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Abstract. A robust multi-property combiner for a set of security properties merges
two hash functions such that the resulting function satisfies each of the properties which
at least one of the two starting functions has. Fischlin and Lehmann (TCC 2008) re-
cently constructed a combiner which simultaneously preserves collision-resistance, target
collision-resistance, message authentication, pseudorandomness and indifferentiability
from a random oracle (IRO). Their combiner produces outputs of 5n bits, where n

denotes the output length of the underlying hash functions.

In this paper we propose improved combiners with shorter outputs. By sacrificing the

indifferentiability from random oracles we obtain a combiner which preserves all of the

other aforementioned properties but with output length 2n only. This matches a lower

bound for black-box combiners for collision-resistance as the only property, showing that

the other properties can be achieved without penalizing the length of the hash values.

We then propose a combiner which also preserves the IRO property, slightly increasing

the output length to 2n + ω(log n). Finally, we show that a twist on our combiners also

makes them robust for one-wayness (but at the price of a fixed input length).

1 Introduction

A black-box combiner for some cryptographic primitive, is a construction, which given black-
box access to two candidate schemes, securely implements the primitive, if at least one of
the two candidates securely implements it [Her05, HKN+05]. Thus combiners can be used as
hedge against the failure of a concrete construction, as the combiner is secure as long as at
least one of the two candidates is not broken. In light of the many recent attacks on popular
collision resistant hash functions [BCJ+05, WYY05, WLF+05, WY05, FLN07], combiners
for hash-functions are of particular interest.

For many important primitives very simple combiners do exist. For example, the “con-
catenation combiner” C

H0,H1

‖ (M) = H0(M)‖H1(M) for hash-functions preserves the prop-

erty of being collision-resistant (CR) and target collision-resistant (TCR), because a collision
M 6= M ′ for the combiner is always also a collision for both components H0 or H1. Thus if
either of the hash function H0 or H1 is collision-resistant, then so is the combined function.
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Figure 1: Illustration of the basic construction C4P (left) preserving CR,PRF,TCR and MAC.
Here Hi

b(·) denotes Hb(〈i〉2 ‖·) where 〈i〉2 is the binary representation of the integer i with
two bits. Hi

⊕(·) denotes Hi
0(·)⊕H

i
1(·). By applying a pairwise independent permutation to

the input of H0
0 we get our construction C4P&OW (right), which also preserves OW. Because

of the PIP, the input length of the construction must now be fixed.

Nowadays hash functions are often deployed in many facets, e.g., as pseudorandom func-
tions in TLS or message authentication codes in IPSec. In some standardized protocols
as RSA-OAEP [BR95] and RSA-PSS [BR96], even stronger assumptions on the underlying
hash-functions are made [BF05, BF06].

While the concatenation combiner preserves the MAC property, the PRF property is in
general not conserved. In contrast, the “XOR combiner” C

H0,H1

⊕ (M) = H0(M) ⊕M1(M)
is robust with respect to PRF, and also for indistinguishability from a random oracle (IRO),
but neither preserves the CR nor the TCR property.

Ideally, one would like to have a single combiner preserving many properties simulta-
neously. To this end, Fischlin and Lehmann [FL08] have introduced the notion of robust
multi-property combiners for a set of security properties prop. According to their strongest
notion such a combiner satisfies the property P ∈ prop if P is satisfied by at least one of
the two candidate hash functions. Their combiner, denoted here as C5P, preserves all of the
discussed properties, i.e., (target) collision-resistance (TCR, CR), pseudorandomness (PRF),
message authentication (MAC) and indifferentiability from a random oracle1 (IRO). Unfor-
tunately, the C5P combiner has a rather long output of 5n bits, where n denotes the output
length of the underlying hash functions. This raises the question whether having such a
long output is necessary for a combiner which preserves all the properties simultaneously,
or if we can do better. Let us mention that we can not hope to get below 2n bits (except
for a logarithmic additive term), as this is already a lower bound for black-box combiners
preserving collision-resistance only [BB06, Pie07, CRS+07].

The Combiner C4P. In this paper we first propose a combiner C4P with optimal output
length of 2n bits and which preserves all the properties of the C5P combiner from [FL08],
except for indifferentiability from random oracles. The basic idea of this construction is to
use the concatenation combiner C‖, and to apply a three-round Feistel permutation to its

1Indifferentiability from a random oracle is sometimes also referred to as “being a pseudorandom oracle”.
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Figure 2: Illustration of the construction C4P&IRO (left), which (besides the four properties
preserved by C4P) also preserves the IRO property, at the prize of an increased output length.
The third branch of the construction operates on a signature value αM depending on input
M and applies a pairwise independent function. On the right side the construction C6P is
illustrated which simultaneously preserves all six properties considered.

output. In the first round of the Feistel permutation no round function is applied, whereas
the two subsequent rounds are constructed by using the XOR-combiner C⊕ (cf. Figure 1).
The round functions are made somewhat independent by prepending the round number to
the input.

The rationale here is that applying the Feistel (or any other) permutation to the output of
C‖ still preserves the CR, TCR and MAC properties, e.g., collisions for C‖ are pulled through
the downstream permutation and can be traced back to collisions for C‖. At the same time,
one achieves robustness for the PRF property. The latter can be seen as follows: if either H0

or H1 is pseudorandom, then the round functions in the Feistel network are pseudorandom as
H⊕ is a secure combiner for pseudorandom functions. The Luby-Rackoff [LR88] result now
states that a three-round Feistel-network, instantiated with quasi independent pseudorandom
functions, is a pseudorandom permutation. We note that the formal argument also needs to
take into account that finding collisions in the keyed version of the initial C‖ computation is
infeasible.

Preserving IRO. In Section 4.2 we modify the C4P construction such that it also preserves
indifferentiability from a random oracle. The obstruction of the IRO robustness in the C4P

combiner stems from the invertibility of the Feistel permutation: an adversary trying to
distinguish the output of the combiner from a random function (given access to the underlying
hash functions, as opposed to the case of pseudorandom functions for example) can partly
“reverse engineer” images under the combiner. Hence, we introduce a “signature” value αM

(depending on the input message M), entering the round functions in the Feistel network
and basically allowing combiner computations in the forward direction only.

The description of our enhanced combiner C4P&IRO is given in Figure 2. The signature
αM is taken as (a prefix of) the XOR of the output halves of the C‖ combiner and is used as
additional input parameter in the Feistel round functions, allowing us to also save one round
of the Feistel structure. Note that this essentially means that different Feistel permutations
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may be used for different inputs M,M ′, because the signatures αM , αM ′ may be distinct.
In order to apply again the argument that the Feistel permutation does not interfer with
the CR,TCR and MAC robustness of the concatenating combiner, we therefore also need
to ensure that finding “bad” pairs αM and αM ′ is infeasible. To this end we introduce
another output branch which basically guarantees collision resistance of the signatures. This
additional output is of length 3m for some m = ω(log n), yielding an overall output length
of 2n+ ω(log n).

Preserving One-Wayness. Even though both our solutions are robust for an important
set of properties they are not good combiners for one-wayness. Our results so far merely show
that they are one-way functions making for example the potentially stronger assumption that
one of the two hash functions is collision-resistance. In Section 5 we therefore show how to
augment our constructions such they also preserves the one-wayness property.

The idea is that applying a pairwise-independent permutation (PIP) to the input of H0

(or H1) in the concatenation combiner C‖ makes this combiner also robust for one-wayness.
Then we can use this modified concatenation combiner in the initial stages of our previous
constructions, noting again the subsequent Feistel permutations do not interfere with this
property either. Yet, as the description length of a PIP is linear in its input length, the input
length of the derived combiners must be fixed, too, giving one-wayness as an additional
property.

More Related Work. Although for most basic primitives black-box combiners are easily
seen to exist, there are a few primitives for which combiners are not known, and there is
strong evidence that they might not exist. Most notably commitment schemes [Her05] and
oblivious transfer [HKN+05, HIKN08, MPW07, MP06]. Note that those are primitives where
the security notion is defined for two parties, e.g. for commitments, we have a hiding property
for the committer, and a binding property for the receiver.

“Multi-property preservation” is not only interesting for combiners, but also for reductions
between primitives. In particular Bellare and Ristenpart [BR06a] show how to construct
a hash-function (taking as inputs messages of arbitrary length) from a fixed-input length
compression function, while preserving multiple properties. One can use the construction
of [BR06a] with the combiners from this paper in order to construct a hash function from
two candidate compression functions, where the hash functions enjoys any (of the preserved)
security properties, which is satisfied by at least one of the compression functions.

2 Preliminaries

2.1 Hash Functions and Their Properties

A hash function H = (HKGen,H) is a pair of efficient algorithms such that HKGen for input
1n returns (the description of) a hash function H, and H for input H and M ∈ {0, 1}∗

deterministically outputs the hash value H(M) ∈ {0, 1}n.
Depending on the security property we are interested in, the access of the adversary to the

hash function is modeled differently. For unkeyed primitives like (target) collision-resistance
or one-wayness, the description of H is given to the adversary. Whereas for keyed primitives
like pseudorandomness or the MAC property, the adversary only gets black-box access to H.
We could also consider a somewhat more general notion, where the key-generation algorithm
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outputs a pair Hp,Hs of values, which together define the hash function H, and where in the
keyed setting, only Hs (but not Hp) is kept secret. For example in the NMAC construction,
Hp would define the underlying compression function, and the secret key Hs would be the
randomly chosen initial value IV. All our results also hold in this setting, but we avoid using
such a fine-grained definition as to save on notation which would only distract from the main
ideas.

Below are formal definitions of the six important security properties for hash functions we
consider in this work: the unkeyed properties of (target) collision-resistance and one-wayness
and the keyed properties of being a PRF or a MAC. The final property – indifferentiability
from a random oracle – is a bit special, as one considers idealized components. In particular,
there’s no efficient key-generation algorithm, but rather the hash function is given directly
by an oracle.

collision resistance (CR): The hash function is called collision-resistant if for any efficient
adversary A the probability that for H ← HKGen(1n) and (M,M ′) ← A(H) we have
M 6= M ′ but H(M) = H(M ′) is negligible (as a function of n).

target collision-resistance (TCR): A hash function is called target collision-resistant if
any adversary defined by two efficient algorithms (A1,A2), has negligible success prob-
ability of winning the following experiment. Let A1(1n) first generate the target mes-
sage M and possibly some additional state information st. Then, a hash function
H ← HKGen(1n) is chosen and A2 on input (H,M, st) tries to compute a colliding
message M ′. The adversary wins if M 6= M ′ but H(M) = H(M ′).

one-wayness (OW) : A hash function is called one-way if for any efficient algorithm A the
probability that for H ← HKGen(1n) and for random M (chosen from some domain
which is clear from the context) the probability that A(H,H(M)) returns M ′ with
H(M ′) = H(M), is negligible.

pseudorandomness (PRF): A hash function is called pseudorandom, if for any efficient
adversary D the advantage |Pr

[

DH(1n) = 1
]

− Pr
[

Df (1n) = 1
]

| is negligible, where
H ← HKGen(1n) and f is a random function f : {0, 1}∗ → {0, 1}n.

message authentication (MAC): A hash function is a secure MAC (where “secure” means
unforgeable under a chosen message attack), if for any efficient adversary A the proba-
bility that for H ← HKGen(1n) the adversary AH (having oracle access to H) outputs
(M, τ) where τ = H(M) and A did not make the oracle query M , is negligible.

indifferentiability from random oracles (IRO): Indifferentiability [MRH04, CDMP05]
is a generalization of indistinguishability allowing to consider random oracles that are
used as a public component. More formally, a hash function Hf based on a random
oracle f is indifferentiable from a random oracle F if for any efficient adversary D

there exists an efficient algorithm S such that the advantage Pr

[

DHf ,f (H) = 1
]

−

Pr

[

DF,SF (H)(H) = 1
]

is negligible in n, where the probability in the first case is over

D’s coin tosses, H ← HKGen(1n) and the choice of the random function f , and in the
second case over the coin tosses of D and S, and H ← HKGen(1n) and over the choice
of F .
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2.2 Robust Multi-Property Combiners

We now give a formal definition of robust multi-property combiners. A hash function com-
biner C = (CKGen,C) for some security property P is a pair of algorithms which, when
instantiated with two hash functions H0,H1, itself implements a hash function, such that
the combined function satisfies P if at least one of the two candidates satisfies P. The concept
of combiners for multiple properties prop = {P1,P2, . . . ,PN} has been introduced in [FL08]
and distinguishes between different levels of robustness. In the weakest case the combiner
inherits a set of multiple properties if one of the hash functions is strong and has all the
properties (weakly robust), whereas the strongest notion only requires that each property
individually is provided by at least one of the two candidates (strongly robust). In between,
there are mildly robust combiners for which one property may support the implementation of
another property. In this paper we only consider strongly robust multi-property combiners.
We denote by prop(H) ⊆ prop for a set prop = {P1,P2, . . . ,PN} the properties which hash
function H has.

Definition 2.1 (Multi-Property Robustness) A hash function combiner C = (CKGen,C)
is strongly multi-property-robust (sMPR) for a set prop = {P1,P2, . . . ,PN} of properties, if
for any hash functions H0,H1 we have Pi ∈ prop(H0) ∪ prop(H1) =⇒ Pi ∈ prop(CH0,H1).

In our construction the key-generation procedure CKGen of the combiner calls the key-
generation procedure HKGen of H0 and H1, and possibly samples some more random variable
g which will define a pairwise independent function or permutation. The sampled functions
H0,H1 and g are then used in the evaluation procedure CH0,H1,g as “black-boxes”. For the
IRO property we assume that the evaluation procedure is given access to the oracles directly.
The security property then requires that CH0,H1,g is indifferentiable from a random oracle
if H0 or H1 is a random oracle, and the other oracle is arbitrary (but independent of the
random oracle).

3 The C4P Combiner for CR, PRF, TCR and MAC

In this section we introduce the construction of our basic combiner C4P as illustrated in
Figure 1. Recall that the idea of this combiner is to apply a Feistel permutation (with quasi
independent round functions given by the XOR combiner) to the concatenating combiner to
ensure CR, PRF, TCR and MAC robustness.

3.1 Our Construction

The three-round Feistel permutation P 3 over {0, 1}2n is given by the round functionsHi
⊕(·) =

Hi
0(·) ⊕H

i
1(·) for i = 2, 3, with Hi

b(·) denoting the function Hb(〈i〉2 ‖·) where 〈i〉2 is the bi-
nary representation of the integer i with two bits. The first round function is the identity
function, i.e., H1

⊕(X) = X. In the i-th round the input (Li, Ri) is mapped to the out-
put (Ri, Li ⊕H

i
⊕(Ri)). We occasionally denote this Feistel permutation more explicitly by

ψ[H1
⊕,H

2
⊕,H

3
⊕](·).

Our combiner, instantiated with hash functions H0,H1, is a pair of efficient algorithms
C4P = (CKGen4P,C4P) where the key generation algorithm CKGen4P(1n) samples H0 ←

HKGen0(1
n) and H1 ← HKGen1(1

n). The evaluation algorithm C
H0,H1

4P for parameters H0,H1

and input message M outputs

C
H0,H1

4P (M) = P 3(H0
0 (M)‖H0

1 (M)).
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3.2 Multi-Property Robustness

We next show that the construction satisfies the strongest notion for robust multi-property
combiners:

Theorem 3.1 C4P is a strongly robust multi-property combiner for prop = {CR,PRF,TCR,MAC}.

Recall that a strong robust multi-property combiner inherits all properties that are provided
by at least one of the underlying hash functions. Thus, we have to prove that each property
CR,PRF,TCR and MAC is preserved independently.

Lemma 3.2 The combiner C4P is CR-robust.

Proof. Observe that any collision M 6= M ′ for C
H0,H1

4P (·) directly gives a collision 00‖M 6=
00‖M ′ for for H0(·) and H1(·). Thus any adversary that finds collisions for C4P when instan-
tiated with H0,H1 with non-negligible probability, can be used to find collision (with the
same probability) for H0 and H1 respectively: to find a collision for Hb ← HKGenb(1

n) with
b ∈ {0, 1}, run Hb ← HKGenb(1

n) and then invoke the adversary on input Hb,Hb. If the

adversary outputs a collision for C
H0,H1

4P (·), this is also a collision for Hb(·). �

Lemma 3.3 The combiner C4P is TCR-robust.

Proof. The proof is by contradiction. Assume an adversary AC = (A1
C,A

2
C) that commits

to a message M before getting H0 and H1 and then finds some M ′ such that C
H0,H1

4P (M) =

C
H0,H1

4P (M ′) with noticeable probability. Then we can use this attacker to construct a suc-
cessful target-collision adversary Ab = (A1

b ,A
2
b) against the underlying hash functions Hb for

b ∈ {0, 1} which contradicts the assumption that at least one of the two hash functions is
target collision-resistant.

First, the adversary A1
b(1

n) runs A1
C(1n) to receive the target message M and some state

information st. A1
b then commits to 00‖M . On inputHb the adversary A2

b samples the second
hash function Hb ← HKGenb(1

n) and passes Hb,Hb together with (M, st) to A2
C. When A2

C

outputs a message M ′ 6= M with C
H0,H1

4P (M) = C
H0,H1

4P (M ′) the adversary A2
b returns 00‖M ′.

Due to the permutation a collision of M,M ′ for the combiner can be traced back to the
input of P (·), i.e., H0(00‖M)‖H1(00‖M) = H0(00‖M ′)‖H1(00‖M ′). Hence, both adversaries
Ab for b = 0, 1 succeed in finding a message 00‖M ′ that together with the target message
00‖M leads to a collision under Hb with the same noticeable probability as AC. �

Lemma 3.4 The combiner C4P is PRF-robust.

Proof. As the XOR combiner is a good combiner for pseudorandom functions (PRFs), the
round functions H2

⊕,H
3
⊕ in the Feistel network P 3 = ψ[H1

⊕,H
2
⊕,H

3
⊕] are instantiated with

PRFs, as long as at least H0 or H1 is a PRF. Prepending the unique prefix 〈i〉2 for i = 2, 3
to the input of Hi

⊕(·) = H⊕(〈i〉2 ‖·) in each round ensures that the functions in different
rounds are never invoked on the same input, which means they are indistinguishable from
two independent random functions. The first round of our Feistel permutation, that does not
apply a round function, simply prepares the input for the second round function H2

⊕(·) by
xoring both input halves H0

0 (M)⊕H0
1 (M). Thus, if at least one hash function is a PRF then

the input to the second round function is already a pseudorandom value, which prevents an
adversary from directly choosing the inputs to the second Feistel round.
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We can now apply the results due to Luby-Rackoff [LR88] and Naor-Reingold [NR99]
which state that a two-round Feistel-network invoked on an unpredictable input and instan-
tiated with independent pseudorandom functions is a pseudorandom permutation (PRP).

Further, if either H0 or H1 is a PRF, then the initial concatenation combiner C
H0,H1

‖ is

weakly collision resistant2, thus the probability that the adversary will invoke the combiner
on distinct inputs M,M ′ where H0

0 (M)‖H0
1 (M) = H0

0 (M ′)‖H0
1 (M ′), is negligible. So with

overwhelming probability, all the adversary sees is the output of a PRP on distinct inputs.
This distribution is indistinguishable from uniformly random (this follows from the PRP/PRF
switching lemma [BR06b]), thus C4P is PRF robust.

From any distinguisher D who has advantage ǫ in distinguishing C
H0,H1

4P making q queries,

we can construct distinguisher D0 and D1, where (for b ∈ {0, 1}) DHb,D
b distinguishes Hb ←

HKGenb(1
n) from random with advantage ǫ − O(q2/2n). For b = 0 (the case b = 1 is

symmetric) DH0,D
0 first samples H1 ← HKGen1(1

n), then simulates the experiment DC
H0,H1

4P

(using this knowledge of H1 and oracle access to H0), and finally outputs D’s output. If
H0 is a uniformly random function f : {0, 1}∗ → {0, 1}n, then any (even computationally
unbounded) distinguisher making q queries has advantage at most O(q2/2n) in distinguishing

C
f,H1

4P from a random function (as the advantage from the PRP/PRF switching lemma and

the advantage in the Luby-Rackoff result are both O(q2/2n)). Thus if D distinguishes C
H0,H1

4P

from f with advantage ǫ, it has advantage ǫ − O(q2/2n) to distinguish C
H0,H1

4P from C
f,H1

4P ,
the latter is by definition also D0’s advantage for f and H0.

�

Lemma 3.5 The combiner C4P is MAC-robust.

Proof. Assume towards contradiction that an adversaryAC with oracle access to the combiner
C

H0,H1

4P (·) finds with non-negligible probability a valid pair (M, τ), such that τ = C
H0,H1

4P (M)
but the message M was never queried to the MAC-oracle. Given AC we can construct a
successful adversary Ab against the underlying hash function Hb for b ∈ {0, 1}. To forge

Hb(·), the adversary Ab first samples Hb ← HKGenb(1
n), and then lets AC attack C

H0,H1

4P (·),
and let Ab use his oracle access to Hb(·) and the knowledge of Hb to compute the answers
to AC’s oracle queries. When finally AC outputs (M, τ), the adversary Ab computes its
forgery (00‖M, τb) by inverting the permutation P 3 = ψ[H1

⊕,H
2
⊕,H

3
⊕] (recall that Hi

⊕(·) =
H0(〈i〉2 ‖·) ⊕H1(〈i〉2 ‖·) and that the required hash function evaluations can be made with
the help of the MAC oracle):

τ0‖τ1 := P 3−1
(τ).

The adversary Ab then outputs the message 00‖M and τb. If M was not previously queried
by AC , then 00‖M is distinct from all of Ab’s previous queries, because all additional queries
are prepended by 〈i〉2 where i ∈ {1, 2, 3}. By construction, if (M, τ) is a valid forgery for

C
H0,H1

4P (·), then H0
0 (M)‖H0

1 (M) = τ0‖τ1 and thus (00‖M, τb) is a valid forgery for Hb(·). �

Why C4P is not a combiner for pseudorandom oracles (IRO). Finally, we give a brief
idea why our combiner does not preserve IRO, unlike the robust multi-property combiner
proposed in [FL08]. To be IRO-robust our C

H0,H1

4P has to be indifferentiable from a random
oracle for any efficient adversary D, if Hb is a random oracle for some b ∈ {0, 1}. Thereby

2Weak collision resistance is defined similarly to collision resistance, except that here the function is keyed
and the key is secret, i.e. the adversary only gets black-box access to the function.

8



the adversary D has oracle access either to the combiner C
H0,H1

4P and the random oracle Hb,
or to F and a simulator SF . The simulator’s goal is to mimic Hb such that D cannot have
a significant advantage on deciding whether its interacting with C

H0,H1

4P and Hb, or with F
and SF .

Usually, the strategy for designing such a simulator is to check if a query is a potential
attempt of D to simulate the construction of the combiner and then to precompute further
answers that are consistent with the information D can get from F . However, for C

H0,H1

4P the
simulator may be unable to precompute those consistent values, because an adversary D can
compute the permutation part of the combiner backwards such that SF has to commit to
its round values used in the permutation P 3 before knowing the initial input M . That is, D
first queries the random oracle F on input M and uses the response Y ← F(M) to compute

X = P 3−1
(Y ) with the help of SF simulating Hb and the function Hb which is accessible in

a black-box manner. Then the answers of SF , in order to be indistinguishable from those of
Hb, must lead to a value X = S(00‖M)‖H1(00‖M) if b = 0, and X = H0(00‖M)‖S(00‖M)
else.

While the part of X corresponding to S(00‖M) can simply be set as response to a further
query 00‖M by the simulator, the part of Hb(00‖M) is determined by the oracle Hb(·) and
the message M . However, since the simulator does not know the message M when answering

D’s queries for computing P 3−1
, it is not able to call the Hb oracle about 00‖M and to choose

those answers accordingly. Thus, the probability that the responses provided by SF will lead

in P 3−1
(Y ) to a value that is consistent with the structure of the combiner, is negligible and

the adversary D can distinguish between C
H0,H1

4P , Hb and F , SF with noticeable probability.

4 Preserving Indifferentiability: the C4P&IRO Combiner

In order to guarantee the IRO property, we modify the C
H0,H1

4P combiner such that the ad-
versary is forced to query the message M before he can create meaningful queries aiming
to imitate the construction. By this the simulator becomes able to switch to the common
strategy of preparing consistent answers in advance. As explained in the introduction, adding
a signature value αM into the computation does the job.

4.1 The Combiner C4P&IRO

In this section we consider the modified combiner C4P&IRO as illustrated in Figure 2. The
combiner C4P&IRO = (CKGen4P&IRO,C4P&IRO) is defined as follows: CKGen4P&IRO first samples
H0 ← HKGen0(1

n),H1 ← HKGen1(1
n) and a pairwise independent function g : {0, 1}m →

{0, 1}3m for some m ≤ n/3 (the larger m, the better the security level, but the longer the
output, too):

Definition 4.1 (pairwise-independent function/permutation) A family of functions
G : A → B from domain A to range B is called pairwise independent iff for all x 6= x′ ∈ A
and z 6= z′ ∈ B we have Prg∈G[g(x) = z ∧ g(x′) = z′] = |B|−2.

A family of function Π : A→ A is a pairwise independent permutation, if for x 6= x′ and
z 6= z′ ∈ A we have Prg∈G[g(x) = z ∧ g(x′) = z′] = 1

|B|(|B|−1) .

One gets a simple construction of a pairwise independent function (PIF) mapping {0, 1}n to
{0, 1}n, by sampling a, b ∈ {0, 1}n at random, which then defines the function g(a,b)(x) =
(ax + b), where addition and multiplication are in the field GF (2n) (if we want a smaller
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range {0, 1}m,m < n, one can simply drop n −m bits of the output). This construction is
also a pairwise-independent permutation (PIP), if a is chosen at random from {0, 1}n \ 0n

(instead of {0, 1}n).

The evaluation algorithm C
H0,H1,g
4P&IRO (M) first computes CH0,H1

‖ (M) = H0
0 (M)‖H0

1 (M) and

a value αM – which we call the “signature of M” – as αM = lsbm(H0
⊕(M)) where H0

⊕(M) =
H0

0 (M) ⊕ H0
1 (M) and lsba(x) denotes the a least significant bits of x. The value αM is

used as an extra prefix in the round functions of the two-round Feistel permutation P 2
α(·) =

ψ[H1
⊕(αM‖·),H

2
⊕(αM‖·)]. Applying P 2

α on H0
0 (M)‖H0

1 (M) then gives the first part of the
combiners output.

The construction as described so far, is already a robust combiner for IRO and PRF, but
not for CR and TCR. The reason is that now distinct input messages M,M ′ where αM 6= αM ′

lead to distinct Feistel permutations P 2
αM
6= P 2

αM′
, and thus we cannot compute a collision for

CH0,H1

‖ (and thus for H0 and H1) from a collision CH0,H1

‖ (P 2
αM

(M)) = CH0,H1

‖ (P 2
α′

M
(M ′)).

To solve this problem, we could append the signature to the output of the combiner, and
this way enforce that two inputs can only collide if they have the same signature. Unfortu-
nately, outputting the signature α directly would make the permutation P 2

α invertible, and
ruin the IRO robustness of our construction. This is why we only output a “blinded” version
of the signature computed as lsb3m(H3

⊕(αM ))⊕ g(αM ). This way the signature αM gets not
leaked when H0 or H1 is a random oracle, which is necessary for the combiner to be IRO

robust. Moreover with high probability (over the choice of the pairwise-independent function
g) the blinding, which maps {0, 1}m to {0, 1}3m, will be injective (i.e. contain no collisions),
which as explained before is necessary to get robustness for CR and TCR.

Overall, the combiner – as illustrated in Figure 2 – computes for input message M and
its corresponding signature αM = lsbm(H0

⊕(M)) the following output:

C
H0,H1,g
4P&IRO (M) = P 2

α(H0
0 (M)‖H0

1 (M)) ‖ lsb3m(H3
⊕(αM ))⊕ g(αM ).

4.2 C4P&IRO is IRO-Robust

We show that our combiner is indifferentiable from a random oracle when instantiated with
two functions H0,H1, where one of them is a random oracle (we refer to it as Hb, b ∈ {0, 1}),
and the other function Hb is arbitrary. Like the random oracle Hb, also Hb is given as an
oracle and accessible by all parties. The pairwise independent function g that comes up
in this construction is only needed to prove that C4P&IRO still preserves the CR and TCR

properties; for the IRO property this function can be arbitrary.

Lemma 4.2 The combiner C4P&IRO is IRO-robust.

Remark. Note that the security of C4P&IRO as a random oracle combiner depends on m, and
thus on the output length, which is 2n+ 3m. This can be slightly improved to 2n+ 2m+m′

for some m′ < m (by simply replacing 3m with 2m+m′ in Figure 2), though m′ should not
be too small, as C4P&IRO is a good combiner for the CR and TCR with probability 2−m′

(this
probability is over the choice of the PIF, as we explain later in Section 4.3).

Proof. For the proof we assume that b = 0, i.e., the hash function H0 : {0, 1}∗ → {0, 1}n is
a random oracle. The case b = 1 is proved analogously. The adversary D has then access
either to the combiner C4P&IRO and H0 or to a random oracle F : {0, 1}∗ → {0, 1}2n+3m

and a simulator SF . Our combiner is indifferentiable from a random oracle F if there exists
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a simulator SF , such that the adversary D can distinguish between C4P&IRO,H0 and F ,SF

only with negligible probability.
The simulator keeps as state the function table of a (partially defined) function Ĥ0 :

{0, 1}∗ :→ {0, 1}n, which initially is empty, i.e., Ĥ0(X) = ⊥ for all X. We define Ĥi
0(M) =

Ĥ0(〈i〉2 ‖M) to mimic the notion used in Figure 2. The goal of SF is to define Ĥ0 in such a

way that, from D’s point of view, (F , Ĥ0) look like (CH0,H1,g
4P&IRO ,H0), i.e., the output of Ĥ0 has

to be random and consistent to what the distinguisher can obtain from F . Therefore, our
simulator SF parses each query X it is invoked on as X = 〈i〉2 ‖M and proceeds as follows:

Simulator SF
H1,f

(X):

on query X check if some entry Y ← Ĥ0(X) already exists
if Y = ⊥ //no entry so far

if X = 〈0〉
2
‖M for some M

set Ĥ0
0
(X) = y0 where y0 is randomly chosen from {0, 1}n

get y1 ← H0
1
(M) and compute αM = lsbm(y0 ⊕ y1)

get U ← F(M) for query M and parse U as U1‖U2‖U3

where |U1| = |U2| = n and |U3| = 3m.

set Ĥ1
0
(αM ||y1) = U2 ⊕ y0 ⊕H1

1
(αM‖y1)

set Ĥ2
0
(αM ||U2) = U1 ⊕ y1 ⊕H2

1
(αM‖U2)

set Ĥ3
0
(αM ) = (U3‖z) ⊕ (g(αM )‖0n−3m) ⊕ H3

1
(αM )

where z is randomly chosen from {0, 1}n−3m

if X 6= 〈0〉
2
‖M , choose a random Y ∈ {0, 1}n

and save the value by setting Ĥ0(X) = Y

output Y ← Ĥ0(X)

Whenever SF is invoked on a query X where Ĥ0(X) 6= ⊥, SF simply outputs Ĥ0(M).
Thus from now on we only consider queries X where Ĥ0(X) = ⊥. In this case, SF will
define the output of Ĥ0(X), and in some cases also on some additional inputs. On a query
X = 〈i〉2 ‖M where Ĥi

0(M) = ⊥ and i 6= 0, the simulator samples a random Y ∈ {0, 1}n,

sets Ĥi
0(M) = Y and outputs Y .

The interesting queries are the queries of the form X = 〈0〉2 ‖M which could be an
attempt of D to simulate the construction of the combiner, such that the simulator has to
compute in addition consistent answers to potential subsequent queries of D. The simulator
starts by sampling a random y0 ∈ {0, 1}

n and sets Ĥ0
0 (M) = y0. To define the “signature”

αM of M , SF queries its oracle H1 on 〈0〉2 ‖M and uses the answer y1 = H0
1 (M) to compute

αM = lsbm(y0 ⊕ y1).

The simulator then defines the outputs of Ĥ1
0 , Ĥ

2
0 and Ĥ3

0 such that C
Ĥ0,H1,g
4P&IRO (M) = F(M).

Therefore SF invokes its random oracle F on input M and computes the corresponding out-
puts of Ĥ0 by retracing the combiners construction as defined in the simulators description.
Note that this is possible in a unique way, except for the n− 3m last bits of Ĥ3

0 (αM ), which
must be chosen uniformly at random. We say the simulator “loses” if, for some i ∈ {1, 2, 3},
the function Ĥi

0 is already defined on any input of the form αM‖∗, such that SF cannot
define all Ĥi

0 values in order to provide consistent outputs.
As αM ∈ {0, 1}

m is uniformly random, the probability that the simulator loses in the q-th
query is at most 3q · 2−m (as each Ĥi

0 for i ∈ {1, 2, 3} is defined on at most q− 1 inputs). Let
E denote the event that the simulator loses in any of its q queries, then the overall probability
that E happens is at most 3q2 · 2−m. If E does not occur, the replies of SF are consistent
with F and random, since SF answers are determined by its random choices and the replies
of F . Hence, the advantage of the adversary D in distinguishing (CH0,H1,g

4P&IRO ,H0) from (F ,SF )
is at most the probability that event E happens, which is by Pr[E ] = 3q2 · 2−m negligible. �

11



4.3 C4P&IRO is Robust for CR,TCR,MAC,PRF

We now prove that, like the C4P combiner, C4P&IRO also preserves the CR, TCR, MAC and
PRF property in a robust manner. We often merely sketch the proofs since they are similar
to the proofs for C4P.

Lemma 4.3 The combiner C4P&IRO is CR- and TCR-robust.

Proof. We will prove that for any H0,H1, with probability 1 − 2−m over the choice of the
pairwise independent function g, any collision for C

H0,H1,g
4P&IRO is simultaneously a collision for

H0
0 and H0

1 . To this end, let M 6= M ′ be a collision for C
H0,H1,g
4P&IRO and let αM and αM ′ denote

their signatures. Let Y ‖Y ′ = C
H0,H1,g
4P&IRO (M) where Y ∈ {0, 1}2n and Y ′ ∈ {0, 1}3m.

If αM = αM ′ , then M,M ′ must be a collision for H0
0 and H0

1 , as we have

H0
0 (M)‖H0

1 (M) = P 2
α

−1
(Y ) = P 2

α′

−1
(Y ) = H0

0 (M ′)‖H0
1 (M ′) (1)

and the Feistel permutations P 2
α, P

2
α′ are identical if αM = αM ′ .

For M,M ′ where αM 6= αM ′ , a collision C
H0,H1,g
4P&IRO (M) = C

H0,H1,g
4P&IRO (M ′) does not imply (1),

and thus will in general not be a collision for H0 and H1. Yet, as with probability 1− 2−m

over the choice of the pairwise independent function g : {0, 1}m → {0, 1}3m, there does not

exist a collision M,M ′ for C
H0,H1,g
4P&IRO where αM 6= αM ′ . Note that for this it is sufficient to

prove that for any two potential signatures α 6= α′ ∈ {0, 1}m, we have

lsb3m(H3
⊕(α))⊕ g(α) 6= lsb3m(H3

⊕(α′))⊕ g(α′) (2)

as this implies that the final outputs are distinct for any two messages with different sig-
natures. As g is pairwise independent, for any particular α 6= α′, equation (2) holds with
probability 1− 2−3m. Taking the union bound over all 2m(2m − 1)/2 < 22m distinct values
α 6= α′, we get that the probability that there exists some α 6= α′ not satisfying (2) is at
most 22m/23m = 2−m.

The proof of TCR-robustness follows a similar argumentation. A collision M 6= M ′ on the
combiner implies with overwhelming probability a collisionH0

0 (M)‖H0
1 (M) = H0

0 (M ′)‖H0
1 (M ′)

on the first evaluation of both hash functions. Thus, given an adversary AC against the com-
biner that commits to a target message M and later outputs a colliding message M ′, one
can build an adversary against hash function Hb that commits to 00‖M and outputs in the
second stage 00‖M ′. �

Lemma 4.4 The combiner C4P&IRO is PRF-robust.

Remark. To compute the first part of the output, our combiner C
H0,H1,g
4P&IRO applies a two-round

Feistel network, which in general does not preserve (pseudo)randomness from an underlying
round function Hi

⊕, because it maps an input (L0, R0) to (L2, R2) where R2 = H1
⊕(R0)⊕L0

depends only on the given input values. When evaluating the Feistel network with two
distinct inputs (L0, R0) and (L′

0, R0), the difference L0⊕L
′
0 then propagates to the outputs,

i.e., L0 ⊕ L
′
0 = R2 ⊕ R

′
2, which can be exploited by an adversary. In our construction we

destroy this dependence by prepending the value αM to the input of each round function,
where αM = lsbm(H0

⊕(M)) is a uniformly random value if Hb, b ∈ {0, 1} is a uniformly
random function. Thus we have R2 = H1

⊕(αM ||R0)⊕L0 with L0 = H0
0 (M) and R0 = H0

1 (M)
such that for two distinct inputs M 6= M ′, the probability for R2 ⊕R

′
2 = H0

0 (M)⊕H0
0 (M ′)

is Pr[αM = αM ′ ] = 2−m.
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Proof. Assume that the hash function H0 is a pseudorandom function, but the combiner
C

H0,H1,g
4P&IRO is not (the proof for H1 can be done analogously). Hence, there exists a successful

adversary DC which can distinguish C
H0,H1,g
4P&IRO from a truly random function F : {0, 1}∗ →

{0, 1}2n+3m with non-negligible probability. We show that this allows to construct an adver-
sary D0 that can distinguish H0 from a random function f : {0, 1}∗ → {0, 1}n.

Algorithm D0 simulates the oracle of DC , which is either C
H0,H1,g
4P&IRO or F , with his own

oracle and the knowledge of H1 ← HKGen1 and g that he samples accordingly. For each
query of DC , the adversary D0 computes an answer by emulating the combiner C4P&IRO using
H1(·), g and his oracle which serves as H0.

For the analysis recall that the underlying oracle of D0 is either a random function f or the
hash function H0(·). In the latter case D0 provides outputs that are identically distributed

to the values DC would obtain from C
H0,H1,g
4P&IRO . Hence, we have

Pr[DH0

0 (H0) = 1] = Pr[D
C

H0,H1,g

4P&IRO

C (H0,H1, g) = 1].

If the underlying oracle is the random function f , then the computed answers of D0 have
to look like a truly random function as well. We show that this is true if, for q queries
M1 . . .Mq and for all i 6= j, we have αMi

6= αMj
. The probability of this not being the case

is at most q2 · 2−m, since αM = lsbm(H0
⊕(M)) is a random value when H0 gets replaced by

the random function f .
Hence, with high probability D0 will create for each query Mi of DC a fresh signa-

ture αMi
. To analyze the corresponding output of D0 we parse his answer in three parts,

namely C
f,H1,g
4P&IRO(Mi) = U1‖U2‖U3 with |U1| = |U2| = n and |U3| = 3m. The last part

U3 results from the computation lsb3m(f(11‖αMi
) ⊕H3

1 (αMi
)) ⊕ g(αMi

). Since αMi
is uni-

formly distributed and gets extended by the unique prefix 11, the input value of f(11‖αMi
)

is distinct from all other queries to f during the C
f,H1,g
4P&IRO(Mi) computation, and hence

the corresponding output is an independently and uniformly distributed value. As xor-
ing is a good combiner for random functions, the randomness of f gets preserved in the
computation of U3. For the second part U2 we just consider the final calculation, i.e.,
U2 = f(00‖αMi

‖Mi)⊕ f(01‖αMi
‖Y )⊕H1

1 (αMi
‖Y ) for some Y ∈ {0, 1}n. Here we prepend

the bits 00 and 01 respectively to the random value αMi
, such that we have again distinct

evaluations of f which gives us uniformly random images. A similar argumentation holds
for U1 = Y ′ ⊕ f(10‖αMi

‖Y ′′)⊕H2
1 (αMi

‖Y ′′) for Y ′, Y ′′ ∈ {0, 1}n, where we use the unique
prefix 10 when querying f in order to obtain values that are independently and uniformly
distributed. Thus, if for all queried messages Mi 6= Mj of DC there occurs no collision on the
signatures, i.e., αMi

6= αMj
, the values U1‖U2‖U3 are independent random strings.

Overall, the output distribution of DC satisfies

Pr[Df
0 (H0) = 1] ≤ Pr[DF

C (H0,H1, g) = 1] + q2 · 2−m.

Thus, the probability that D0 can distinguish H0 from f is not negligible, which contradicts
the assumption that H0 is a pseudorandom function. �

Lemma 4.5 The combiner C4P&IRO is MAC-robust.

Proof. The proof is by contradiction. Assume that an adversary AC with oracle access to
the combiner C

H0,H1,g
4P&IRO outputs with noticeable probability a valid pair (M, τ) where τ =

C
H0,H1,g
4P&IRO (M) and M is distinct from all previous queries to the MAC-oracle. This allows to

construct an adversary Ab against the hash function Hb for b ∈ {0, 1}.
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Adversary Ab first samples Hb ← HKGen1 that it uses together with its own oracle Hb(·)
to answer all queries by AC in a black-box simulation. When AC returns a valid forgery
(M, τ), where M 6= M1,M2 . . .Mq, the adversary Ab flips a coin c← {0, 1} and proceeds as
follows:

• If c = 0, then Ab randomly chooses an index k between 1 and q and looks up the

corresponding signature value αMk
. It then computes τ0‖τ1 = P 2

α

−1
(lsb2n(τ)) using

αMk
and stops with the output (00‖M, τb).

• If c = 1, then Ab queries its oracle about 00‖M to receive an answer y0 and computes
αM = y0 ⊕ y1 with y1 = H0

1 (M). It then calculates the first round of the Feistel
permutation, i.e., until the evaluation of H2

⊕ where x = y0 ⊕ H1
0 (αM‖y1) would be

used as input to this function. It outputs as forgery the message (〈2〉2 ‖αM‖x) with
tag τ ′ = τb ⊕Hb(〈2〉2 ‖αM‖x)⊕ y1 where τ0‖τ1 = lsbn(τ).

For the analysis we have to consider two cases of an successful adversary AC . In the first
case, AC returns a pair (M, τ), such that αM = αMj

for some j = 1, 2, . . . , q, i.e., the signature
value of M has already been computed for another message Mj 6= M during Ab’s process of
simulating the combiner. Then, if c = 0, the adversary Ab obtains a valid forgery (00‖M, τb)
if it guesses the index j correctly and then inverts the Feistel step for input lsb2n(τ) and
αMj

. The message 00‖M is distinct from all of Ab’s queries, because 00‖M is distinct from
all 00‖Mi and the additional queries of Ab start with a prefix 〈i〉2 where i ∈ 1, 2, 3. Hence, if
AC forges such a MAC with non-negligible probability ǫ, then Ab succeeds with probability
ǫ/2q.

In the second case, AC outputs (M, τ) where αM has not occurred in Ab’s computations,
i.e., αM 6= αMj

for all j = 1, 2, . . . , q. In this case, we have c = 1 with probability 1/2
where Ab starts its forgery by computing the first round of the Feistel permutation for input
H0

0 (M)‖H0
1 (M) and αM = lsbm(H0

⊕(M)), which requires a further oracle query about 00‖M .
The left part of the computed Feistel output is then x = H0

0 (M)⊕H1
0 (αM‖H

0
1 (M)) and would

serve as input for H2
⊕. The adversary uses this value together with the fresh signature αM as

its output message (〈2〉2 ‖αM‖x) and reconstructs the corresponding tag with the knowledge
about the other parameters. Since αM is distinct from all αMj

, the message (〈2〉2 ‖αM‖x)
was never queried by Ab before.

In both cases a successful attack against the combiner C
H0,H1,g
4P&IRO allows successful attacks

on H0 and H1, contradicting the assumption that at least one hash function is a secure MAC.
�

5 Preserving One-Wayness and the C4P&OW Combiner

In this section we first propose a combiner which simultaneously is a combiner for CRHFs and
OWFs. At the end of this section we discuss how to plug in this combiner into our combiners
C4P and C4P&IRO to get our construction C4P&OW (cf. Figure 1) and C6P (cf. Figure 2),
respectively.

Recall that the concatenation combiner

C
H0,H1

‖ (M) = H0(M)‖H1(M)

is a robust combiner for the CR property, but its not hard to see that this combiner is not
robust for the one-wayness property OW. On the other hand, the following combiner

C
H0,H1

OW (ML‖MR) = H0(ML)‖H1(MR)
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is robust for tho OW property, i.e. C
H0,H1

OW (ML‖MR) is hard to invert on a random input
from {0, 1}2m, if either H0 or H1 is hard to invert on {0, 1}m. Unfortunately, this combiner
is not robust for CR.

The basic idea to construct a combiner which is robust for CR and OW is to use the
C

H0,H1

‖ combiner, but to apply a pairwise independent permutation (PIP) to the input of one

of the two components. As the length of a description of a PIP is twice its input length, we
have to assume an upper bound on the input length of the components. We fix the domain
of H0 and H1 to {0, 1}5n, but let us mention that any longer input length kn, k > 5 will
work too (but then we’ll also need 2kn bits for the description of P ). Allowing shorter input
length kn, k < 5 is not possible, as we use the fact that the input is (at least) 5n bits in the
proof.

5.1 A Combiner for CR and OW

We define the combiner CCR&OW for preserving collision-resistance and one-wayness in a ro-
bust manner as follows. The key generation algorithm CKGenCR&OW(1n) generates H0 ←
HKGen0(1

n) and H1 ← HKGen1(1
n) and picks a pairwise independent permutation π :

{0, 1}5n → {0, 1}5n. It outputs (H0,H1, π). The evaluation algorithm C
H0,H1,π
CR&OW on input

M ∈ {0, 1}5n returns H0(π(M))‖H1(M). By the following theorem CCR&OW preserves the
properties of C‖ and COW simultaneously.

Theorem 5.1 The combiner CCR&OW is a strongly robust multi-property combiner for prop =
{CR,TCR,MAC,OW}.

The proof is again split into lemmas for the individual properties.

Lemma 5.2 The combiner CCR&OW is CR-, TCR- and MAC-robust.

Proof. As for the CR and TCR properties, note that given any collision M 6= M ′ for C
H0,H1,π
CR&OW ,

we get a collision M,M ′ for H1 and a collision π(M), π(M ′) for H0. Note that π(M) 6= π(M ′)
as π is a permutation.

To see that the MAC property is preserved, observe that given any forgery (M, τ) for

C
H0,H1,π
CR&OW , we get a forgery (π(M), τ0) for H0 and a forgery (M, τ1) for H1 where τ0‖τ1 = τ .

�

Lemma 5.3 The combiner CCR&OW is OW-robust.

More precisely, we show that for any functions H0,H1 and any T = T (n), the following is

true for all but a 1/2T fraction of the π’s: an adversary who inverts C
H0,H1,π
CR&OW with probability

1/2T , can be used to invert H0 and H1 with probability 1/2T 3.3

Proof. We first need to relate the output of our combiner C
H0,H1,π
CR&OW to the one of C

H0,H1

OW ,
depending on T . For this we call a tuple (π0, y0‖y1) bad if it is more than 2T 2 times more likely

to be a key/output pair of C
H0,H1,π0

CR&OW , compared to the combiner C
H0,H1

OW (.) = H0(.)‖H1(.)
and random permutation π. That is, (π, y0‖y1) is called bad iff

Pr
M

[CH0,H1,π
CR&OW (M) = y0‖y1]

≥ 2 · T 2 · Pr
M0,M1

[CH0,H1

OW (M0‖M1) = y0‖y1].

3Note that this statement implies that if either H0 or H1 is one-way and π is chosen at random, then

C
H0,H1,π
CR&OW

is one-way with overwhelming probability.
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Equivalently,

Pr
M

[H0(π(M)) = y0|H1(M) = y1]

≥ 2 · T 2 · Pr
M0,M1

[H0(M0) = y0|H1(M1) = y1]. (3)

We next bound the likelihood of a tuple to be bad in terms of the adversary’s success prob-
ability (and running time):

Claim 1: Prπ,M [(π,CH0,H1,π
CR&OW (M)) is bad] ≤ 2/T 2, where the probability is over the choice

of the PIP π : {0, 1}5n → {0, 1}5n and M ∈ {0, 1}5n.

Proof. LettingM0 = H−1
0 (y0) andM1 = H−1

1 (y1) denote the pre-images of y0 and y1 under
H0 and H1, respectively, and π(M0) be the set of all π(x) for x ∈ M0, we can bound the
terms in (3) as:

Pr
M0,M1

[H0(M0) = y0|H1(M1) = y1] =
|M0|

25n
(4)

Pr
M

[H0(π(M)) = y0|H1(M) = y1] =
|M0 ∩ π(M1)|

|M1|
(5)

The former equation is clear as we hit a pre-image of y0 for the random M0 with the given
probability, and the latter follows as each of the possible pre-images of y1 must be mapped
via π to a pre-image of y0.

4

With equations (4),(5) and (3) we can rewrite the statement of the claim as

Pr
π,M

[

|M0 ∩ π(M1)|

|M1|
≥ T 2 · 2

|M0|

25n

]

≤
2

T 2
. (6)

In order to prove this we consider for any M0,M1 and π(M) the expected size of |M0 ∩
π(M1)|/|M1| (over the choice of π). First note that at least one element, namely π(M),
lies in M0 ∩ π(M1). For any other of the |M1| − 1 possible values M ′ ∈ M1,M

′ 6= M , the
value π(M ′) is uniformly distributed in {0, 1}5n \π(M), because π is a pairwise independent
permutation. So the probability that π(M ′) hits M0 is (|M0| − 1)/(25n − 1) (observe that
the term |M0| − 1 comes from the fact that π(M) ∈M0 cannot be hit). Hence,

E

[

|M0 ∩ π(M1)|

|M1|

]

=
1

|M1|

(

1 +
(|M0| − 1)(|M1| − 1)

25n − 1

)

. (7)

For large M0 and M1 the right hand side of the previous equation converges towards (4).
We are therefore interested in the probability that M0 and M1 are large. To derive this
probability first note that for any function f : {0, 1}5n → {0, 1}n there are at most 2n images
y with |f−1(y)| ≤ 23n, and a random input M falls into such a bad set with probability at
most 24n/25n = 2−n. As M and π(M) are uniformly distributed, it follows that

Pr[|M0| < 23n ∨ |M1| < 23n] ≤ 2 · 2−n. (8)

Hence, except with probability 2 ·2−n (which becomes smaller than 1/T 2 for sufficiently large
n’s), we have |M0| ≥ 23n and |M1| ≥ 23n, let us call this event E . In this case

1

|M1|

(

1 +
(|M0| − 1)(|M1| − 1)

25n − 1

)

≤ 2
|M0|

25n
, (9)

4Note that M1 contains at least the element H1(M), so division by 0 cannot occur.
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We can now prove (6) as (below Z = |M0 ∩ π(M1)|/|M1|)

Pr

[

Z ≥ T 2 · 2
|M0|

25n

]

≤ Pr[Z ≥ T 2 · E[Z]|E ] + Pr[¬E ] ≤ 1/T 2 + 2 · 2−n ≤ 2/T 2

where we used (7)-(9) in the first and Markov’s inequality in the second step. �

Using Markov’s inequality once more the claim implies

Pr
π

[Pr
M

[(π, CH0,H1,π
CR&OW (M)) is bad] ≤ 1/T ] ≥ 1− 2/T. (10)

We say that the permutation π is good if PrM [(π, CCR&OW(π,M)) is bad] ≤ 1/T ], thus by the
above equation, a random π is good with probability at least 1− 2/T .

To conclude the proof, assume there exists an adversary A which inverts C
H0,H1,π
CR&OW (.) with

noticeable probability ǫ = 2/T for more than a 2/T fraction of the π’s. Thus by equation

(10), this must be the case for at least one good π. For this π, the output of C
H0,H1,π
CR&OW (.) is bad

with probability at most 1/T , thus A must invert with probability at least ǫ− 1/T even on

outputs that are not bad. But then, by equation (3), it must also invert of C
H0,H1

OW (M0‖M1)
for random M0‖M1 with probability at least (ǫ− 1/T )/2T 2 = 1/2T 3. �

5.2 Combining Things

We can now plug in the combiner CCR&OW into the initial computation of our combiner
C4P. That is, we replace the initial computation H0

0 (M)‖H0
1 (M) in our original combiner by

H0
0 (π(M))‖H0

1 (M) for messages of 5n bits. Note that if Hb(·) is one way on inputs of length
5n + 2, then also H0

b (·) is one-way on inputs of length 5n, and we only lose a factor of 4 in
the security.

More formally, in our combiner C4P&OW = (CKGen4P&OW,C4P&OW) for functions H0,H1

the key generation algorithm generates a tuple (π,H0,H1) consisting of a pairwise inde-
pendent permutation π (over {0, 1}5n) and two hash functions H0 ← HKGen0(1

n) and

H1 ← HKGen1(1
n). The evaluation algorithm C

π,H0,H1

4P&OW for input M ∈ {0, 1}5n computes
P 3(H0

0 (π(M))‖H0
1 (M)) where P 3 is the Feistel permutation P 3 = ψ[H1

⊕,H
2
⊕,H

3
⊕]. Note

that applying a permutation to the output of a one way function does not violate the one-
way property. We have already proved that the other three properties CR,TCR,MAC which
are preserved by CCR&OW are not affected by applying a permutation in Section 3.

Theorem 5.4 The combiner C4P&OW is a strongly robust multi-property combiner for prop =
{CR,PRF,TCR,MAC,OW}.

When we apply the modifications from Section 5 and the combiner C4P&IRO from Section
4 together, we get our construction C6P (cf. Figure 2). This construction is defined like
C4P&IRO, where one additionally applies a pairwise-independent permutation over {0, 1}kn

(with k ≥ 5) to the input of H0
0 .

Theorem 5.5 The combiner C6P is a strongly robust multi-property combiner for prop =
{CR,TCR,PRF,MAC,OW, IRO}.
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