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Abstract. Non-malleability protects against man-in-the middle attacks on crypto-
graphic protocols. Non-malleable commitment schemes for example assure that a com-
mitment of a message does not help to produce a commitment of a related message.
Here we present efficient constructions of such commitment schemes in the common ref-
erence string model, based on standard assumptions such as RSA, factoring or discrete
logarithm. Our protocols require only three rounds and a few modular exponentiations,
and provide statistical or even perfect secrecy of committed values.

We also discuss differences between the notion of non-malleable commitment schemes
used in previous works by Dolev, Dwork and Naor and by Di Crescenzo, Ishai and
Ostrovsky. The former definition requires that it is infeasible to find a commitment
such that there exists an encapsulated message which is related to another committed
value (non-malleability with respect to commitment). The second approach allows the
existence of such messages but then it is hard to find them and to output them in the
opening phase (non-malleability with respect to opening). We note that our solutions
are of the second type.

Keywords. Chinese Remainder Theorem, commitment, common reference string, non-
malleability, proof of knowledge, trapdoor commitment.

1 Introduction

Loosely speaking, a commitment scheme is non-malleable if one cannot transform the com-
mitment of another person’s secret into one of a related secret. Such non-malleable schemes
are for example important for auctions over the Internet: it is necessary that one cannot gen-
erate a valid commitment of a bid b+ 1 after seeing the commitment of an unknown bid b of
another participant. Unfortunately, this property is not achieved by commitment schemes in
general, because ordinary schemes are only designated to hide the secret. Even worse, most
known commitment schemes are in fact provably malleable.



1.1 Chronology (Part I)

The concept of non-malleability has been introduced by Dolev et al. [18]. They present a
non-malleable public-key encryption scheme (based on any trapdoor permutation) and a non-
malleable commitment scheme with logarithmically many rounds based on any one-way func-
tion. Yet, their solutions involve cumbersome non-interactive and interactive zero-knowledge
proofs, respectively. Further non-malleable encryption schemes with improved efficiency under
various assumptions have appeared since then [3, 4, 12].

As for commitment protocols, Di Crescenzo et al. [17] present a non-interactive and non-
malleable commitment scheme based on any one-way function in the common random string
model. Though being non-interactive, their system is rather theoretical as it applies an or-
dinary commitment scheme multiple times to non-malleably commit to a single bit. Other
non-malleable commitment protocols have been suggested after the proceedings version of
our paper [24] had been published; we review these schemes at the end of this introduction.

1.2 Our Results

We present efficient perfectly- and statistically-secret non-malleable commitment schemes
based on standard assumptions, such as the RSA assumption or the hardness of computing
discrete logarithms. Our schemes are designed in the common reference string (CRS) model
(aka. public parameter or auxiliary string model), where public parameters like a random
prime p and generators of some subgroup of Z∗p are generated and published by a trusted
party. This model relies on a slightly stronger assumption than the common random string
model where the public data consist simply of a random string. Yet, as in the example
of discrete logarithms, the CRS model can sometimes be formally reduced to the common
random string model if we let the participants map the random string via standard procedures
to a prime and appropriate generators.

In our schemes the sender commits to his message using an ordinary, possibly malleable
discrete-log- or RSA-based commitment scheme and performs an efficient three-round witness-
independent proof of knowledge, both times using the CRS. While the straightforward solution
of a standard proof of knowledge fails (because the adversary may in addition to the commit-
ment also transform the proof of knowledge), with the help of the CRS we force the adversary
to give her “own” proof of knowledge. That is, the adversary cannot adapt the proof of the
original sender. Similar ideas have also been used in [18] where independency of the proofs
comes from a sophisticated message scheduling of the interactive commitment.

We also present a version of our commitment scheme which is based on the factoring
assumption. Yet, while discrete-log and RSA commitments support efficient proofs of knowl-
edge, similar proofs are not known to exist for commitments based on factoring. Fortunately,
we do not need proofs of knowledge to the full extent, but it suffices that the proof is verifiable
by the receiver only after the sender has decommitted and the witness is revealed. We call
such proofs a-posteriori verifiable.

Based on the Chinese Remainder Theorem we then give efficient instantiations of a-
posteriori verifiable proofs of knowledge. The resulting commitment scheme based on fac-
toring thus comes with a potentially milder assumption than in the RSA case, yet at the
same time it achieves a technically weaker notion called ε-non-malleability. As a positive side
effect, our a-posteriori verifiable proofs now allow to hash longer messages before commit-
ting. In contrast to this, the discrete-log- and RSA-based non-malleable schemes relying on
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well-known proofs of knowledge do not seem to support the hash-and-commit paradigm in
general.

1.3 On the Definition of Non-Malleable Commitments

We also address definitional issues. According to the definition of Di Crescenzo et al. [17], a
scheme is non-malleable if the adversary cannot construct a commitment from a given one,
such that after having seen the opening of the original commitment, the adversary is able
to correctly open her commitment with a related message. But the definition of Dolev et
al. [18] demands more: if there is a one-to-one correspondence between the commitment and
the message (say, if the commitment binds unconditionally), then they define that such a
scheme is non-malleable if one cannot even generate a commitment of a related message.

We call schemes having the [18] property non-malleable with respect to commitment. For
these schemes to contradict non-malleability it suffices to come up with a commitment such
that there exists a related opening. Schemes satisfying the definition of [17] are called non-
malleable with respect to decommitment or, for sake of distinctiveness, with respect to opening.
In this case, the adversary must also be able to open the modified commitment correctly given
the decommitment of the original commitment. The scheme in [18] achieves the stronger
notion, whereas we do not know if the scheme in [17] is also non-malleable with respect to
commitment.

A commitment scheme which is non-malleable in the strong sense is non-malleable with
respect to opening, too.1 We stress that the other direction does not hold in general. That is,
given any statistically-secret commitment scheme which is secure with respect to opening, we
can devise a commitment scheme satisfying the weak notion, but not the strong definition.
Since our statistically-secret schemes based on standard assumptions like RSA or discrete-log
achieve non-malleability with respect to opening, this separates both notions under any of
these standard assumptions.

We believe that non-malleability with respect to opening is the appropriate notion for
perfectly- and statistically-secret schemes. The reason is that for such schemes virtually any
commitment can be opened with any message in principle. Hence, finding a commitment of
a related message to a given commitment is easy: any valid commitment works with very
high probability. Although there is at least one application of non-malleable commitment
schemes in the context of authenticated key-exchange where non-malleability with respect
to commitment is necessary [28], non-malleability with respect to opening still seems to be
adequate for most applications. For instance, recall the example of Internet auctions. The
commitments of the bids are collected and then, after a deadline has passed, are requested
to be opened. Any secret which is not correctly revealed is banned. Therefore, security with
respect to opening suffices in this setting.

1.4 Chronology (Part II)

Following the publication of the proceedings version of our work several other non-malleable
commitment schemes have been proposed. Di Crescenzo et al. [16] present more practical
1 Although this seems to follow directly from the requirements, it depends on the subtleties of the

definitions. Indeed, compared to [18], we strengthen the requirements for non-malleability with
respect to commitment in order to imply the notion of non-malleability with respect to opening.
The scheme in [18] also satisfies our more stringent definition.
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variants of the system in [17] relying on the RSA or discrete-log assumption and the CRS
model; see also [25] for further improvements of these protocols, resulting in more efficient
schemes than the ones here. Focusing on the case of multiple commitments Damg̊ard and
Groth [14] derive further efficient non-interactive commitment schemes in the CRS model; see
also [26] for constructions of such reusable commitments based on multi-trapdoor commitment
schemes. All these protocols are non-malleable with respect to opening.

While our protocols consists of three rounds the aforementioned schemes all provide effi-
cient non-interactive solutions. Yet, this comes at the price of reduced security. First, all these
protocols are not known to preserve non-malleability if the adversary is additionally given
some useful side information about the message for which it tries to find a related commit-
ment, e.g., if the message is used in other sub protocol executions. Second, the solutions merely
achieve the weaker notion of ε-non-malleability. In contrast, our DL-based and RSA-based
commitment schemes are not subject to these restrictions but, unlike the non-interactive so-
lutions, do not support hashing of longer messages before committing. Our factoring-based
solution lies somewhere in between: it allows upstream hashing, but merely achieves ε-non-
malleability, yet tolerates a-priori knowledge of the adversary about the sender’s message.

In [16] it is also pointed out that secure public-key encryption is sufficient for non-malleable
commitments. Basically, the CRS contains a public key of a secure encryption scheme and
in order to commit the sender encrypts the message and hands it to the receiver. Hence,
using potentially stronger assumptions like the decisional Diffie-Hellman assumption and the
encryption scheme in [12], or non-standard assumptions like the random oracle methodology,
one derives alternatives to the solutions here and in [16, 25, 14, 26]. Yet, the encryption-based
approach provides only computational secrecy and the latter may be insufficient in some
settings, especially since knowledge of the secret key to the public parameters enables to
decrypt the message. Also, using random oracles there is a simpler approach to construct
non-malleable commitments. We sketch this solution in Appendix A.

More non-malleable (but less efficient) commitment schemes in the broader context of
universally composable commitments have been constructed by Canetti and Fischlin [9] and
subsequently by Damg̊ard and Nielsen [15] and Canetti et al. [8]. Also, Prabhakaran and
Sahai [45] present quite efficient universally composable commitments based on somewhat
non-standard assumptions. Conversely, Liskov et al. [36] derive more efficient commitment
schemes by aiming at the weaker notion of mutually independence. MacKenzie and Yang [37]
discuss the relationship between non-malleable commitments and so-called simulation-sound
trapdoor commitments. Finally, let us remark that, recently, Barak [1] gave the first (rather
theoretical) constant-round non-malleable commitment scheme in the plain model. Also, Pass
and Rosen [43] recently showed how to build concurrently executable non-malleable commit-
ment schemes.

1.5 Organization

The paper is organized as follows. In Section 2 we introduce basic notations and definitions
of commitment schemes as well as the notions of non-malleability. Section 3 separates the
notions of non-malleability with respect to commitment and opening. In Section 4 we present
efficient schemes in the CRS model based on the discrete-log assumption, and in Section 5 we
turn to the RSA case. Finally, in Section 6 we show how to use a-posteriori verifiable proofs
of knowledge to achieve non-malleable commitments under the factoring assumption.
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2 Preliminaries

Unless stated otherwise all parties and algorithms are probabilistic polynomial-time. Through-
out this paper, we use the notion of uniform algorithms; all results transfer to the non-uniform
model of computation. A function δ(n) is said to be negligible if δ(n) < 1/p(n) for every poly-
nomial p(n) and sufficiently large n’s. A function δ(n) is called overwhelming if 1 − δ(n) is
negligible. A function is noticeable if it is not negligible.

Two sequences (Xn)n∈N and (Yn)n∈N of random variables are called computationally in-
distinguishable if for any probabilistic polynomial-time algorithm D the advantage

|Prob [D(1n, Xn) = 1]− Prob [D(1n, Yn) = 1]|

of D is negligible, where the probabilities are taken over the coin tosses of D and the random
choice of Xn and Yn, respectively. The sequences are called statistically close or statistically
indistinguishable if

1
2 ·

∑
s∈Sn

|Prob [Xn = s]− Prob [Yn = s]|

is negligible, where Sn is the union of the supports of Xn and Yn.

2.1 Commitment Schemes

We give a rather informal definition of ordinary commitment schemes and focus on the def-
inition of non-malleability instead. For a formalization of regular commitments we refer the
reader to [27]. A commitment scheme is a two-phase interactive protocol between two parties,
the sender S holding a message m and a random string r, and the receiver R.

In the first phase, called the commitment phase, S gives some information derived from
m, r to R such that, on one hand, R does not gain any information about m, and on the
other hand, S cannot later change his mind about m. We call the whole communication in this
phase the commitment of S. Of course, both parties should check (if possible) that the values
of the other party satisfy structural properties, e.g., that a value belongs to a subgroup of Z∗p,
and should reject immediately if not. In the following, we do not mention such verification
steps explicitly. We say that a commitment, i.e., the communication, is valid if the honest
receiver does not reject during the commitment phase.

In the decommitment stage, the sender communicates the message m and some evidence
showing the correctness of m to the receiver, who verifies that these values match the commu-
nication of the first phase. If the sender obeys the protocol description, then the commitment
is valid and R always accepts the decommitment. Usually, the sender’s random string itself
makes up the decommitment evidence, and for simplicity we adhere to this in the rest of the
paper. In particular, we assume that the decommitment phase is non-interactive and consists
of a single message from the sender to the receiver, revealing the message and the random
coins.
There are two fundamental kinds of commitment schemes:

– A scheme is statistically-binding (and computationally-secret) if any arbitrarily power-
ful malicious S∗ cannot open a valid commitment ambiguously except with negligible
probability (over the coin tosses of R), and two commitments are computationally in-
distinguishable for every probabilistic polynomial-time (possibly malicious) R∗. If the
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binding property holds unconditionally and not only with high probability, then we call
the scheme unconditionally-binding.

– A scheme is (computationally-binding and) statistically-secret if it satisfies the “dual”
properties, that is, if the distribution of the commitments are statistically close for any
arbitrarily powerful R∗, and yet opening a valid commitment ambiguously contradicts
the hardness of some cryptographic assumption. If the distribution of the commitments
of any messages are identical, then a statistically-secret schemes is called perfectly-secret.

Technically, there are also commitment schemes where binding and secrecy both hold in a
computational sense only. However, since one of the properties is usually attainable in an
information-theoretic sense we focus on the aforementioned types only.

2.2 Non-Malleability

As mentioned in the introduction, different notions of non-malleability have been used implic-
itly in the literature. To highlight the difference we give a formal definition of non-malleable
commitment schemes, following the approach of [18].

Scenario. For non-interactive commitment schemes, all the adversary attacking the non-
malleability property can do is modify a given commitment. In the interactive case, though,
the adversary might gain advantage from the interaction. We adopt this worst-case scenario
and assume that the adversary interacts with the original sender, while at the same time she
is trying to commit to a related message to the original receiver.

A pictorial description of a so-called person-in-the-middle attack (PIM attack) on an
interactive protocol is given in Figure 1. The adversary A intercepts the messages of the
sender S. Then A may modify the messages before passing them to the receiver R and
proceeds accordingly with the answers. In particular, A decides to whom she sends the next
message, i.e., to the sender or to the receiver. This is the setting where A has full control over
the parties R1 and S2 in two supposedly independent executions 〈S1,R1〉(m), 〈S2,R2〉(m∗)
of the same interactive protocol. Here and in the sequel, we usually mark values sent by the
adversary with an asterisk.

Fig. 1. Person-In-The-Middle Attack on Interactive Protocols

S A R
s1−−−−−−−−−−−−−−−−→ s∗1−−−−−−−−−−−−−−−−→

r1←−−−−−−−−−−−−−−−−
s∗2−−−−−−−−−−−−−−−−→
r2←−−−−−−−−−−−−−−−−

r∗1←−−−−−−−−−−−−−−−−
s2−−−−−−−−−−−−−−−−→ . . .
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Apparently, the adversary can always commit to the same message by forwarding the
communication. In many applications, this can be prevented by letting the sender append his
identity to the committed message. The messages of the sender and the adversary are taken
from a space M. Abusing notations, we view M also as an efficiently computable distribution,
and write m ∈R M for a randomly drawn message according to M.

The adversary is deemed to be successful if she commits to a related message, where
related messages are identified by so-called interesting relations: a probabilistic polynomial-
time algorithm R taking inputs from M×M and returning a bit is called an interesting relation
if R(m,m) = 0 with probability 1 for all m ∈ M (to exclude copying). Moreover, we let the
interesting relation on the second argument accept the undefined symbol ⊥, capturing the
case that the adversary does not produce a valid commitment or decommitment; in this case
we set m∗ = ⊥ and we demand R(m,⊥) = 0 with probability 1.

We assume that M generates the sender’s message m and also a value histm representing
the a-priori information the adversary has about m. For instance, histm could represent
an additional hash value of the sender’s message m, or information gathered from other
protocol executions where the sender uses m. The value histm may not be efficiently samplable
in general. Here, however, we simplify the description and attribute histm to the efficient
distribution M, admitting an easy way to also include information about the sampling process
of m into histm. For ease of notation we then write both m ∈R M and (m,histm) ∈R M.

Since we work in the CRS model we extend the input of M and R by adversarial parameters
advpar the adversary produces after having learned the parameters crs (generated before
by a trusted third party). The value advpar may for example include the public parameters
crs. The motivation for this is that it should be infeasible for the adversary to find a suitable
relation or distribution on the messages even if the publicly available parameters are given.
For the same reason, we base the relation R also on the side information histm, which itself
may now depend on advpar through the generation via M(advpar).2 In summary, we denote
the message space and distribution as M(advpar) and the relation by R(advpar,histm, ·, ·).

Definition. The definition on non-malleable commitments follows the well-known idea of
defining secure encryption, namely, we will demand that for any adversary A transforming the
sender’s commitment successfully, there should be an adversary A′ that finds a commitment
to a related message with almost the same probability as A but without the sender’s help. All
probabilities below are implicit functions of a security parameter and the probability space
in each case is taken over the randomness of all algorithms.

We describe the attack in detail. First, the public string crs are generated by a trusted
party according to a publicly known, efficiently samplable distribution (if a protocol does not
need public information then this step is skipped). On input crs the adversary A then picks
the adversarial parameters advpar for M and R.

The sender S is initialized with m ∈R M(advpar). Now A, given histm, mounts a PIM
attack with S(m) and R. Let πcom(A,M,R) denote the probability that, at the end of the
commitment phase, the protocol execution between A and R constitutes a valid commit-
ment for some message m∗ satisfying R(advpar,histm,m,m∗). Let πopen(A,M,R) denote the

2 We do not include the actual commom reference string in the distribution and the relation, as
such a definition appears to be unachievable in general (see [23] for a discussion about the case of
non-malleable encryption). Testifying to this, our schemes for example are not known to satisfy
such a stronger notion.
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probability that A is also able to successfully open the commitment after S has decommitted
(where S does not decommit before the adversary finishes her commitment phase).

In a second experiment, a simulator A′ tries to commit to a related message without the
help of the sender. That is, A′ gets as input random parameters crs, generates adversarial
parameters advpar′ and then, given histm for some (m,histm) ∈R M(advpar′), it commits
to R without interacting with S(m). Let π′com(A′,M,R) denote the probability that this is a
valid commitment to some related message m′ under parameter crs with respect to relation
R(advpar′,histm, ·, ·). By π′open(A′,M,R) we denote the probability that A′ additionally re-
veals a correct decommitment. Equivalently, we may define π′open(A′,M,R) as the probability
that A′ simply outputs a related message (without reference to a CRS, commitment and
decommitment).

It is now tempting to define non-malleability with respect to commitment and with
respect to opening by comparing πcom(A,M,R), π′com(A′,M,R) as well as πopen(A,M,R),
π′open(A′,M,R) and asking for small differences. In the former case this would agree with
the definition in [18] and in the other case this would extend it straightforwardly to non-
malleability with respect to opening. But, surprisingly at first, for non-malleability with
respect to commitment we even oblige the simulator to open its commitment and con-
trast πcom(A,M,R) with π′open(A′,M,R). The are two reasons for this. First, otherwise any
statistically-secret commitment protocol would be non-malleable with respect to commit-
ment, because if the simulator merely outputs a commitment of some fixed message this is
also a commitment of a related message with high probability. However, this would certainly
contradict the intuition of non-malleable systems.

The other reason is that, even in the case of statistically-binding schemes, we were unable
to show that the presumably stronger non-malleability notion a la [18] implies the weaker one.
With our approach here this trivially follows from the definition, because the requirements for
the simulator in both cases are identical while the adversary trying to refute non-malleability
with respect to commitment even faces a simpler task.

For sake of completeness we include the original definition of Dolev et al. [18] and call
this non-malleability with respect to commitmentDDN, whereas we denote the more stringent
version by commitmentFF. We remark that the commitment scheme in [18] also satisfies “our”
notion of non-malleability with respect to commitment. Unless stated differently, throughout
this paper we simply refer to the “FF” version by non-malleability with respect to commit-
ments.

Definition 1. A commitment scheme is called

a) non-malleable with respect to commitmentFF if for every adversary A there exists a sim-
ulator A′ such that for any message space M and any interesting relation R the difference
πcom(A,M,R)− π′open(A′,M,R) is negligible.3

b) non-malleable with respect to opening if for every adversary A there exists a simula-
tor A′ such that for any message space M and any interesting relation R the difference
πopen(A,M,R)− π′open(A′,M,R) is negligible.

3 Here we allow a very liberal definition of negligible functions: the function may also be negative
at some value n, in which case it is certainly less than 1/p(n) for any strictly positive polynomial
p(·). In our case this means that the simulator does even better than the adversary and thus still
reflects our idea of non-malleability.
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c) non-malleable with respect to commitmentDDN if for every adversary A there exists a sim-
ulator A′ such that for any message space M and any interesting relation R the difference
πcom(A,M,R)− π′com(A′,M,R) is negligible.

If M and R are clear from the context we usually abbreviate the success probabilities by
πcom(A), π′com(A′), πopen(A) and π′open(A′), respectively.

Some remarks about the experiment of A′ follow. The simulator A′ does not have the
power to choose the string crs for the commitment to R. This is so because the simulator is
obliged to produce a correct commitment toR under the same honestly chosen public data crs
as the sender and the adversary. This rules out counterintuitive solutions proving obviously
transformable commitments non-malleable. For instance, consider (a straightforward non-
interactive version of) Naor’s bit commitment scheme [40] where the public string consists of
the string σ and the sender commits to 0 by transmitting y = G(r) for the pseudorandom
generator G, and y = G(r) ⊕ σ for a 1-commitment. Clearly, this scheme is malleable in
an intuitive sense as the adversary can always change y to y ⊕ σ in order to commit to
the flipped bit. If we would let the simulator A′ prepare the public string in this case, A′
could set σ = G(r0) ⊕ G(r1) and send y = G(r0) to the receiver R and would succeed in
committing to a related message without talking to the sender (because y can be opened
both as 0 and 1). Hence, formally the scheme would be non-malleable although it allows to
transpose commitments.

Still, we allow A′ to pick its own string advpar′ in the simulation, not necessarily related
to A’s selection advpar. But since the relation R depends on these adversarial parameters
advpar and advpar′, it is clear that the relation can rule out significantly diverging choices
of A′, and hence advpar′ is likely to be indistinguishable from advpar.

Slightly relaxing the definition, we admit an expected polynomial-time simulator A′. In
fact, we are only able to prove our DLog- and RSA-based schemes non-malleable with this
deviation. The reason for this is that we apply proofs of knowledge, so in order to make
the success probability of A′ negligibly close to the adversary’s success probability, we run
a knowledge extractor taking expected polynomial-time. Following the terminology in [18],
we call such schemes with A′ running in expected polynomial-time liberal non-malleable with
respect to commitment and opening, respectively.

Alternatively, the authors of [18] also propose a definition of ε-non-malleability, which says
that for any given ε there is a strict polynomial-time simulator (polynomial in the security
parameter n and ε−1(n)) whose success probability is only ε-far from the adversary’s proba-
bility. Indeed, we will use this definition of ε-non-malleability to construct our factoring-based
solution with the a-posteriori verifiable proofs of knowledge.

Consider a computationally-binding and perfectly-secret commitment scheme. There, ev-
ery valid commitment is correctly openable with every message (it is, however, infeasible to
find different messages that work). Thus, we believe that non-malleability with respect to
opening is the interesting property in this case. On the other hand, non-malleability with
respect to commitment is also a concern for statistically-binding commitment schemes: with
overwhelming probability there do not exist distinct messages that allow to decommit cor-
rectly. This holds for any dishonest sender and, in particular, for the person-in-the-middle
adversary. We can therefore admit this negligible error and still demand non-malleability with
respect to commitment.
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The Multi-Party Setting. Our definition considers the setting of three parties. In the
auction case, for instance, usually more parties participate and the adversary’s intention may
be to overbid only a certain opponent to ensure that this person does not win. Hence, we may
let A talk to several senders S1, . . . ,Spoly with (probably dependent) messages m1, . . . ,mpoly

generated by M(advpar) together with side information hist(m1, . . . ,mpoly). The relation
now takes advpar, hist(m1, . . . ,mpoly) and poly +1 messages as input and it is required that
the (poly +1)-st message m∗ is different from any other message mi, and that the relation is
never satisfied if m∗ = ⊥. We remark that all our protocols remain secure in this multi-sender
setting.

A problem occurs if we let the adversary commit in several executions with R to messages
m∗1, . . . ,m

∗
poly and extend the relation accordingly, both in the single- or multi-sender case.

Dolev et al. [18] show that this scenario is not reducible to the single case in general and suggest
an alternative definition where the adversary is supposed to announce a subset i1, . . . , ik of the
executions with the receiver in the commitment phase, inducing a set of messages m∗i1 , . . . ,m

∗
ik

for which she tries to be successful. In [14] Damg̊ard and Groth also discuss the issue of
multiple senders and receivers for non-malleable commitments and present non-interactive
schemes for this multi-party setting. Resembling the “announcement trick” of [18] their result
requires that the relation’s value does not change if some of the adversary’s messages equal
⊥.

However, the assumptions about the relation’s dependencies on dedicated decommitments
must be treated with care. In the auction case, for example, the adversary may know before-
hand that the sender commits to one out of, say, three values, each bid being equally likely.
In order to overbid the sender with the minimal amount the adversary commits to each of the
three values incremented by 1. Later, the adversary only opens the right choice correctly and
refuses to decommit to the other two values (which are set to ⊥). Then the adversary would
always overbid the sender easily, but would still not be considered successful according to the
formal definition in [14]. Note that this problem is inherent for the commitment scenario and
success probabilities depending on the validity of decommitments.

We return to the multi-party case at the end of Section 4.3 when discussing this issue for
our schemes.

3 On the Relationship of Non-Malleability Notions

Clearly, non-malleability with respect to commitment implies non-malleability with respect
to opening and with respect to DDN. On the other hand, we show that (under standard
cryptographic assumptions) the converse does not hold in the CRS model. To this end, we
construct a bit commitment scheme that does not even achieve the DDN notion, but is non-
malleable with respect to opening.

To separate the notions we consider once more Naor’s bit commitment scheme [40] in
the CRS model. Let G be a pseudorandom generator expanding n bits random input to 3n
bits pseudorandom output. That is, the variables (Xn)n∈N and (Yn)n∈N are computationally
indistinguishable, where Xn equals G(r) for a random r ∈ {0, 1}n and Yn is the uniform
distribution on {0, 1}3n.

Let σ be a random 3n-bit string put into the public parameters. In order to commit to
a bit b in Naor’s protocol the sender chooses a random r ∈ {0, 1}n and transmits y = G(r)
for b = 0 or y = G(r) ⊕ σ if b = 1. The decommitment consists of (b, r). Not only is this
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scheme computationally secret and statistically binding, it is also strongly malleable, i.e., given
a commitment y of a bit b one can always derive a commitment of b⊕ 1 by sending y ⊕ σ.

Next we construct an assembled commitment scheme (in the CRS model) which consists
of a combination of Naor’s scheme and an arbitrary statistically-secret system Comsecret

which is non-malleable with respect to opening. To commit to bit b, independently execute
the statistically-secret protocol and Naor’s scheme on b, either in parallel or sequentially.
Opening is done by decommitting for both schemes in parallel.

Obviously, this assembled scheme is computationally secret and statistically binding. We
show that this scheme only achieves the weaker non-malleability property. The intuition is that
the assembled scheme inherits non-malleability with respect to opening from the statistically-
secret protocol, and the strong malleability of Naor’s scheme (together with the fact that
virtually any statistically-secret commitment is in principle openable with any value) inhibits
non-malleability with respect to commitment.

Theorem 1. If there is a statistically-secret bit commitment scheme that is non-malleable
with respect to opening, then there exists a statistically-binding bit commitment scheme
in the CRS model that is non-malleable with respect to opening, but not with respect to
commitmentFF and not with respect to commitmentDDN.

Theorem 1 also holds for liberal non-malleable statistically-secret protocols in the CRS
model.

Proof. Since one-way functions exist if commitment schemes exists [33], and one-way functions
imply pseudorandom generators [32], Naor’s scheme and therefore the assembled system above
is realizable given the statistically-secret bit commitment scheme.

We first show that the assembled scheme is not non-malleable with respect to
commitmentDDN (and therefore not with respect to commitmentFF). Define the relation R to
consist of the pairs (b, b⊕ 1) and the message space to be the uniform distribution on {0, 1},
i.e., both M and R are independent of the adversarial parameters. Let hist(b) be empty.

Given access to a sender committing to an unknown random bit b ∈R {0, 1} we run a PIM
attack and relay all messages between the receiver and the sender for Comsecret. Additionally,
we alter Naor’s part of the sender’s commitment to a commitment of b∗ = b⊕1 by the strong
malleability property and forward it to the receiver (Figure 2).

Since Comsecret is statistically secret, with overwhelming probability that part of the
sender’s commitment can be opened as 0 and 1. Hence, with probability negligibly close to 1
we are able to construct a valid commitment of b∗ = b ⊕ 1 for the assembled scheme and to
satisfy the relation R. On the other hand, any simulator not seeing the commitment of the
random bit b cannot output a commitment of b′ = b ⊕ 1 with probability exceeding 1/2 by
more than a negligible amount (this negligible amount is due to the binding error of Naor’s
protocol). Thus, the assembled scheme is not non-malleable with respect to commitmentDDN.

The fact that the combined scheme is non-malleable with respect to opening follows from
the non-malleability of the statistically-secret system. Specifically, let A be an adversary
attacking the assembled system. We have to present a simulator that —“out of the blue”—
outputs a related message with essentially the same probability πopen(A) as A for all M,R. In
an intermediate step we construct an adversary Asecret from A such that Asecret attacks the
non-malleability property of Comsecret.

Define the adversary Asecret that commits and decommits to a related message for the
protocol Comsecret as follows. Asecret mounts a PIM attack interacting with the sender Ssecret

11



Fig. 2. Malleability With Respect to Commitment of Assembled Scheme

sender S adversary A receiver R

message b ∈ {0, 1} public: σ

commitment phase:

execute Comsecret
←−−−−−−−−−−−−→ relay messages

←−−−−−−−−−−−−→ execute Comsecret

pick r ∈R {0, 1}n
compute y := G(r)
set y := y ⊕ σ if b = 1

y−−−−−−→ y∗ := y ⊕ σ y∗−−−−−−→

and receiver Rsecret of Comsecret on (possibly empty) parameters crssecret. Asecret also runs
a virtual copy of A attacking the assembled scheme. Basically, Asecret uses A to generate
a related commitment and opening for Comsecret by adding the steps of Naor’s scheme. For
this, Asecret exploits the equivocal version of Naor’s scheme presented in [17]. Informally, such
an equivocal commitment enables the sender to prepare a dummy commitment which can be
later opened with any value, yet this process is indistinguishable from a true execution. This
means, instead of letting σ be a random string, we choose σ as G(r0) ⊕ G(r1) for random
r0, r1 ∈ {0, 1}n. Then, to commit to a dummy value, send y = G(r0); to open it with 0 reveal
r0 or transmit r1 for a decommitment to 1.
Asecret emulates A by choosing σ = G(r0)⊕G(r1) and passing (crssecret, σ) to A. Adver-

sary A returns parameters advpar which Asecret uses in her attack on Comsecret, too. This
defines a distribution M(advpar) on {0, 1} as well as a relation R(advpar, ·, ·, ·) for both A’s
and Asecret’s attack. Asecret next feeds all messages of Ssecret and Rsecret of the execution of
Comsecret into A and also forwards all replies of A. Additionally, Asecret submits a dummy
commitment y = G(r0) on behalf of the sender to A in the simulation. Later, when Asecret

learns Ssecret’s decommitment of bit b it forwards this decommitment to A and opens the
dummy commitment y in A’s simulation accordingly. Output the part of A’s opening for
Comsecret and stop. See Figure 3.

As for the analysis, first note that Asecret’s success probability producing a valid commit-
ment and decommitment of a related messages is negligibly close to πopen(A) for any M,R.
This follows from the fact that a fake σ is indistinguishable from a honestly chosen one, i.e.,
otherwise it would be easy to derive a successful distinguisher contradicting the pseudoran-
domness of G’s output.

More formally, assume that A’s success probability drops noticeably when run on a fake
string in the simulation (for some M,R). Then we construct a distinguisher for the pseudo-
random generator G as follows. We are given 1n and z ∈ {0, 1}3n and are supposed to tell
whether z is truly random or has been derived by running G. Pick random r ∈ {0, 1}n and
set σ = G(r)⊕z. Next, start A’s attack on the assembled scheme by presenting (crssecret, σ).
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Fig. 3. Non-Malleability With Respect to Opening of Assembled Scheme

Ssecret Asecret Rsecret

message b ∈ {0, 1} public: crssecret

a) commitment phase: run copy of A

pick r0, r1 ∈R {0, 1}n
σ = G(r0)⊕G(r1)

Comsecret
←−−−−−−−−−−−−−−→ ←−−−−−−→ A←−−−−−−→ ←−−−−−−−−−−−−−−→ Comsecret

G(r0)→ A→ y∗

b) decommitment phase:

b, rsecret−−−−−−−→ (b, rsecret, rb)→ A→ (b∗, r∗secret, r
∗)

b∗, r∗secret−−−−−−−→

Sample (b,hist(b)) according to the distribution M(advpar) and continue A’s attack by im-
personating the honest parties in the execution of Comsecret. Also, let the simulated sender
commit in Naor’s protocol execution by sending y = G(r) if b = 0 and z if b = 1. In the
opening phase, decommit to this part by revealing (b, r). Output 1 exactly if A succeeds, that
is, if R(advpar,hist(b), b, b∗) = 1 for a valid opening of A to b∗.

Observe that if z is really random we output 1 with probability πopen(A), because the
distribution of the data in the simulation is the same as in an actual attack on the assembled
scheme. If z is pseudorandom then we output 1 with the probability that Asecret is victorious.
By assumption, this is noticeably smaller than πopen(A), and therefore we distinguish random
and pseudorandom inputs with noticeable advantage. This, however, refutes the pseudoran-
domness of G.

Altogether, we have started with an arbitrary adversaryA attacking the assembled scheme,
and derived an adversary Asecret that succeeds in attacking Comsecret for parameters crssecret

virtually with the same probability that A succeeds in attacking the assembled scheme on
crssecret and truly random σ. By assumption about the non-malleability of Comsecret, for
Asecret there is a simulator A′secret succeeding in outputting a related message essentially
with the same probability as Asecret. But then this algorithm A′secret is also an appropriate
simulator for adversary A attacking the assembled scheme. ut

Applying our constructions in this paper we conclude:

Corollary 1. Under the discrete-log or RSA assumption, there is an interactive bit commit-
ment scheme in the CRS model that is liberal non-malleable with respect to opening, but not
with respect to commitmentFF and not with respect to commitmentDDN.

We finally remark that our separation shows that schemes which are non-malleable with
respect to opening do not necessarily fulfill the stronger definition per se. Yet, there may still
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be general transformations lifting such schemes to the higher security level. For example, a
trivial transformation is to neglect the original scheme entirely and run the DDN protocol
from scratch instead.

4 Discrete-Log-Based Non-Malleable Commitments

In this section we introduce our discrete-log based commitment schemes which are non-
malleable with respect to opening; the RSA and factoring case are discussed in Section 5 and
Section 6, respectively.

In Section 4.1 we start with an instructive attempt to achieve non-malleability by standard
proof-of-knowledge techniques. We show that this approach yields a scheme which is only non-
malleable with respect to opening in presence of static adversaries, i.e., adversaries that try
to find a commitment after passively observing a commitment between the original sender
and receiver. In Section 4.2 we develop out of this our scheme which is non-malleable against
the stronger PIM adversaries. The formal proof of non-malleability appears in Section 4.3.

4.1 Non-Malleability with Respect to Static Adversaries

Consider Pedersen’s well-known discrete-log-based perfectly-secret scheme [44]. Let Gq be a
cyclic group of prime order q and g0, h0 two random generators of Gq. Assume that computing
the discrete logarithm logg0 h0 is intractable (e.g., if Gq is an appropriate elliptic curve or
subgroup of Z∗p). To commit to a message m ∈ Zq, choose r ∈R Zq and set M := gm0 h

r
0.

To open this commitment, reveal m and r. Obviously, the scheme is perfectly secret as M
is uniformly distributed in Gq, independently of the message. It is computationally binding
because opening a commitment with distinct messages requires computing logg0 h0.

Unfortunately, Pedersen’s scheme is malleable: given a commitment M of some message
m an adversary obtains a commitment for m+ 1 mod q by multiplying M with g. Later, the
adversary reveals m+1 mod q and r after learning the original decommitment m, r. This holds
even for static adversaries. Such adversaries do not try to inject messages in executions, but
rather learn a protocol execution of S and R—which they cannot influence— and afterwards
try to commit to a related message to R. In case of non-malleability with respect to opening,
the adversary must also be able to open the commitment after the sender has decommitted.

A possible fix that might come to one’s mind are proofs of knowledge showing that the
sender actually knows the message encapsulated in the commitment. For the discrete-log
case such a proof of knowledge consists of the following steps [42]: the sender transmits a
commitment S := gs0h

t
0 of a random value s ∈R Zq under randomness t ∈R Zq, the receiver

replies with a random challenge c ∈R Zq and the sender answers with y := s+ cm mod q and
z := t+ cr mod q. The receiver finally checks that SM c = gy0h

z
0.

If we add a proof of knowledge to Pedersen’s scheme we obtain a protocol which is non-
malleable with respect to opening against static adversaries. This follows from the fact that
any static adversary merely sees a commitment of an unknown message before trying to find
an appropriate commitment of a related message. Since the proof of knowledge between S
and R is already finished at this point, the static adversary cannot rely on the help of S
and transfer the proof of knowledge. We leave further details to the reader and address the
non-malleable protocol against PIM adversaries in the next section instead.
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4.2 Non-Malleability with Respect to PIM Adversaries

The technique of assimilating a proof of knowledge as in the previous section does not thwart
PIM attacks. Consider again the PIM adversary committing to m+1 mod q by multiplying M
with g. First, this adversary forwards the sender’s commitment S for the proof of knowledge to
the receiver and hands the challenge c of the receiver to the sender. Conclusively, she modifies
the answer y, z of the sender to y∗ := y+ c mod q and z∗ := z. See Figure 4. Clearly, this is a
valid proof of knowledge for m + 1 mod q and this PIM adversary successfully commits and
later decommits to a related message.

Fig. 4. PIM Attack on Pedersen’s Commitment Scheme with Proof of Knowledge

sender S adversary A receiver R

message m ∈ Zq public: Gq, g0, h0

a) commitment phase:

choose r, s, t ∈R Zq

set M := gm
0 h

r
0

set S := gs
0h

t
0

M,S−−−−−−→ S∗ := S
M∗ := gM

M∗, S∗−−−−−−→ choose c ∈R Zq
c←−−−−−−

c∗ := c
c∗←−−−−−−

y := s+ c∗m (q)
z := t+ c∗r (q)

y, z−−−−−−→ z∗ := z
y∗ := y + c (q)

y∗, z∗−−−−−−→ verify that

S∗(M∗)c !
= gy∗

0 hz∗
0

b) decommitment phase:
m, r−−−−−−→ r∗ := r

m∗ := m+ 1 (q)
m∗, r∗−−−−−−→ verify that

M∗
!
= gm∗

0 hr∗
0

Coin-flipping comes to rescue. In a coin flipping protocol one party commits to a random
value a, then the other party publishes a random value b, and finally the first party decommits
to a. The result of this coin flipping protocol is set to c := a ⊕ b or, in our case, to c :=
a + b mod q for a, b ∈ Zq. If at least one party is honest, then the outcome c is uniformly
distributed (if the commitment scheme is binding and secret).

The idea is now to let the challenge in our proof of knowledge be determined by such
a coin-flipping protocol. But if we also use Pedersen’s commitment scheme with the public
generators g0, h0 to commit to value a in this coin-flipping protocol, we do not achieve any
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progress: the adversary might be able to commit to a related a∗ and thus bias the outcome
of the coin-flipping to a suitable challenge c∗.

The solution is to apply Pedersen’s scheme in this sub protocol with the commitment M
as one of the generators, together with an independent generator h1 instead of g0, h0; for
technical reasons we rather use (g1M) and h1 for another generator g1. As we will show,
since the coin-flipping in the proof of knowledge between A and R is based on generators
g1M

∗ and h1 instead of g1M,h1 as in the sender’s proof of knowledge. Because the adversary’s
commitment M∗, even though possibly being related to M , is most likely different from M (or
else the adversary’s decommitment m∗, r∗ for M∗ together with the original decommitment
m, r for M would allow to compute the discrete logarithm of h0 to g0), this prevents the
adversary from adapting the sender’s and receiver’s values and therefore to transfer the proof
of knowledge. Details follow.

We describe the protocol given in Figure 5 which combines the aforementioned ideas. The
public parameters are (a description of) a cyclic group Gq of prime order q and four random
generators g0, g1, h0, h1 of Gq. Basically, the sender S commits to his message m ∈ Z∗q with
Pedersen’s scheme4 by computing M = gm0 h

r
0 and proves by a proof of knowledge (values

S, c, y, z in Figure 5) that she is aware of a valid opening of the commitment. The challenge
c in this proof of knowledge is determined by a coin-flipping protocol with values A, a, u, b.

Fig. 5. Discrete-Log-Based Non-Malleable Commitment Scheme

Sender S Gq, g0, g1, h0, h1 Receiver R

message m ∈ Z∗q

a) commitment phase:

choose a, r, s, t, u ∈R Zq

set M := gm
0 h

r
0

set A := (g1M)ahu
1

set S := gs
0h

t
0

M,A, S−−−−−−−−−−−−−−→ choose b ∈R Zq

b←−−−−−−−−−−−−−−
set c := a+ b mod q
set y := s+ cm mod q
set z := t+ cr mod q

a, u, y, z−−−−−−−−−−−−−−→ set c := a+ b mod q

check A
!
= (g1M)ahu

1

check SMc !
= gy

0h
z
0

b) decommitment phase:
m, r−−−−−−−−−−−−−−→ check M

!
= gm

0 h
r
0

4 Note that as opposed to Pedersen’s scheme we require that m 6= 0; the technical reason is that in
the security proof we need to invert the message modulo q.
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It is clear that our protocol is computationally binding under the discrete-log assump-
tion, and perfectly secret as the additional proof of knowledge for m is witness independent
(aka. perfectly witness indistinguishable) [22], i.e., for any challenge c the transmitted values
S, y, z are distributed independently of the actual message [42].

Proposition 1. The commitment scheme in Figure 5 is perfectly secret and, under the
discrete-log assumption, computationally binding.

In the next section we stringently prove that our scheme is indeed non-malleable. By
now, we already remark that the non-malleability property of our scheme also relies on the
hardness of computing discrete logarithms. This dependency is not surprising: after all, any
adversary being able to compute discrete logarithms with noticeable probability also refutes
the binding property of Pedersen’s scheme and can thus decommit for any related message
with this probability.

A rough idea why our protocol is non-malleable can be described as follows. Given a
commitment M of some unknown message m (together with a witness-independent proof
of knowledge described by S, c, y, z) with respect to parameters p, q, g0, h0 we show how to
employ the PIM adversary A to derive some information about m. Namely, if we are able
to learn the related message m∗ of the adversary by extracting it via her “self-employed”
proof of knowledge, then we know that m is related to m∗ for the relation R. This, of course,
contradicts the perfect secrecy of the commitment M . We remark that the formal proof of
non-malleability requires to come up with a simulator generating a related message without
the help of the sender. However, as we will show, the essential part of the simulator is made
out of such an extraction procedure.

For details and further discussion we refer to the next section.

Theorem 2. Under the discrete-logarithm assumption, the scheme in Figure 5 is a perfectly-
secret commitment scheme which is liberal non-malleable with respect to opening.

It is worthwhile to point out that we cannot hash longer messages to Z∗q before applying
our non-malleable commitment scheme. Because then we extract the hash value and not
the message m∗ itself. But this could be insufficient, since it might be impossible to deduce
anything about m via R(advpar,histm,m,m∗) given solely the hash value of m∗. The same
disadvantage occurs in the RSA case. We stress that the schemes in Section 6 with the a-
posteriori verifiable proofs of knowledge do not suffer from this problem. There, one can first
hash the message as the proof of knowledge operates on the original message instead of the
hash value.

4.3 Formal Proof of Non-Malleability

We present the proof of non-malleability of the protocol in the previous section first from a
bird’s eye view and progressively fill in more details. The main part of the proof consists of the
construction of an extraction procedure that enables us to extract the adversary’s message
related to the original message. We start with an outline of this procedure, then analyze
it with respect to restricted attacks and, subsequently, supplement the remaining steps for
full-fledged attacks. Finally, we discuss that the required non-malleability simulator can be
derived from the extraction procedure. At the end of this section we address the multi-party
setting.
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Outline of Extraction Procedure. In this outline here, we make some simplifications con-
cerning the adversary: first, we assume that the PIM adversary always catches up concerning
the order of the transmissions, i.e., sends her first message after learning the first message of
S and answers to S after having seen R’s response etc. Second, let the adversary always suc-
cessfully commit and decommit to a related message, rather than with, say, small probability.
Third, we presume that M is independent of the adversarial parameters. All restrictions will
be removed in subsequent sections.

To learn the adversary’s message m∗ in the simplified case we use the proof of knowledge
in our commitment protocol. Intuitively, a proof of knowledge guarantees that the prover
knows the message, i.e., one can extract the message by running experiments with the prover.
Specifically, we inject values p, q, g0, h0,M, S, c, y, z into a simulated PIM attack with A and
impersonate S and R. Additionally, we choose g1 at random and set h1 := (g1M)w for a ran-
dom w ∈R Z∗q . We also compute random a0, u0 ∈R Zq and insert g1, h1 and A := (g1M)a0hu0

1

into the experiment with A. We start with the extraction procedure by committing to m, s, a0

via M,S,A on behalf of the sender. Then, by the presumption about the order of the trans-
missions, the adversary sends M∗, S∗, A∗ (possibly by changing M,S,A and without knowing
explicitly the corresponding values m∗, r∗ etc.). See Figure 6 on page 21 for a pictorial de-
scription.

We play the rest of the commitment phase twice by rewinding it to the step where the
receiver chooses b and sends it to the adversaryA. To distinguish the values in both repetitions
we append the number of the loop as subscript and write a1, a

∗
1, a2, a

∗
2 etc.

The first time, the adversary upon receiving b1 passes some b∗1 to the (simulated) sender
S, and expects S to open the commitment for a and supplement the proof of knowledge
for M with respect to the challenge a1 + b∗1 mod q. By the trapdoor property of Pedersen’s
commitment scheme [6] we are able to open A with any value for a1 since we know log(g1M) h1.
That is, to decommit A with some a1 reveal a1 and u1 = u0 + (a0 − a1)/ log(g1M) h1 mod q;
it is easy to verify that indeed A = (g1M)a1hu1

1 . In particular, we choose a1 such that
a1 + b∗1 mod q equals the given value c. Hence, y and z are proper values to complement the
proof of knowledge for M . Finally, the adversary answers with the decommitment a∗1, u

∗
1 for

A∗ and the rest of the proof of knowledge for M∗ with respect to challenge a∗1 + b1 mod q.
Now we rewind the execution and select another random challenge b2. The adversary then

decides upon her value b∗2 (possibly different from her previous choice b∗1) and hands it to S.
Again, we open A with a2 such that c = a2+b∗2 mod q. The adversary finishes her commitment
with a∗2, u

∗
2 as opening for A∗ and the missing values for the proof of knowledge.

The fundamental proof-of-knowledge paradigm [19, 20, 2] (together with the so-called spe-
cial soundness of Okamoto’s protocol [42]) says that we can extract the message m∗ if we learn
two valid executions between A and R with the same commitment M∗, S∗, A∗ but different
challenges. Hence, if the adversary’s decommitments satisfy a∗1 = a∗2 and we have b1 6= b2
(which happens with probability 1−1/q), then this yields different challenges a∗1 + b1, a∗2 + b2
in the executions between A and R and we get to know the message m∗.

We are therefore interested in the event that the adversary is able to “cheat” by present-
ing different openings a∗1 6= a∗2 during the extraction procedure. Below, we prove that the
adversary cannot find different openings for commitment A∗ too often, else we would derive
a contradiction to the intractability of the discrete-log problem (Lemma 1). Hence, under
the discrete-log assumption this event hardly occurs and we extract m∗ with sufficiently high
probability. To be precise we extract some message m′ and have to show that this extracted
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message m′ is almost as likely related to the original message as m∗ is. This again follows
form the hardness of computing discrete logarithms (Lemma 2).

Extraction With Respect to Restricted Attacks. We address a more formal approach
to the extraction procedure, still considering a slightly restricted attack. Namely, as in the
outline, we too adopt the convention that the adversary A does not “mix” the order of
messages but rather catches up. We also presume for simplicity that the messages space M
is independent of the adversarial parameters. Call this a restricted attack. We afterwards
explain how to deal with full-fledged attacks.

Before we jump into restricted attacks, we first remark that the history value histm can
be neglected for the analysis of the extraction procedure for both restricted and full-fledged
attacks. We omit mentioning it since we use only black-box simulations to extract the ad-
versary’s message in the commitment phase, hence, any value histm given to A′ is simply
forwarded to A in order to run the black-box simulation. Only the conclusive construction of
the non-malleability simulator from the extraction procedure requires a more careful look at
the history value.

Our aim is to extract the adversary’s message from her commitment within a negligibly
close bound to the adversary’s success probability πopen(A). To this end, we repeat some basic
facts about proofs of knowledge and knowledge extractors [19, 20, 2]; we discuss them for the
example of Okamoto’s discrete-log-based proof of knowledge (see [42] or Section 4.1) for a
given M = gm0 h

r
0.

The knowledge extractor interacting with the prover works in two phases. Namely, it first
generates a random conversation S, c, y, z by running the prover to obtain S, by selecting c and
by letting the prover answer with y, z to S, c. If this communication in the initial run is invalid,
then the extractor aborts. Otherwise it tries to extract at all costs. That is, the extractor fixes
this communication up to the challenge, and then loops (till success) to seek another accepting
conversation with the same communication prefix S. This is done by rewinding the execution
to the choice of the challenge and reselecting other random challenges. Once the extractor
has found another accepting execution for challenge c′, it can extract if c 6= c′, and otherwise
it stops with a failure message.

We claim that the extractor runs in expected polynomial time and outputs a representation
of M with respect to g0, h0 with probability at least π− 1/q. Here, π denotes the probability
that the prover makes the verifier accept, and 1/q is called the error of the protocol. This can
been seen as follows. Fix an arbitrary pair M and S and the prover’s coin tosses and condition
all subsequent probabilities on these data. Let p denote the conditional probability (over the
choice of the challenge) that the verifier accepts. Then we enter the loop phase with probability
at most p and then need at most 1

p repetitions on the average to find another accepting
execution, resulting in an expected polynomial running time. Since M,S and the coin tosses
are arbitrary this also holds for randomly chosen values. As for the success probability note
that the extractor fails if the initial run is invalid (with probability at most 1−π) or the second
successful execution is for the same challence (with probability 1/q). Hence, the extractor
succeeds with probability at least π − 1/q.

Assume that we communicate with some party C which is going to commit to an unknown
message m ∈R M in Pedersen’s commitment scheme, augmented by a proof of knowledge.
Recall that our goal is to show that we can break the secrecy of this commitment scheme with
the help of the attacker on the non-malleability. We choose a group Gq and two generators
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g0, h0 and send them to C. Party C selects r, s, t ∈R Zq and sends M := gm0 h
r
0, S := gs0h

t
0.

We answer with a random challenge c ∈R Zq and C returns y := s + cm, z := t + cr mod q.
Finally, we check the correctness. Put differently, we perform all the steps of the sender in
our protocol except for the coin flipping.

The aim of our extraction procedure now is to get the message m∗ of the PIM adversary
when the adversary faces C’s commitment. For this, the extractor chooses additional gener-
ators g1, h1 by setting g1 := gv0 and h1 := (g1M)w for random v, w ∈R Z∗q , and computes
A := (g1M)a0hu0

1 according to the protocol description for random a0, u0 ∈R Zq.5 Then the
extractor starts to emulate the PIM attack by pretending to be S and R and with values
Gq, g0, g1, h0, h1,M, S,A. Figure 6 shows a description.

Because of the assumption about the order of messages, the adversary commits to
M∗, S∗, A∗ after seeing M,S,A. Next, we use the same stop-or-extract technique as in [20, 2].
In our case, the rewind point (if we do rewind) is the step where the receiver sends b. In each
repetition, we send a random value bi ∈R Zq —the subscript denotes the number i = 1, 2, . . .
of the loop— on behalf of the receiver and the adversary hands some value b∗i to the simulated
sender. Knowing the trapdoor w = log(g1M) h1 we open A with ai, ui = u0+(a0−ai)/w mod q
such that ai + b∗i equals the given value c, and send the valid answer y, z to the challenge c in
the proof of knowledge for M . The adversary replies with a∗i , u

∗
i , y
∗
i , z
∗
i to the receiver. Again,

see Figure 6.
An important modification of the knowledge extractor in comparison to the one in [20,

2] is that, once having entered the loop phase, not only does our extractor stop in case of
success; it also aborts with no output if in some repetitions i, j the adversary both times
successfully finishes the commitment phase —which includes a correct decommitment to the
“coin-flipping commitment” A∗— but opens A∗ with distinct values a∗i 6= a∗j . We say that
A counterfeits a coin if this happens. In this case, the extractor fails to extract a message.
We remark that we are only interested in the case that A sends distinct openings of A∗ in
accepting executions, because the extractor only relies on such executions. We call the derived
procedure extract.

Our first observation is that our knowledge extractor stops (either with success or aborting
prematurely) in expected polynomial-time. This follows as in [20, 2] since our extractor even
has an additional abort requirement.

To analyze the success probability of our extractor let π denote the probability of A
completing the commitment phase with R successfully in procedure extract. The basic
extraction paradigm says that we are able extract with probability π − 1/q − ε(n), where
ε(n) denotes the probability that A counterfeits a coin (n is the security parameter). The
reason for this is that, given A does not counterfeit, the adversary’s openings a∗i1 = a∗i2 = . . .
in the valid commitment conversations are all equal. But then the values bij + a∗ij mod q
for j = 1, 2, . . . of challenges in the proof of knowledge between A and R are independently
distributed. Analogously to [20, 2] it follows that the extractor finds a message with probability
π − 1/q − ε(n) in this case.

Recall that we would like to guarantee that we extract with probability approximately
πopen(A). Obviously, π upper bounds πopen(A), and it would thus suffice to show that ε(n)
roughly equals π−πopen(A), or put differently, that δ(n) := ε(n)− (π−πopen(A)) is negligible.
One may think of the difference π−πopen(A) describing the probability of executions in which

5 Clearly, the choice of the generators requires that M and therefore m and M are determined before
the adversary is presented crs and selects advpar.
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Fig. 6. Knowledge Extraction

simulation of S adversary A simulation of R

given parameters:

Gq, g0, h0

M,S, c, y, z

additional parameters:

choose a0, u0 ∈R Zq, v, w ∈R Z∗q
set g1 := gv

0

set h1 := (g1M)w

set A := (g1M)a0hu0
1

frozen simulation: Gq, g0, g1, h0, h1

M,A, S−−−−−−−−−→
M∗, A∗, S∗−−−−−−−−−→

rewind point (loop i = 1, 2, . . . ): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

choose bi ∈R Zq

bi←−−−−−−−−−
b∗i←−−−−−−−−−

set ai := c− b∗i mod q
set ui := u0 + (a0 − ai)/w mod q

ai, ui, y, z−−−−−−−−−→
a∗i , u

∗
i , y
∗
i , z
∗
i−−−−−−−−−→

A successfully commits but never finds a related, valid opening (e.g., if A simply duplicates
all messages of S in the commitment phase).

It remains to bound the probability δ(n). We will prove that δ(n) is negligible under the
discrete-log assumption.

Lemma 1. The probability that A counterfeits a coin in procedure extract is negligibly
close to π − πopen(A).

We remark that the proof of this lemma makes use of two important aspects. On one
hand, we exploit that the message space is fixed before the adversarial parameters are chosen.
On the other hand, we apply the fact that we merely demand non-malleability with respect
to opening, i.e., that A also reveals a valid decommitment.

Proof. We show that if Lemma 1 does not hold this contradicts the intractability of the
discrete-log problem. We are given a group Gq, a generator g, and a random value X ∈ Gq
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for which we are supposed to compute loggX. We show how to use A to do so (in expected
polynomial time with noticeable probability, yielding a strict polynomial time algorithm with
noticeable probability by standard truncation techniques).

Instead of using the commitment M of the third party C, we modify procedure extract
into a procedure counterfeit. In this modified procedure counterfeit we instead run
the knowledge extraction procedure incorporating the given values Gq, g,X, but generate the
same distribution as the extractor. That is, select a message m ∈R M, as well v, w ∈R Z∗q , set

g0 := g−1/mX, g1 := g, h0 := Xv, h1 := Xw,

and compute M,A, S, c, y, z according to the protocol description. Wlog. assume that X 6= 1
and Xm 6= g, else we already know the discrete log of X. Then g0, g1, h0 and h1 are random
generators of the subgroup Gq. Furthermore, g1M = ggm0 h

r
0 = Xm+rv and thus log(g1M) h1 =

(m+ rv)/w mod q.
Next we emulate A on values Gq, g0, g1, h0, h1 and M,A, S by running the extraction

procedure above —with the exception that this time we enter the rewind phase only if the
adversary successfully commits and also reveals a valid decommitment (m∗, r∗) to a related
message after learning our decommitment (m, r) in the initial execution.

Once we have entered the rewind phase, whenever the extractor is supposed to open A
to determine the challenge c in the loop, we also open the commitment such that the coin
flipping protocol always yields the same value c. This is possible as we know log(g1M) h1 and
are therefore able to open A ambiguously.

Unlike in the case of an actual extraction process, here we sometimes suspend before
looping although the adversary’s initial commitment is accepted (because we also stop if the
adversary’s decommitment in the initial execution is invalid or unrelated). This restriction
decreases the probability of A counterfeiting a coin at most by π − πopen(A). We call runs in
which A also opens correctly in the initial execution good.

From A’s point of view the communication in the commitment phase in procedure coun-
terfeit for a good run is identically distributed to the one in the original procedure extract
because the data Gq, g0, g1, h0, h1, M,A, S, c, y, z and the ai, ui, bi’s have the same distribu-
tion in both cases (i.e., the generators are random in both cases, the values M,A, S, c, y, z
have been computed according to the protocol description in both cases, the bi’s are random
both times, and the values ai, ui are determined by the other values). Hence, given that A
counterfeits with probability ε(n) = π − πopen(A) + δ(n) in the actual extraction procedure
extract, A finds some a∗i 6= a∗j for two accepting executions i, j with probability at least δ(n)
in a good run in procedure counterfeit. By assumption, δ(n) is noticeable, so it suffices to
prove that if A counterfeits in a good run in counterfeit then we can compute the discrete
logarithm of X.

Let u∗i , u
∗
j denote the corresponding portions of the decommitment to a∗i and a∗j for A∗

in loops i and j in counterfeit. In a good run we have obtained some m∗, r∗ satisfying
the verification equation M∗ = gm

∗

0 hr
∗

0 from the adversary by revealing m, r in place of the
sender in the initial execution. Particularly, we have:

(g1M∗)a
∗
i h
u∗i
1 = A∗ = (g1M∗)a

∗
j h
u∗j
1

and therefore

h
(u∗i−u

∗
j )/(a

∗
j−a

∗
i )

1 = g1M
∗ = g1g

m∗

0 hr
∗

0 = g1−m∗/mXm∗+r∗v
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Since h1 = Xw we can transform this into

g1−m∗/m = X∆ for ∆ = w(u∗i − u∗j )/(a∗j − a∗i )− (m∗ + r∗v) mod q

Observe that ∆ is computable from the data that we have gathered so far. From m∗ 6= m
we conclude that 1−m∗/m 6= 0 mod q and therefore ∆ 6= 0 mod q has an inverse modulo q.
Thus the discrete logarithm of X to base g equals (1−m∗/m)/∆ mod q. ut

In summary, with probability πopen(A) − 1/q − δ(n) —which is negligibly close to the
adversary’s success probability— we extract some message m′ through procedure extract.
The final step is to show that indeed m′ equals the adversary’s decommitment m∗ except
with negligible probability (or, more precisely, that m′ is at least an appropriate substitution
for m∗ insofar as it also satisfies R often enough). Denote by πopen(E) the probability that the
extraction procedure extract returns m′ that is related to m under R.

Lemma 2. The probabilities πopen(A)− 1/q − δ(n) and πopen(E) are negligibly close.

Again, this lemma relies on the fact that the message space is independent of the adver-
sarial parameters.

Proof. Similar to Lemma 1 if this were not the case we could compute the discrete logarithm
of X to g in group Gq. Namely, modify procedure extract into procedure ambopen by
letting g0 := g and h0 := X and running the extraction procedure as before, only this time
compute M,S, c, y, z for yourself, in particular, sample m ∈R M, r ∈R Zq and set M := gm0 h

r
0,

and choose g1 at random and set h1 := (g1M)w for a random w ∈R Z∗q .
In the initial run of the extraction procedure, if the adversary has finished the commitment

phase successfully, hand the decommitment of M to the adversary and try to elicit the opening
m∗, r∗ of M∗. If the adversary refuses to decommit to M∗ correctly, then stop; else continue
the extraction. According to Lemma 1 the extraction yields a representation m′, r′ of M∗ with
probability πopen(A)− 1/q − δ(n). We are interested in the probability that m′ also satisfies
the relation.

Suppose that πopen(A)−1/q−δ(n) and πopen(E) have noticeable difference. In particular, we
conclude that m′ 6= m∗ with noticeable probability in procedure ambopen. But this implies
that sufficiently often we obtain distinct representations (m∗, r∗), (m′, r′) of M∗. We are thus
able to compute the discrete logarithm of h0 = X to base g0 = g with noticeable probability.
Hence, under the discrete logarithm assumption, the probability that the extraction procedure
returns m′ that stands in relation to the sender’s message is negligibly close to πopen(A) −
1/q − δ(n).

Thwarting Full-Fledged Attacks. Our first observation is that the order of the messages
in the PIM attack does not violate any of the discussions above. This is quite easy to see
since any message on the sender’s side can be predetermined at the outset of the knowledge
extraction procedure (in terms of a function over the protocol communication so far).

So the final step is to remove the assumption about the message space. We have used three
times the fact that M can be determined before the adversarial parameters are presented to the
adversary. First, we have set h1 equal to g1M , i.e., generated h1 after seeing the commitment
of m ∈R M in the extraction procedure. Second, in the proof of Lemma 1, we have sampled
m ∈R M and then incorporated it into the generators. Third, Lemma 2 also requires to
choose M before the adversary generates advpar. In any case, this boils down to select
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the parameters crs before sampling m, because advpar is a random variable depending on
crs only. Note that we do not change our protocol, but only the extraction and simulation
procedures.

In the knowledge extraction procedure extract, recall that we copy the commitment
M,S, c, y, z of party C into the extraction procedure and then set h1 := (g1M)w for random
w. To remove the dependency of a preselected message space, we modify M,S before using
it in the proof of knowledge. That is, one first selects a group Gq and Mfake ∈R Gq. Then
we present Gq, g0, h0, g1, h1 to the adversary, where g0, h0, g1 are random generators and
h1 := (g1Mfake)w. This also determines M = M(advpar) and we invoke C on Gq, g0, h0 and M
to obtain M,S, c, y, z. Instead of using M,S in the extraction procedure, we run the knowledge
extractor with Mfake and Sfake := S(MM−1

fake)
c as well as c, y, z. Clearly, these values satisfy the

verification equation SfakeM
c
fake = gy0h

z
0. Moreover, they are identically distributed to honestly

generated ones, and hence the extractor achieves the same success probability. It is instructive
to think of Mfake and Sfake as re-randomized versions of M,S.

The solution for the problem in Lemma 1 (procedure counterfeit) is similar to the
previous case. There, we have chosen a group Gq and g0 := g−1/mX, g1 := g, h0 := Xv

and h1 := Xw. By this, we have possessed the discrete logarithm of h1 = Xw to base
g1M = g1g

m
0 h

r
0 = X(m+rv). Instead, we now select Gq, choose a dummy message m0 ∈R Z∗q

and set g0 := g−1/m0X, g1 := g, h0 := (g−1/m0X)v and h1 := Xw and M := gm0
0 . The

values Gq, g0, g1, h0, h1 fix M = M(advpar) and enable us to choose now the genuine message
m ∈R M. Since we know v = logg0 h0 we can find an appropriate r with m+ vr = m0. Thus,
g1M = g1g

m
0 h

r
0 = Xm+rv and, again, log(g1M) h1 = (m + rv)/w. Except for the case that

m+ rv = 0 in Lemma 1, which happens with probability 1/q, this way of selecting the CRS
is identical to the generation there.

We discuss that the proof carries over to the modification for Lemma 1. In the proof
of Lemma 1 we finally find ∆ with g1−m∗/m = X∆ and are able to compute the discrete
logarithm of X to g since m∗ 6= m. Here, we obtain the equation g1−(m∗+vr∗)/(m+vr) = X∆.
If we would have m∗+ vr∗ = m+ vr with noticeable probability, then from m∗ 6= m it would
follow that the adversary finds a different representation m∗, r∗ of M = gm0 h

r
0 to base g0, h0

with noticeable probability. Specifically, defining another procedure, given Gq, g0 := g, h0 :=
X select random g1, h1 and then sample a message m ∈R M(crs). Compute the commitment
M = gm0 h

r
0 for random r as well as the values S,A for the proof of knowledge. Run only

the initial commitment and decommitment phase of Lemma 1. If the adversary sends b∗ for
the coin-flipping sub protocol in this initial run, then open the commitment for A with the
previously selected values a, u and evaluate y, z for the proof of knowledge for S, c = a⊕ b∗.
Finally, reveal m, r to the adversary to obtain m∗, r∗.

Note that we do not need to know the discrete logarithm of h1 to g1M here, since we do
not loop, but merely run the initial phase. By assumption, m∗ + r∗ logg0 h0 = m+ r logg0 h0

with noticeable probability. This, in turn, yields the discrete logarithm of h0 = X to g0 = g.
Hence, under the discrete logarithm assumption this happens with negligible probability only,
and by analogy with Lemma 1 we therefore derive that the probability of A counterfeiting a
coin does not exceed π − πopen(A) noticeably.

Finally, to adapt Lemma 2, we need to show that extracting m′ different than m∗ is
infeasible, even if we have to publish the CRS ahead of the choice of M. Remember that in
Lemma 2 we have used the adversary to find distinct representations (m∗, r∗), (m′, r′) of M∗

and to compute the discrete logarithm of h0 = X to g0 = g in Gq. Here, given Gq, g,X we
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make the following selection for random r, v, w ∈ Zq:

g0 := g, g1 := gv0h
−r
0 , h0 := X, h1 := gw0 ,

These parameters pin down M = M(advpar). We sample m ∈R M and let M := gm0 h
r
0 for

the preselected value r; the values of the proof of knowledge are computed honestly. It is easy
to see that all values have the correct distribution (unless g1 = 1 or h1 = 1, in which case we
simply abort). Furthermore, we know the discrete logarithm w/(v+m) of h1 with respect to
g1M .

This completes the analysis of the extraction procedure with respect to full-fledged attacks.

Extraction Implies Non-Malleability. A general construction of a non-malleability sim-
ulator A′ from an extraction procedure has already appeared in [18] (for the plain model,
but it is straightforward to adapt it to the CRS model, as done below). We briefly review the
construction of A′ for our case.

The non-malleability simulator A′ prepares the CRS as required for the extraction pro-
cedure, invokes the adversary A to obtain advpar and sets advpar′ := advpar. Then the
honest sender S is given a secret message m ∈R M(advpar′) and A′ receives histm (which is
forwarded to A for the black-box simulation).

For the extraction procedure, A′ also has to prepare a commitment M of m together
with a proof of knowledge S, c, y, z, but without actually knowing the secret message m of
the sender. We let A′ simply take an arbitrary message m0 ∈ M(advpar′) and compute
M,S, c, y, z from this message m0 instead. Since the commitment M is perfectly secret and
S, c, y, z are distributed independently of m0, these values are equivalent to genuine values.
This holds even if m0 does not match the a-priori information histm the adversary has about
the sender’s message.6

Finally, the simulator A′ outputs the message it extracts from the PIM adversary. The
results about the extraction procedure in the previous sections show that the success prob-
ability of A′ is at most negligibly smaller than the probability of the PIM adversary. This
completes the proof.

The Multi-Party Case. It is not hard to see that non-malleability in the multiple-sender
scenario follows from the single-sender case for our protocols. Nevertheless, if we grant the
adversary the possibility to commit in several executions then we are not aware if our
proof technique still works. For a weaker security notion we use the proposal from [18]
that the adversary announces some subset of indices i1, . . . , ik in the commitment phase.
The adversary is then called successful if she finds valid openings for these commitments
and if m∗i1 , . . . ,m

∗
ik

stand in relation to m. That is, we can view R as a restricted relation
R(advpar,histm,m,m∗i1 , . . . ,m

∗
ik

). It follows straightforwardly that, if we let the adversary
in our case announce the subset after having sent all the commitments M∗1 , . . . ,M

∗
poly, then

our scheme becomes liberal non-malleable with respect to opening in the multi-sender/multi-
receiver setting.

Similarly, we can achieve non-malleability if we adopt the viewpoint of [14]. Suppose
R(advpar,histm,m1, . . . ,mpoly,m

∗
1, . . . ,m

∗
poly∗) is 0 whenever some m∗i = ⊥, and presume

6 In fact, a slightly more sophisticated argument shows that it would even be imperceptible for the
adversary if the commitment scheme was only computationally secret [18].
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further that the adversary first has to commit to each value by sending all M∗1 , . . . ,M
∗
poly∗

before seeing any of the receiver’s challenges. Then our scheme is also non-malleable with
respect to opening in the multi-sender/multi-receiver setting.

5 Non-Malleable Commitments Based on RSA

In this section, we present the protocols based on RSA. The basic ideas remain: add a proof of
knowledge to a commitment of the message, where the challenge is determined by a coin-flip
sub protocol which involves the commitment of the message. Some slight adjustments have
to been done, though.

5.1 RSA-Based Scheme

Let N be an RSA modulus, i.e., the product of two large primes. An RSA exponent for N is an
integer e which is co-prime to the Euler totient function ϕ(N) and satisfies e 6= 1 mod ϕ(N).
The RSA assumption says that computing g1/e mod N for a random g ∈R Z∗N is intractable.

The RSA-based non-malleable commitment scheme is built on the function (m, r) 7→
gmre mod N for m ∈ Ze, r ∈ Z∗N and e prime [42]. A commitment of m ∈ Ze is given by
M := gmre mod N for a random r ∈R Z∗N . This commitment scheme is perfectly secret (as
taking e-th powers is a permutation on Z∗N ) and computationally binding, and it supports an
efficient three-round witness-independent proof of knowledge similar to the discrete-log case.
Furthermore, it also gives rise to a trapdoor property. If (and only if) one knows the trapdoor
g1/e mod N , then one can open the commitment with arbitrary messages. Finally, we notice
that one can efficiently compute an e-th root of h from k, h,∆,N, e satisfying the equation
hk = ∆e mod N for k 6= 0 mod e.

For our protocol we also require a family of universal one-way hash functions [41]. This is
a sequence H = (Hn)n∈N of function sets Hn := {Hk,n | k }, where each Hk,n maps elements
from the common domain Dn to a common range Rn. Additionally, the family is target-
resistant, i.e., for any probabilistic polynomial-time algorithm A the probability that A(1n)
generates some x ∈ Dn and, after some function Hk,n has been chosen uniformly from Hn

and has been presented to A, then A returns x′ 6= x with Hk,n(x) = Hk,n(x′), is negligible. In
particular, every collision-intractable hash function is also universal one-way. In the following,
we usually refer to an instance Hk,n simply as H.

We describe our non-malleable commitment in Figure 7. The CRS consists of a random
RSA instance N, e and four random elements g,G, h0, h1 ∈R Z∗N together with a universal
one-way hash function H : Z∗N → Ze. To commit to m ∈ Ze, choose r ∈R Z∗N and set
M := gmre. Furthermore, compute x := H(GmRe) for random R ∈R Z∗N and select a ∈R Ze,
r, u ∈R Z∗N to calculate A := (hx0h1)aue for the coin-flipping protocol. We remark that, in
contrast to the discrete-log case where A = (g1M)ahu1 , here a commitment of the message
enters A vicariously by means of hx0 for the hash value x of yet another commitment GmRe of
the message. In addition to the computations above, execute the proof of knowledge protocol
given in [42] for M . Clearly, the derived scheme is computationally binding and perfectly
secret.

In comparison to the discrete-log case, we have to perform some extra work. Namely, we
give two commitments of m and we use a universal one-way hash function H. The reason for
this basically stems from the lack of symmetry: in the discrete-log case we use two generators
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Fig. 7. RSA-Based Non-Malleable Commitment Scheme

Sender S N, e, g,G, h0, h1 Receiver R
H : Z∗N → Ze

message m ∈ Ze

a) commitment phase:

select R ∈R Z∗N
let x := H(GmRe)

choose a, s ∈R Ze

choose r, t, u ∈R Z∗N
set M := gmre

set A := (hx
0h1)aue

set S := gste
x,M,A, S−−−−−−−−−−−−−−→ choose b ∈R Ze

b←−−−−−−−−−−−−−−
set c := a+ b mod e
set y := s+ cm mod e

set z := trcgb(s+cm)/ec mod N
a, u, y, z−−−−−−−−−−−−−−→ set c := a+ b mod e

check A
!
= (hx

0h1)aue

check SMc !
= gyze

b) decommitment phase:
m, r,R−−−−−−−−−−−−−−→ check M

!
= gmre

check x
!
= H(GmRe)

and two exponents, whereas here the party selects one exponent and a single value raised to
the e-th power. Indeed, the second commitment GmRe is only necessary if the message space
depends on the adversarial parameters. Otherwise one could hash M to x and still achieve
non-malleability with respect to such an “independent” message space.

5.2 Proof of Non-Malleability

It remains to prove non-malleability. The proof is very similar to the one of the discrete-log
case, so we only sketch the necessary adaptions of the main steps. We again begin with the
extraction procedure with respect to restricted attacks where the message space is independent
of the adversarial parameters and then lift it to full-fledged attacks. Once more, the order
of the messages in the executions between the sender and the adversary, and the adversary
and the receiver is irrelevant to the discussion. Also, the construction of the non-malleability
simulator from the extraction procedure is identical to the discrete-log case and we do not
address this part of the proof here.
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Restricted Attacks. We first describe the extraction procedure in the RSA case. Given
N, e, g and a commitment M = gmre for an unknown messages m ∈ M together with a proof
of knowledge, select v ∈R Z∗N and set G := ve mod N . Also, let x := H(Re) for random
R ∈ Z∗N and define h0 ∈R Z∗N as well as h1 := h−x0 we for w ∈R Z∗N . With these choices the
e-th root of hx0h1 equals w, hence the coin-flip commitment A := (hx0h1)aue is openable with
any value a, and the extraction process is therefore identical to the discrete-log case.

The extraction works as long as the adversary does not find ambiguous decommitments
for the commitment A∗. In the discrete-log case, in Lemma 1, it is shown that this probability
is negligible close to π− πopen(A) under the discrete-log assumption. Basically, the technique
there was to choose appropriate parameters to be able to mimic the extraction procedure and
to use the ambiguous opening to A∗ to compute the discrete logarithm of X with respect to
g in group Gq.

Here, in an intermediate step, we first show that we can essentially restrict ourselves to
the case that the adversary sends a different hash value x∗ 6= x. If the adversary would be able
to find a related opening with noticeable probability for x∗ = x, this would contradict either
the one-wayness of H or the RSA assumption. Namely, given N, e and a random X ∈ Z∗N
let G := X and compute the other public parameters correctly, and sample m ∈R M and
compute M := gmre and GmRe. Then, given the universal one-way hash function H(·),
compute x := H(GmRe) and run the adversary on these parameters. If the adversary chooses
x∗ = x and later reveals a correct decommitment m∗, r∗, R∗ after learning m, r,R, we either
have GmRe = Gm

∗
(R∗)e from which we can compute the e-th root of G = X, or we have

GmRe 6= Gm
∗
(R∗)e yielding a collision H(GmRe) = x = x∗ = H(Gm

∗
(R∗)e) for H(·). Hence,

the adversary succeeds for x = x∗ only with negligible probability. Observe that this argument
even holds if the message space depends on the adversarial parameters.

From now on we condition on the event that the adversary always selects x∗ 6= x. Trans-
ferring Lemma 1 means that we are given N, e,X and try to compute the e-th root of the
random value X ∈ Z∗N . For this, we copy N, e, sample m ∈R M, compute M := gmre and
x := H(GmRe) for r, g,G,R ∈R Z∗N and, again, set h1 := h−x0 we for random w ∈R Z∗N and
h0 := X. Analogously to Lemma 1 we run the extraction procedure (with the opening step in
the initial execution to obtain m∗, r∗, R∗). Under this assumption, and following the approach
in Lemma 1, from an ambiguous decommitment for a∗ for the values chosen above, we finally
derive the equation

h
(x∗−x)(a∗i−a

∗
j )

0 = ∆e mod N

for known ∆,x∗ 6= x, a∗i 6= a∗j . Since (x∗ − x), (a∗i − a∗j ) 6= 0 mod e we can compute an e-th
root of h0 = X. Hence, under the RSA assumption the extraction procedure succeeds with
probability πopen(A)− 1/e− δ(n), where δ(n) is negligible.

The final step in the proof of the discrete-log case is Lemma 2, where we show that the
extracted messages m′ is (at least) a suitable replacement for m∗. In that lemma, we prove
that if this were not true, then we could compute discrete logarithms. The analogous proof
here is the same as in the the adaption of Lemma 1: given N, e,X, choose m ∈R M, set g := X
and compute M := gmre as well as x := H(GmRe) for random G,R ∈R Z∗N . Moreover, let
h0 ∈R Z∗N and h1 := h−x0 we. Run the extraction procedure (with an initial decommitment
step to get m∗, r∗, R∗) to obtain m′, r′, R′ with M∗ = gm

∗
(r∗)e = gm

′
(r′)e; since m∗ 6= m′

this yields the e-th root of g = X.
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Full-Fledged Attacks. Here, the messages space is not independent of the adversarial data
anymore. Similar to the discrete-log case we have to ensure that we are able to produce an
appropriate CRS before we get to know the message space.

For the extraction procedure we choose the same re-randomizing technique as in the
discrete-log case. To adapt the modification of Lemma 1 we select G := ve mod N for a
random v ∈R Z∗N and precompute x := H(Re0) for R0 ∈R Z∗N ; since we know the e-th root
of G is easy to find an appropriate value R matching x for the afterwards chosen message
m ∈R M(advpar). Choose the parameters g, h0 ∈R Z∗N honestly, and set h1 := h−x0 we mod N
for random w ∈R Z∗N . Conditioning again on the adversary sending x∗ 6= x the proof goes
through in this case as well.

Finally, we have to prove that the extracted message equals the adversary’s one (or, more
precisely, satisfies the relation). Similar to the previous step, we select G as G := ve mod N
such that we are able to preselect the value x. The rest of the proof is as before, i.e., we finally
derive different openings of M yielding the e-th root of g.

Theorem 3. If the RSA assumption holds and if H is a family of universal one-way hash
functions, then the protocol in Figure 7 is a perfectly secret commitment scheme which is
liberal non-malleable with respect to opening.

Although without practical significance, one can in principle construct collision-intractable
hash functions and thus universal one-way hash functions under the RSA assumption. We
may therefore reduce the prerequisite of the theorem to the RSA assumption only.

6 Factoring-Based Non-Malleable Commitments

The DLog-based scheme as well as the RSA-based one use Okamoto’s witness-independent
proof of knowledge for the corresponding representation problem [42]. Although there are
similar protocols for the factoring representation problem such protocols are usually not
known to be proofs of knowledge, i.e., a simulator for extracting the message is missing.
However, our protocols heavily rely on this extraction property.

6.1 Preliminaries

We overcome the problem of not having a proof of knowledge by observing that, since we are
actually interested in non-malleability with respect to opening, the proof of knowledge need
not be verifiable immediately in the commitment phase. It suffices that the sender convinces
the receiver of the proof’s validity in the decommitment stage. To refute non-malleability, the
adversary must open her commitment correctly, and particularly, the proof must be shown
to be right then. Therefore, the simulator can already in the commitment phase assume that
the proof is indeed valid. We call such a proof of knowledge a-posteriori verifiable. In fact,
with this technique we are able to derive a non-malleable commitment scheme similar to the
RSA-based one, but relying on the intractability of factoring large numbers.

Factoring Representation. We briefly recall the factoring representation. For a thorough
treatment of this problem see [25]. Given an n-bit RSA modulus N = pq let τ denote an
integer such that 2τ+1 neither divides p − 1 nor q − 1, e.g., let τ be the smallest integer
with this property. Now, squaring permutes the set of 2τ+1-th powers modulo N . Let HQRN
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denote this subgroup of higher quadratic residues which is efficiently samplable by raising a
random element from Z∗N to its 2n-th power.

Our factoring-based non-malleable commitment scheme utilizes the analogue to the RSA
function (m, r) 7→ gmre mod N , namely, the mapping (m, r) 7→ gmr2

τ+t
mod N for m ∈ Z2t

for parameter t ≥ 1 and random g ∈R HQRN . Then the ability to find (m, r), (m′, r′) with
distinct m,m′ ∈ Z2t such that gmr2

τ+t
= gm

′
(r′)2

τ+t
mod N enables to efficiently compute a

2τ+1-th root of g which is as hard as factoring N . On the other hand, given a 2τ+t-th root of g
one may open a given commitment with appropriate values later (trapdoor property). Hence,
for appropriate choices of the parameters we benefit from the same properties as for RSA.
Unfortunately, unlike in the DLog or RSA case, no efficient proof of knowledge is known for
this type of representation problem. As explained above, we therefore switch to a-posteriori
verifiable proofs.

Outline of CRT Extraction Procedure. Using the Chinese Remainder Theorem, we
present a fast a-posteriori verifiable proof of knowledge and thus a non-malleable commitment
scheme based on the factoring representation problem.

We first explain the underlying idea of our construction by a simpler, yet insecure version
of our proof of knowledge. Recall that given a sequence of values ypi = m mod pi for distinct
primes p1, . . . , pk such that

∏
i pi ≥ m one can efficiently reconstruct the original number m

(over the integers) by applying the Chinese Remainder Theorem. To derive an a-posteriori
verifiable proof of knowledge from this, we basically let the sender of the commitment to m
also supply y = m mod p for a small random prime p (determined again by a coin-flipping
protocol). The receiver is then able to verify this value y later with help of the known prime
p, after having received the original message m in the decommitment phase. The value y
essentially serves as a proof of knowledge as we can derive m by rewinding the protocol and
finishing it with different primes until the original message is recoverable according to the
Chinese Remainder Theorem.

The basic construction suffers from two fundamental problems. First, y = m mod p leaks
some information about the message m, even if p is small. Second, we have to ensure that
the extraction works even if some malicious prover sometimes supplies incorrect values y. In
particular, the extractor should be able to detect if the recovered message is correct or not.
Next, we describe how to solve these problems, yielding our a-posteriori verifiable proof of
knowledge.

To ensure secrecy of the message we first demand that the actual message length is only
t − 2d instead of t, where d is an appropriate parameter. The slightly shorter message is
then padded with random bits s ∈R Z22d and the sender S now commits to the message
mpad := s + 22dm ∈ Z2t instead of m (using randomness r to compute the commitment).
Then both parties agree on a d-bit prime number p as the challenge and S reveals the residue
yp := mpad + 2tr mod p, i.e., the sender also includes the randomness r of the commitment
into the computation of the residue (this is to ensure verifiability for the extractor, as we will
see below). Because of the 2d random bits s in the padded message the distribution of yp
is almost independent of the message. Specifically, for superlogarithmic d the distribution of
yp is statistically close to the uniform distribution on Zp and therefore yp does not leak any
essential information about m.

To extract the message we repeat the challenge/response step several times with different
challenges i.e., independent prime numbers. As explained above, we could easily retrieve the

30



value (mpad, r) and thus the message m by applying the Chinese Remainder Theorem if all
replies were correct. But this assumption is too optimistic. The situation is even worse due
to the a-posteriori verifiability. For common proofs of knowledge the extractor identifies the
successful responses by simply checking the verifier’s control equation. But our new approach
lacks such a possibility as the proof would only be verifiable afterwards in the decommitment
phase.

Luckily, since the adversary for non-malleability with respect to opening must also open
her commitment successfully —which includes a successful check of the previously sent yp—
repeating the challenge/response step still guarantees that a small set of correct residues can
be found among such repetitions. And although we may not be able to distinguish good from
bad values immediately, such a list of residues allows to identify the right pair (mpad, r) in
principle by checking which of the possible CRT solutions matches the given commitment for
mpad under randomness r.7

But how fast can we reconstruct the “right” pair (mpad, r) from a list including presumably
invalid residues? This problem has already been solved in the context of codes, namely,
transmitting the residues of a message modulo different primes can be viewed a linear error-
correcting code. So-called list decoding algorithms generate a list of all possible messages
which match the received codeword up to a given number of errors. In our context, we ask for
the message/randomness pair which fulfills the codeword (yp1 , yp2 , . . . , ypk) for at least K out
of k primes (where we choose the number of repetitions k in dependence of the adversary’s
success probability). We then apply the following result [5, Corollary 2.1]:

Lemma 3 (Boneh 2000). Given primes p1 < p2 < · · · < pk, integers yp1 , yp2 , . . . , ypk ∈ Z
and a threshold B. A list of all positive integers m < B with m = ypi mod pi for at least

K of the k congruences can be computed in polynomial time if K
k ≥

log2 pk
log2 p1

·
√

log2 4B
log2 P

where

P :=
∏k
i=1 pi.

See also [30] for a slightly better bound on K/k. Yet, in our setting the algorithm of [30]
only improves the value log pk/ log p1 ≤ 2 to an arbitrarily small constant (whose inverse
affects the running time of the reconstruction algorithm).

ε-Non-Malleability. Extracting via the CRT list decoding algorithm requires to collect
a sufficiently large number k of congruences, among which there must be K good ones.
To guarantee that the extractor works in polynomial time, we use the ε-variant of non-
malleability. That is, the simulator using the extractor is given a parameter ε = ε(n) and
has to compute a related message with the same probability as the adversary, up to an error
ε (plus a negligible function). The running time of the simulator may now also depend on
ε−1(n).

For our approach we further require that ε is not too small. Specifically, we assume that
any algorithm running in time poly(n) · ε−2(n) for some polynomial poly(n) factors a random
modulus with negligible probability only. For instance, take the subexponential running time
L[n] = eO(n1/3(logn)2/3) of the currently best factorization algorithm for moduli of bit size
n (see [35] for a discussion about the estimated security of such moduli), and let ε−1(n) be
bounded by, say, the time L[n/8] to factor moduli of length n/8. Similar assumptions about
the subexponential hardness of cryptographic problems have been used in other settings, e.g.,
[39, 10, 36].
7 Here we exploit the fact that the proof of knowledge comprises the message and the randomness.
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Fig. 8. Factoring Based Non-Malleable Commitment Scheme

Sender S N, τ, t, g,G, h0, h1 Receiver R
H : Z∗N → Z2t

message m ∈ Z2t−2d

a) commitment phase

choose R ∈R Z∗N
x := H(GmR2τ+t)

choose s ∈R Z22d , a ∈R Z2t

choose u, r ∈R Z∗N
mpad := s+ 22dm

M := gmpadr2
τ+t

mod N

A := (hx
0h1)au2τ+2t

(N)
x,M,A−−−−−−−−−−−−−−→ choose b ∈R Z2t

b←−−−−−−−−−−−−−−
c := a+ b mod 2t

p := PrimeGend(c)
yp := mpad + 2tr mod p

a, u, yp−−−−−−−−−−−−−−→ A
!
= (hx

0h1)au2τ+2t
(N)

c := a+ b mod 2t

p := PrimeGend(c)

b) decommitment phase
m, s, r, R−−−−−−−−−−−−−−→mpad := s+ 22dm

M
!
= gmpadr2

τ+t
(N)

x
!
= H(GmR2τ+t)

yp
!
= mpad + 2tr (p)

6.2 Factoring-Based Scheme

The factoring-based non-malleable commitment scheme is given in Figure 8. The public pa-
rameters consist of a random instance N, τ, t, g of the factoring representation problem and
three random elements G, h0, h1 ∈R HQRN together with a universal one-way hash function
H : Z∗N → Z2t . We assume that N ≤ 2n such that values from Z∗N can be described with n
bits.

To commit to m ∈ Z2t−2d , choose s ∈R Z22d , r ∈R Z∗N and set mpad := s + 22dm,
M := gmpadr2

τ+t
. Furthermore, compute x := H(GmR2τ+t) for random R ∈R Z∗N and select

a ∈R Z2t , r, u ∈R Z∗N to calculate A := (hx0h1)au2τ+2t
for the coin-flipping protocol. Note,

that for technical reasons the exponent for the commitment A is 2τ+2t rather than 2τ+t.
To derive the challenge prime p, both parties run the coin-flipping protocol agreeing on a

random c ∈ Z2t . Then they map c to a d-bit prime p := PrimeGend(c) via function PrimeGend.
The sender finally answers with the residue of yp = mpad + 2tr mod p.
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The function PrimeGend is assumed to be collision-intractable in the sense that two dis-
tinct random values c, c′ ∈ Z2t are hardly ever sent to the same prime. The function may
also fail to generate a truly prime number with some very small probability. We specify the
exact requirement below. The function PrimeGend can be built, for instance, based on ideas
developed by Maurer [38] or Cramer and Shoup [13]. Indeed, generating a random prime slows
down the protocol significantly, and we therefore later explore alternatives based on relatively
prime polynomials.

As for the technical parameters, let t > 2d ≥ 8 and suppose d and t+n
d−1 are superlogarithmic

but polynomial in n. Assume further that any algorithm running in time poly(n) · ε−2(n) for
some polynomial poly(n) factors a random modulus with negligible probability only. Also,
let the probability of PrimeGend generating a collision or producing a composite number
in poly(n) · ε−2 independent executions be negligible. We call such parameters t, d, n and ε
admissible.

6.3 Security Proof

Again, first we show that the factoring-based non-malleable commitment scheme in Figure 8 is
non-malleable for restricted attacks. Namely, A does not “mix” the order of messages and the
messages space M is independent of the adversarial parameters. The step from such restricted
attacks to full-fledged attacks follows straightforwardly from the RSA setting and is omitted.

As in the RSA case for restricted attacks, we first prove that we can condition on the
adversary sending a different hash value x∗ 6= x. Suppose towards contradiction that the
adversary is able to find a related opening with noticeable probability for such x∗ = x. Then
we claim that this contradicts either the one-wayness of H or the factoring assumption. To
see this, assume we are given N and a random X ∈ Z∗N . Let G := X and compute the other
public parameters correctly. Sample m ∈R M and set M := gmpadr2

τ+t
and GmR2τ+t . Then,

after receiving the universal one-way hash function H(·), compute x := H(GmR2τ+t) and
run the adversary on these data. Suppose the adversary selects x∗ = x and, after seeing the
opening m, r,R, later decommits correctly to m∗, r∗, R∗. Then, if GmR2τ+t = Gm

∗
(R∗)2

τ+t

we derive the 2τ+1-th root of G = X, and if GmR2τ+t 6= Gm
∗
(R∗)2

τ+t
we get a collision

H(GmR2τ+t) = x = x∗ = H(Gm
∗
(R∗)2

τ+t
) for the function H(·). It follows that the adversary

succeeds for x = x∗ with negligible probability only. We finally remark that the argument
remains valid if the message space depends on the adversarial parameters.

In the following we can now assume that the adversary always selects x∗ 6= x. Next
we address the CRT extractor. Given N, τ, t, g and a commitment M := gmpadr2

τ+t
for an

unknown messages m ∈ M, select v ∈R Z∗N and set G := v2τ+t mod N . Also, let x :=
H(R2τ+t) for random R ∈ Z∗N and define h0 ∈R Z∗N as well as h1 := h−x0 w2τ+2t

for w ∈R Z∗N .
With these choices the 2τ+2t-th root of hx0h1 equals w, hence the coin-flipping commitment
A := (hx0h1)au2τ+2t

is openable with any value ai:

A = (hx0h1)au2τ+2t
= (hx0h1)ai(wai−au)2

τ+2t
.

Therefore we are in the analogous situation to the RSA case, being able to open A ambigu-
ously.

The extractor next starts to emulate the PIM attack by pretending to be S and R using
the given values and the constructed CRS. It suspends the simulation right before the receiver
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sends b. Next, the extractor repeats the challenge/response step

k :=
32(t+ n+ 2)ε−2

d− 1

times. It finally runs Boneh’s algorithm on the data, trying to obtain a decommitment m′pad, r
′

of the adversary’s commitment M∗. If the algorithm returns such a pair the extractor outputs
the unpadded message m′. If it returns more than one pair then we take the first one which
is a valid decommitment to M∗.

For the analysis of the extractor’s success probability we first prove an analogous statement
to Lemma 1 about the adversary being essentially unable to open her “coin” commitment
ambiguously during the extraction procedure (i.e., counterfeits a coin). Here, this should
hold under the factoring assumption in the sense that, given N, τ, t, g,X, we should not be
able to efficiently compute the 2τ+1-th root of the random value X ∈ Z∗N . To show that
we can use an allegedly successful adversary to refute this, copy N, τ, t, sample m ∈R M,
compute M := gmpadr2

τ+t
and x := H(GmR2τ+t) for G ∈R HQRN and r,R ∈R Z∗N . Also, set

h1 := h−x0 w2τ+2t
for random w ∈R Z∗N and h0 := X.

As in the proof for Lemma 1 we run our extraction procedure here, including an opening
step in the initial execution to obtain m∗, r∗, R∗. From an ambiguous decommitment a∗i , a

∗
j

of the adversary to A∗ for the values chosen above, we finally derive the equation

h
(x∗−x)(a∗i−a

∗
j )

0 = ∆2τ+2t
mod N

for known ∆,x∗ 6= x, a∗i 6= a∗j . Since 0 < |x∗−x|, |a∗i −a∗j | < 2t one has 0 < |x∗−x|·|a∗i −a∗j | <
22t. Hence, we can compute an 2τ+1-th root of h0 = X. The running time of this algorithm
is clearly bounded by poly(n) · ε−2, and we would thus be able to factor the modulus N in
this time with noticeable probability. Altogether, since the parameters are admissible, under
the factoring assumption the probability that the adversary ambiguously decommitments to
A∗ during the k repetitions is negligible.

Next, note that the probability of generating collisions among the primes or to derive a
composite number by running PrimeGend during the k repetitions is negligible by assumption.
Hence, from now on we condition on the adversary opening her commitment A∗ unambigu-
ously and having k distinct primes output by PrimeGend. By this, we only lose a negligible
probability in total.

Now fix the random bits ω of the adversary. The tuple describing the execution up to the
rewind point,

ExSoFar = (N, τ, t, g,G, h0, h1, w, ω, x,M,A),

is called good, if the PIM adversary completes this commitment phase after receiving b and
later reveals a valid decommitment (event Succ) with probability at least 1

2ε(n). In other
words, the adversary’s choice y∗p corresponds to some related message which the adversary
would later open. Since all other parameters are fixed, the probability space now merely
consists of the choice of b.

We claim that the probability of ExSoFar being good is at at least 1
2ε(n). This can been seen

as follows. We can assume without loss of generality that πopen(A) is larger than ε(n) for the
specific parameter n; else, even if the simulator completely fails to produce a related output,
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the simulator’s success probability would be ε(n)-close. But if we had Prob [ExSoFar good] <
1
2ε(n) then

πopen(A) ≤ Prob [Succ |ExSoFar not good] + Prob [ExSoFar good]

<
1
2
ε(n) +

1
2
ε(n) = ε(n)

This would contradict πopen(A) > ε(n), of course.
Given the prefix ExSoFar is good, A reveals a residue which matches a successful opening

with probability at least 1
2ε. For the number K of correct residues y∗p among the k repetitions

it therefore holds

K ≥ 8(t+ n+ 2)ε−1

d− 1

except with probability e−2
(t+n+2)ε−2

d−1 by the Chernoff bound. Since the parameters are ad-
missible, this probability is negligible.

Note that the correctness of a residue y∗p merely assures that this value matches some valid
decommitment of the adversary. In principle, all K correct residues could correspond to differ-
ent adversarial decommitments. However, using an approach similar to the one above showing
that the adversary essentially cannot open the commitment for A∗ ambiguously under the
factoring assumption, we can also prove that the adversary cannot open her commitment M∗

ambiguously, except with negligible probability. For this execute the same protocol as above
but this time we also open the sender’s commitment to see the adversarial decommitment
to M∗ in each repetition; if we find distinct valid decommitments we can compute a 2τ+1-th
root of g and therefore factor the modulus. Hence, except with negligible probability, all K
good residues correspond to a single decommitment and there must be at least one entry in
the list output by Boneh’s algorithm which is also a valid decommitment to M∗.

We have log2 4B ≤ t + n + 2 for the (t + n)-bit number (m∗pad, r
∗), log2 P ≥ k(d − 1) =

32(t+ n+ 2)ε−2 for the product of k distinct d-bit primes and log2 pk
log2 p1

≤ d
d−1 ≤

√
2 for d ≥ 4.

Hence, the prerequisites to apply Boneh’s algorithm (Lemma 3) are satisfied:

K

k
≥ ε

4
=

√
2

32ε−2
≥

√
2 · (t+ n+ 2)

32(t+ n+ 2)ε−2
≥ log2 pk

log2 p1
·

√
log2 4B
log2 P

.

Overall, the extractor thus retrieves a decommitment m′ except with probability negligibly
close to 1

2ε. Taking an analogous approach as in the RSA case one easily proves that the
extracted message m′ is also a suitable replacement for m∗. This too implies that, if Boneh’s
algorithm returns more than a single valid decommitment m′pad, r

′ to M∗, then simply taking
the first one is an admissible strategy.

Theorem 4. Let t, n, d, ε be admissible parameters. If the factoring assumption holds and
if H is a family of universal one-way hash functions, then the protocol in Figure 8 is a
statistically-secret commitment scheme which is ε-non-malleable with respect to opening.

Hash-And-Commit Paradigm. The a-posteriori proof of knowledge may also be applied
to the DLog and RSA based scheme. It allows to hash longer messages before committing. In
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this case the sender S pads the `-bit long message m by 2d random bits s. Then, S hashes
mpad,h := h(mpad) := h(s+22dm) using some collision-resistant function h : Z2`+2d → Z2t and
commits to M := gmpad,hr2

τ+t
. The response corresponds to the actual message mpad rather

than its hash value: yp := mpad + 22d+`r mod p. One can easily identify a right message by
applying the hash function and see if the result matches the given commitment M .

6.4 Construction Based on Polynomials

A disadvantage of our a-posteriori proof of knowledge is the generation of prime numbers. A
faster approach can be based on polynomials over a finite fields. For this let q be a prime of
bit size

√
d. For simplicity, assume D :=

√
d is an integer. Use ψq(z) :=

∑
i≥0 ziχ

i ∈ Zq[χ] to
embed a non-negative integer z =

∑
i≥0 ziq

i to the polynomial ring Zq[χ] over the field Zq.
For the proof of knowledge both parties as before agree on a uniformly distributed c ∈ ZqD

via the coin-flipping protocol. Then they use the polynomial

p(χ) := PolyGenq,D(c) := χD + ψq(c).

as the challenge for the proof of knowledge. The sender replies with

yp(χ) := ψq(mpad + 2tr) mod p(χ)

where mpad = s+ qDm and s ∈R ZqD .
First observe that PolyGenq,D(c) is an injective mapping. Then, we remark that the

Chinese Remainder Theorem holds for polynomial rings over fields, too (see Knuth [34,
Sec. 4.6.2, Ex. 3]): given yp(χ) for pairwise co-prime polynomials p(χ) one can efficiently
construct ψq(mpad + 2tr). Note, that ψq(s) (which is part of ψq(mpad + 2tr)) is uniformly
distributed in Zq[χ]/(p). Therefore, it serves as a real one-time pad and as a result the com-
mitment scheme achieves even perfect secrecy.

The main advantage of using polynomials is that random elements are more likely to be
relatively prime than random integers: two randomly chosen monic polynomials of the same
degree over Zq are relatively prime with overwhelming probability 1− 1

q (see [34, 4.6.5, Ex. 5]).
Hence, even generating a large number of random polynomials is unlikely to result in poly-
nomials with a non-trivial gcd.

On the downside, to best of our knowledge CRT list-decoding algorithms do not work for
polynomials instead of integers. Ideas how one could derive such a procedure for polynomi-
als are described in a more general framework by Sudan [47]. Here we restrict the number
of correct solutions to be collected to constant such that searching all possible subsets of
congruences can be done in polynomial time.

We call parameters t, n,D, ε admissible if the all of the following properties hold. Suppose
that t ≥ 2d, that t+n

D is constant and that t+n
D ε−1 is superlogarithmic. Assume further that

any algorithm running in time poly(n) · ε−1(n) for some polynomial poly(n) factors a random
modulus with negligible probability only. Moreover, let the probability of PolyGenq,D gener-
ating two polynomials which are not relatively prime in poly(n) · ε−1 independent executions
be negligible. Then,

Theorem 5. Let t, n,D, ε be admissible. If the factoring assumption holds and if H is a
family of universal one-way hash functions, then the version of the protocol in Figure 8 based
on polynomials is a perfectly-secret commitment scheme which is ε-non-malleable with respect
to opening.
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The proof is almost identical to the prime generation case. Only this time we let the
extractor make k := 4 t+nD ε−1(n) repetitions to get K ≥ t+n

D correct solutions, except with
negligible probability exp(−2 t+nD ε−1(n)). Then, we run Knuth’s polynomial-based CRT al-
gorithm for each subset of t+n

D values among the k answers; we check each possible solution
against the given commitment. This gives us the right pair in polynomial time.
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A Non-Malleable Commitments via Random Oracles

The random oracle methodology [21, 3] exploits the very strong assumption that a hash func-
tion behaves like a truly random function. In this model, where all parties have oracle access
to such a random function H, we devise non-interactive non-malleable commitments in the
plain model. However, we remark that the random oracle heuristic provides only some evi-
dence that the scheme is indeed secure if one uses appropriate instantiations for H. It might
well be that there is no secure implementation in practice at all [11].

The definition of non-malleability transfers to the random oracle model if we augment
each party S,R,A and A′ as well as M and R with the same oracle H representing a ran-
dom function with infinite domain and fixed output length. The probability that A and A′,
respectively, succeed is then taken over the random choice of H, too.

Let Comsecret be the non-interactive statistically-secret commitment scheme described in
[41, 7, 31]. The protocol goes like this: first, the sender hashes the message m to a short
string mh with some collision-intractable hash function. Then the sender picks a pairwise
independent function h and a value x such that h(x) = mh. It computes the hash value y of x
under the collision-intractable hash function and sends (y, h) to R. To decommit the sender
reveals m and x.

Since the protocol Comsecret merely requires a collision-intractable hash function and
random oracles have this property by construction, we may use H as the collision-intractable
hash function in the scheme. Then ComH

secret is indeed non-interactive and still provides
statistical secrecy as well as computational unambiguity. We claim that this scheme is even
non-malleable with respect to opening in the random oracle model.

Basically, the protocol is non-malleable because any adversary A sending a commitment
(y∗, h∗) and later a correct decommitment (m∗, x∗), each time after having seen the sender’s
values (y, h) and (m,x), must have obtained the answers m∗h = H(m∗) and y∗ = H(x∗) from
the oracle queries to H. Otherwise the probability that A finds a good decommitment is
negligible, because predicting H on a new value is infeasible. But then A already “knows” a
related message m∗ to m in the commitment phase, contradicting the secrecy.

It is now easy to formalize the intuition and define the simulator. A′ first sends a dummy
commitment (y, h) on behalf of the sender to A, say, by committing to the all-zero string.
Then it records all queries of A to oracle H and the answers —this is possible as A′ simulates
A and sees all queries of A before forwarding it to H. Since all hash values of H are distinct
with overwhelming probability we may assume that every image has a unique pre-image in
the list of recorded pairs. If finally A sends some commitment (y∗, h∗) then the simulator
looks up y∗ in the list and obtains the corresponding query x∗ yielding y∗. This gives the
unique m∗h = h∗(x∗) and another search reveals the pre-image m∗ of m∗h under H. Let A’
output m′ := m∗. Clearly, the probability that A′ returns a related message is negligibly close
to A’s success probability.
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