected immediately.
Furthermore, we assume wlog. that A never returns “empty” though the stack
isn’t (because the checker maintains the number of elements in the stack), but
returns at least one wrong value during the execution.

D is given oracle access to a random function g in F or R. It performs
a black-box-simulation of A by running the checkers program using the oracle
access to g. That is, it maintains two counters s, p (initialized with 0) and a code
7 (initialized with 0L). Whenever the checker would have updated 7 by xoring it
with fo(v,p,s), D computes 7 = 7@ g(v,p, s) and updates p, s accordingly. At
the end of the execution, D outputs 1 iff 7 = 0%, Therefore,

Advp(F,R) = Probgep [D? outputs 1] — Probger [D? outputs 1]
= Prob,cr [T = 0% at the end] — Probger [7‘ = 0% at the end]
= Probycr [A is successful] — Probger [A is successful]
> — 2~ L
The running time of D equals the running time of A plus the time to increment
and decremement the counters resp. to compute the new 7 in every step. As the

checker empties the stack after having answered the last user operation, D needs
at most ¢’ additional oracle queries. O

4.2 A Checker for Queues

Our checker for queues is noninvasive, i.e. it doesn’t append a time stamp. The
local memory of the checker contains two N-bit position counters pio, and ppot
(both initialized with 0), a random k-bit key a specifying a function f, in F' and
an L-bit code 7 initialized with 0. Whenever we enqueue a value, we increment
Prop- If we dequeue a value, we increment pror. Thus, prop — prot is the number of
elements currently in the queue To be more precise, if the checker shall enqueue
an element v, it enqueunes v, computes 7 := 7@ f4(v, prop) and increments pigp. If
the checker shall dequeue a value, it dequeues v, returns v to the user, computes
T := 7® fa(v, Poot) and increments pyor. At the end, the checker dequeues all
elements in the verification phase updating pp.. and 7 as above. Security is
proven as in Lemma 2 and Theorem 3.

Lemma 4. Let f, be a random function in R = Map({0,1}',{0,1}%), 1 > n+N.
If an error occurs, we have T = 0F at the end of the execution with probability
2-L . where the probability is taken over the random choice of f, and the coin
tosses of the adversary. If no error occurs, at the end T = 0F holds for any

function family F C Map({0, 1}, {0, 1}%).

Proof. At the end of the execution, the function has been evaluated for 2m =
2(prop — 1) tuples (vj,3), (wj,j5), j = 1,...,m, where v; is the j® enqueued
element and w; is the ;" value dequeued. Tf v; = w; for all j we obviously have
7= 0L at the end. If v; # w; for some j we derive that 7 £ 0F with probability
2-T as in Lemma 2. O

Theorem 5. Let F' C Map({0,1},{0,1}F), 1 > n+ N, be a function family that
is (t,q, €)-secure. Then the checker for queues described above is (t',q’, €')-secure,

wheret! =t —cq, ¢ = 1q and ¢ = e+ 27" for some small constant ¢ € IN.

4.3 A Checker for Deques

To derive a checker for deques, we introduce time stamps again, as stacks can be
viewed as special deques. Let enqueue’ | enqueue ™, dequeueL and dequeueR be the
commands to enqueue resp. dequeue elements at the left or right side. Let F be
function family with input length [> n+2/N+1. The checker maintains five N-bit
counter values s, ptLop) pgp, pE_. and pft | all initialized with 0. Additionally, it
initializes 7 with 0%. If the checker gets an enqueue’ (v) or enqueue(v) command,
it computes 7 := T@fa(O,v,ptLop,s) (for enqueue’) or 7 := T@fa(l,v,pgp,s)
(for enqueue®?), enqueues the pair (v, s) at the corresponding side and increments
s and ptLop resp. Prop-

To process a dequeue’ command, the checker works as follows: If ptLOp >
pL.. it dequeues a pair (v,s,). If s, > s, it outputs BUGGY. Otherwise, it
decrements p{‘op and sets 7 := 7@ f,(0, v,ptl‘op, sy). Now assume that pg‘op = pé‘ot
(the case pg‘op < pé‘ot will never occur). If pﬁ‘)p = pgot the deque is empty and

the checker outputs “empty”. Else pgp > plla?bt) and we dequeue a pair (v, sy),

output BUGGY if s, > s and otherwise compute 7 := 7@ fu(1,v,pit,, s,) and
increment pft .. Note that though we dequeue from left, we update 7 as we would
dequeue from the right side. A dequeue™ command is processed similar with roles
of left and right flipped.

At the end of the execution the checker dequeues elements in a verification
phase via dequeue’ commands as long as (ptLOp —pﬁot)—i-(pﬁp —pft) > 0. Security
follows as before, since arguments for the function f, are prepended by 0 or 1
depending on the side on which the elements are enqueued or dequeued. If all
values are correct, we’ll have 7 = 0%, while an error will be detected with high
probability. The proof of the following Theorem is similar to the proofs of Lemma
2 and Theorem 3.

Theorem 6. Let F C Map({0,1}},{0,1}5),1 > n+2N+1, be a function family
that is (t,q, €)-secure. Then the checker for deques described above ist (t',q', €')-
secure, where t' =t —cq, ¢ = Lq and ¢ = ¢ + 27 for some small constant

P)
ce IN.

5 Checkers for Queues based on Iterated Hash Functions

In this section, we present a simple checker based on iterated hash functions
defined in section 2. Recall that H : B* — {0,1}* for B := {0,1}*=%~" for
the underlying hash function A : {0,1}> — {0, 1}*. For notational convenience
let b* = b — k — 1. Our checker doesn’t need a position or time counter, nor
does it append a time stamp to each value. Unfortunately, security cannot be
stated in terms of exact security until we use families of hash functions. A formal
treatment based on the results of [7] will be given in the final version.

To check a queue we maintain two hash values e, d € {0, 1}*, both initialized
with h(Ok,0,0b*). To enqueue a value v € B, let e := h(e, 1,v). To dequeue a
value v, compute d := h(d, 1,v) and pass v to the user. If the data structures
claims that the instance 1s empty, we verify that e = d and output BUGGY
if not. If e = d we return “empty” to the user. If no more operations are left,
we dequeue all elements in a verification phase until the data structure returns
“empty”. In this phase, we update d for each element as above without returning
values to the user. Finally, the checker verifies that e = d and outputs BUGGY
if not.

We always have e = H(Ob*,vl, ..., vpn) for the sequence v1,...,v, € B of
elements enqueued. Additionally, it always holds d = H(0° ,wy, ..., wp,) for the
sequence wi,...,wm € B of elements dequeued.

Proposition 7. The checker presented above is secure unless one can find a
collision for the hash function h.

Proof. Let vy,...,v, resp. wy,...,w,, be the sequence of enqueued resp. de-
queued elements. If no error occurs, we have n = m and v; = w; for all i, since
queues are FIFO systems. Hence, e = d at the end of the execution. Assume
that an adversary fools the checker. There are two possibilities: First, at some

point the adversary outputs “empty” though the queue isn’t. In this case, the
checker immediately verifies that e = d. As the adversary is successful, we have
e = H(Ob*,vl,... ,Unt) = H(Ob*,wl,... , W) = d for m’ < n' and the adver-
sary has found a collision for H. On the other hand, if the adversary never lies
about the number of elements, we have n = m and there exists some i such
that w; # v;. Then e = H(0°" ,vy,...,v,) = H(0" ,wy,...,w,) = d, and the
adversary has found a collision for different messages of the same length. O

6 How to proceed in practice

Suppose that we want to implement a checker on a multi user computer system
like Unix. All the checkers presented above are off-line checkers. To verify the
correctness of the memory content the checker must empty the instance. How-
ever, in most settings the data mustn’t be deleted because we need it for further
use.

D‘_’ —y

(| |_|E

Users Checker Memory/data structure

Fig. 2. A memory checker for queues

We suggest the following solution: The checker is maintained by the system
administrator, and the users can access the common data structure only via the
checker (see figure 2) — assuming that no read/write conflicts occur. Whenever
the access frequency drops, e.g. at night, the checker temporarily forbids any
operation and performs a check. Consider for example stacks. To verify, the
checker empties one instance and immediately inserts each element again in
another instance. To be more precise, let 7 be the current check value for that
instance. The checker initializes new counter values p’ with 0 and s’ with s and
sets 7 = 0L. Then we pop the first element from the old stack (updating s, p, 7
as above), and insert it again in the new instance (this time updating p’, s’ and
7' instead of p, s, 7). We repeat this for the other elements. When all elements
are deleted from the old instance, the checker verifies that 7 = 0 — and outputs
BUGGY if not. Note that all values in the new instance are in reverse order, so
we do the same again swapping the roles of the old and new instance resp. p, s, 7
and p', s, ' to get the correct order again. For queues and deques the verification
phase is done similar though we don’t have to reverse the order again.

Refreshing the key for DES based checkers can be done in the verification
phase. At the beginning of such a phase, we choose a new random DES key a’
and reset s’ to 0 (instead of setting s’ = s). Then we work as described above

but we compute 7 via the function f,: specified by a’ though 7 is still updated
using f,. For stacks the key refreshment may be done in the reverse order phase.

Our experimental results (Appendix A) show that the overhead caused by the
checker for each user operation is insignificant. In contrast to that, the verifica-
tion phase of an off-line checker is very expensive — if there are many elements in
the instance. But as the examples of the bank customer and the printer schedule
queue show, in some settings it is very likely that the user empties the instance
anyway, making the verification phase fast. In particular, for smart cards it is
preferable that (if possible) the underlying data structure is a queue and that
the checker is based on iterated hash functions. The lower bounds for on-line
checkers given in [6] and the algorithms for on-line stack checkers in that work
indicate that we probably cannot find checkers that work on-line, have small
private memory and do not store much extra data on the insecure memory. We
leave it as an open problem to prove this conjecture or to develop such checkers.

References

1. ANSI X3.106: American National Standard for Information Systems — Data En-
cryption Algorithm — Modes of operation. American National Standards Institute,
1983.

2. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: The case of
hashing and signing. In Crypto’94 (1994), vol. 839 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 216-233.

3. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography and appli-
cation to virus protection. In Proceedings of the 27th Annual Symposium on the
Theory of Computing (1995), pp. 45-56.

4. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: New methods for message
authentication using finite pseudorandom functions. In Crypto’95 (1995), vol. 963
of Lecture Notes in Computer Science, Springer-Verlag, pp. 15-29.

5. Bellare, M., Kilian, J., Rogaway, P.: On the security of cipher block chaining. In
Crypto’94 (1994), vol. 839 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 341-358.

6. Blum, M., Evans, W.; Gemmell, P.;, Kannan, S.; Naor, M.: Checking the correctness
of memories. Algorithmica 12 (1994), pp. 255-244.

7. Damgard, I.: A design priciple for hash functions. In Crypto’89 (1989), vol. 435 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 416-427.

8. Fischlin, M.: Incremental cryptography and memory checkers. In FEurocrypt’97
(1997), Lecture Notes in Computer Science, Springer-Verlag.

9. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of ACM 33(4) (1986), pp. 792-807.

10. Merkle, R.: One way hash functions and DES. In Crypto’89 (1989), vol. 435 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 428—446.

11. Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and ap-
plications. Journal on Computing 22 (1993), pp. 838-856.

12. National Bureau of Standards: Data Encryption Standard, Federal Information
Processing Standard, Publication 46. US Department of Commerce, 1977.

13. National Bureau of Standards: Secure Hash Standard, Federal Information Pro-
cessing Standard, Publication 180. US Department of Commerce, 1993.

14. Rivest, R.: The MD5 message-digest algorithm. IETF Network Working Group,
RFC 1321, 1992.

A Experimental Results

In this section we present some experimental results for stacks with DES based
checkers and for queues with SHA-1 based checkers. The algorithms were imple-
mented in ANSI-C using the cryptlib package (available at site http://www.cs.
auckland.ac.nzl/~pgut001/cryptlib/index.html) on a Linux system run-
ning on a DOS computer with Intel Pentium 166 chip. For the stack checker
we use the CBC construction of DES to stretch the input length [5], allowing
different element sizes with 128, 512, 1024, 2048 bit. The counter values are each
restricted to 32 bit. For a fixed element size, the experiments showed that the
running time grows proportional to the number of elements. Furthermore, re-
peating the exeperiment didn’t change the time significantly. Thus, we only give
the average results for 100, 000 elements.

|element size || 128 bit| 512 bit|1024 bit| 2048 bit|
10° eval. of CBC-DES]| 2.8 sec| 7.2 sec[13.0 sec| 24.8 sec
10° stack commands || 0.5 sec| 1.9 sec| 3.7 sec| 7.4 sec
10° insertions 4.1 sec|10.8 sec| 19.9 sec| 38.3 sec
Verification phase 15.8 sec|40.9 sec| 80.1 sec|156.5 sec

The first row shows how fast we can evaluate a CBC-DES on the system. We’ve
applied the CBC-DES function 10° times for the zero string (of corresponding
size) without processing the function output. The second row shows how fast
we can do 10° stack commands, of which a half are push resp. pop commands.
For simplicity, we’ve chosen an array representation of the data structure stack
supporting a push and pop function. The following rows present the running
time of the checker. The first one shows the time to insert 100,000 elements.
Note that this time is greater than the sum of the two proceeding rows, since
we also have to maintain two counter values and must process the DES output.
As expected, the running time of the verification phase is about four times the
time to insert the elements. This follows from the fact that we have to pop every
element, push it in another instance and do the same again to reverse the order.

For queues, we’ve used the construction based on iterated hash function with
SHA-1. For simplicity, we’ve used 344 bit values, prepending it with the previous
hash value and 8 bit representing the 0 or 1 bit as a character, such that the
total length adds up to 512 bits. Again, we’ve chosen an array implementation
of the data structure.

10° eval. of SHA-1 1.9 sec
10° enqueue /dequeue||1.8 sec
10® insertions 3.8 sec

Verification phase 7.8 sec

As the table confirms, the checker is much faster than a DES based one.

