
A Cost-Effective Pay-Per-Multiplication
Comparison Method for Millionaires

Marc Fischlin

Fachbereich Mathematik (AG 7.2)
Johann Wolfgang Goethe-Universität Frankfurt am Main

Postfach 111932
60054 Frankfurt/Main, Germany

marc@ mi.informatik.uni-frankfurt.de

http://www.mi.informatik.uni-frankfurt.de/

Abstract. Based on the quadratic residuosity assumption we present
a non-interactive crypto-computing protocol for the greater-than func-
tion, i.e., a non-interactive procedure between two parties such that only
the relation of the parties’ inputs is revealed. In comparison to previous
solutions our protocol reduces the number of modular multiplications sig-
nificantly. We also discuss applications to conditional oblivious transfer,
private bidding and the millionaires’ problem.

1 Introduction

Yao’s famous millionaires’ problem [19, 20] consists of two millionaires trying
to compare their riches but without disclosing their assets. General secure two-
party protocols computing the greater-than function GT(x, y) = [x > y] provide
a solution to this problem [11, 20, 10].1 Unfortunately, these protocols are rather
inefficient. Recently, Boudot et al. [2] proposed a quite efficient protocol for the
socialist millionaires’ problem in which both parties test their inputs for equality
only, i.e., compute the function EQ(x, y) = [x = y] securely. This scheme needs
a (quite large, but) constant number of modular exponentiations, and improves
the protocol of Jakobsson and Yung [15] requiring Θ(k) modular exponentiations
for security parameter k.

Related to the millionaires’ problem is the problem of non-interactive crypto-
computing for the greater-than function which we address in this paper. A non-
interactive crypto-computing protocol [18] is a two-party protocol where the
client encrypts his input y and sends the encryption to the server. The server
inattentively evaluates a secret circuit C on this encrypted input and returns it
to the client. The client extracts the circuit’s output C(y) but learns nothing
more about the circuit C. In the case of the millionaires’ problem think of the
server’s circuit as computing the greater-than function with partially fixed input:
1 The predicate [x > y] stands for 1 if x > y and 0 otherwise —interpreting bit strings
x, y as numbers.



C(·) = GT(x, ·). Keeping the circuit secret implies that nothing about the input
x except for [x > y] is leaked.

As an application of such non-interactive crypto-computing consider a com-
pany that offers groceries or airline tickets over the Internet. The company tries
to optimize its profit but is willing to sell an airline ticket above the breakeven
point y. Hence, they ask the customer how much he would pay for the ticket,
and if the customer’s offer x exceeds y then they clinch the deal. This, of course,
requires that y is hidden or else the customer will simply set x to y + 1. On the
other hand, the customer, too, would like to keep his offer x secret unless the
deal is made and he has to reveal x anyway.

Using a non-interactive crypto-computing protocol the company plays the
client and publishes its bound y by encrypting it. The customer computes the
circuit for the greater-than function with his bid x and returns it to the company
(along with a commitment of x). The company decrypts and verifies that x > y
and, if so, declares that it sells and asks the customer to reveal his bid and
to decommit. If the customer then refuses or decommits incorrectly then the
company may blacklist him, at least for a certain time. Or, the customer is
obliged to attach a signature to the commitment of x which binds him to his
offer in case of a dispute.

In the example above, a ‘clever’ customer could simply find out the corpora-
tion’s bound y and buy for x = y + 1 by bidding 1, 2, 3, . . . until the company
announces the deal. The most obvious countermeasure against such a behavior
is to allow the customer to bid only once within a certain period (say, a couple of
minutes for stocks, a week for flight tickets, etc). Alternatively, the offerer may
raise the bound y with each failing bid of the customer. Details depend on the
application.

General non-interactive crypto-computing protocols for various classes of cir-
cuits appear in [18, 1]. If one applies the general result in [18, 1] to compute the
GT-function with the straightforward circuit (this circuit is also optimal when
applying [18, 1], as far as we know) and using the quadratic-residuosity bit-
encryption of Goldwasser and Micali (see [12] or Section 2.1), then this requires
at least n4 modular multiplications in ZZ∗N for inputs x, y ∈ {0, 1}n. The gen-
eral solutions in [5, 16, 4] involve Ω(n) modular exponentations with constants
larger than 3 (and on the average therefore at least 4.5kn multiplications2 for
security parameter k). Hence, as opposed to [18, 1] and, as we will see, to our
solution, the computational complexity of the latter protocols depends on the
length of security parameter and grows whenever we switch to larger k. For these
protocols, k = 160 seems to be an appropriate choice today.

In contrast to the general approach in [18] our starting point is the logic
formula describing the GT-function. As we will see, this formula can be con-
verted into a protocol that utilizes the homomorphic operations supported by
the Goldwasser-Micali system. For instance, we take advantage of the AND-

2 Neglecting preprocessing. Yet, preprocessing is not always applicable in these pro-
tocols. Futhermore, Naor et al. [16] accomplish the constant 3 in the random oracle
model only; otherwise the bound becomes 5.



homomorphic variant of the Goldwasser-Micali scheme presented in [18]. To
best of our knowledge this is the first application of this AND-homomorphic
encryption scheme.

Our protocol takes at most 6nλ modular multiplications in ZZ∗N for the server
and 2n for the client (once an RSA-modulusN has been generated and neglecting
the less expensive effort for GM-decoding), where n is the bit length of each input
x, y and λ determines the error of the protocol (the error is 5n · 2−λ). Note that
the number of multiplications in our protocol does not depend on k, but rather
on the input length n and the absolute error parameter λ.

Allowing a small error of, say, 2−40, for inputs of 15 bits our solution requires
about 4, 000 multiplications for the server instead of 154 ≈ 50, 000 as in [18, 1]
and ≥ 10, 800 for [5, 16, 4] for k = 160. If we have 20-bit inputs (which occurs if
we compare time data, for instance) then for error 2−40 our protocol needs 6, 000
multiplications for the server compared to 204 = 160, 000 in [18, 1] or ≥ 14, 400
in [5, 16, 4].

Finally, we discuss consequences to related protocols. The first observa-
tion is that our protocol can also be applied to functions that reduce to the
greater-than function, e.g., any comparison function that can be described by
COMPa,b(x, y) = [ax+b > y] for public constants a, b. In particular, the greater-
or-equal-to function equals GT(x+ 1, y). This possibly increases the number of
multiplications since the bit size of ax + b might be larger than n bits, yet the
number of multiplications in our protocol grows quasi linear with the bit size for
fixed error level.

Another interesting application of our non-interactive protocols are condi-
tional oblivious transfer protocols. Introduced by Di Crescenzo et al. [7], with
such a protocol, instead of obliviously transferring a bit b to a receiver with prob-
ability 1/2, the sender transfers the bit given that a predicate over additional
private inputs x (of the sender) and y (of the receiver) is satisfied. We devise
such a protocol for the greater-than predicate that, in contrast to the solution
in [7], keeps the server’s input x secret. That is, the receiver learns the predicate
[x > y] but nothing else about x, and moreover gets the bit b if and only if x > y.
The sender, on the other side, does not learn anyhing about y and in particular
does not come to know if b has been transferred. It is worth mentioning that we
are not aware if the general non-interactive crypto-computing protocol in [18]
for the greater-than function can be used to derive such an oblivious transfer
protocol. See Section 4 for details.

As for further implications, we have already mentioned the connection to the
millionaires’ problem and we elaborate further in Section 4.2. Aiming at a similar
problem, we show how to construct improved private-bidding protocols with an
oblivious third party [3]. These are protocols where two parties compare their
bids. For this, a third party helps to compute the result and thereby guarantees
fairness. Yet, the third party remains oblivious about the outcome of the bidding.



2 Preliminaries

We denote by ZZN the ring of intergers modulo N and by ZZ∗N the elements
in ZZN relatively prime to N . Let ZZ∗N (+1) denote the subset of ZZ∗N that
contains all elements with Jacobi symbol +1. By QRN ⊂ ZZ∗N (+1) and QNRN ⊂
ZZ∗N (+1) we refer to the quadratic residues and non-residues, respectively. See
[14] for number-theoretic background.

In the sequel we write Enc(b, r) for the output of the encryption algorithm
Enc for bit b and randomness r. Let Enc(b) denote the corrresponding random
variable, and Enc0(b) a fixed sample from Enc(b) (where the random string r is
irrelevant to the context). We write c ← Enc(b) for the process of encrypting a
bit b randomly and assigning the result to c.

We sometimes switch between bit strings and numbers in a straightforward
way. That is, for a bit string x = x1 . . . xn we associate the number

∑
xi2i−1 and

vice versa. In particular, xn is the most significant bit and x1 the least significant
one.

2.1 Goldwasser-Micali Encryption Scheme

In [12] Goldwasser and Micali introduced the notion of semantic security for
encryption schemes and presented such a semantically-secure scheme based on
the quadratic residuosity assumption. Namely, the public key consists of an
RSA-modulus N = pq of two equally large primes p, q, and a quadratic non-
residue z ∈ ZZ∗N (+1). To encrypt a bit b choose a random r ∈ ZZ∗N and set
Enc(b, r) := zbr2 mod N . If and only if b = 1 then this is a quadratic non-residue.
And this can be recognized efficiently given the secret key, i.e., the factorization
p, q of N . In contrast, deciding quadratic residuosity without knowledge of the
factorization is believed to be hard, i.e., the quadratic-residuosity-assumption
says that infeasible to significantly distinguish between 0- and 1-encryptions
given only N and z.

Let us recall some useful facts about the GM-encryption scheme. First,
the GM-scheme has nice homomorphic properties which allow to compute the
exclusive-or of two encrypted bits and to flip an encrypted bit. Second, it is
rerandomizable, i.e., given a ciphertext of an unknown bit b and the public key
only, one can generate a uniformly distributed ciphertext of b.

– xor-property: Enc0(b) · Enc0(b′) = Enc0(b⊕ b′) mod N
– not-property: Enc0(b) · z = Enc0(b⊕ 1) mod N
– rerandomization: Rand(Enc0(b)) := Enc0(b) · Enc(0) mod N is identically

distributed to Enc(b)

Another important property of the GM-system is that it can be turned into
an AND-homomorphic one over {0, 1} (cf. [18]): Let k be a security parameter
and λ a sufficiently large function such that 2−λ is small enough; we will discuss
the choice of λ afterwards. To encrypt a bit b we encode b = 1 as a sequence of
λ random quadratic residues (i.e., as λ GM-encryptions Enc(0)), and b = 0 as a



sequence of λ random elements from ZZ∗N (+1) (i.e., as λ GM-encryptions Enc(ai)
for random bits a1, . . . , aλ(k)). We denote this encryption algorithm by EncAND

and adopt the aforementioned notations EncAND(b),EncAND(b, r),EncAND
0 (b).

The decryption process takes a sequence of λ elements from ZZ∗N (+1) and
returns 1 if all elements are quadratic residues, and 0 otherwise (i.e., if there
is a quadratic non-residue among those elements). Note that there is a small
probability of 2−λ that a 0-bit is encrypted as a sequence of λ quadratic residues,
and thus that decryption does not give the desired result. Choosing λ sufficiently
large this almost never happens. In practice setting λ to 40 or 50 should be
sufficient.

Next we explain how EncAND supports the AND-operation (with some small
error). Given two encryptions EncAND

0 (b) and EncAND
0 (b′) of bits b, b′ we claim

that the componentwise product modN is an encryption of b ∧ b′ (except with
error 2−λ over the choice of the randomness in the encryption process). Clearly,
this is true if at least one of the sequences represents a 1-encryption, because
multiplying this sequence with the other one does not change the quadratic
character of the elements in the other sequence. If b = b′ = 0, though, the
quadratic non-residues in both sequences can accidentally cancel out. But again
this happens with probability 2−λ only.

A crucial observation for our protocol is that we can embed a basic GM-
encryption into an AND-homomorphic one. This embedding is done as follows:
given Enc0(b) first flip the encapsulated bit b by multiplying the encryption with
z. Then, generate a sequence of λ basic encryptions by letting the i-th sample be
either Rand(z Enc0(b)) or Enc(0) with probability 1/2. If b = 1, and therefore
z Enc0(b) ∈ QRN , then the result is identically distributed to EncAND(1). For
b = 0 we generate a sequence of random quadratic residues and random non-
residues (since z Enc0(b) ∈ QNRN ), identically distributed to EncAND(0).

2.2 Non-Interactive Crypto-Computing

We have already outlined the problem of non-interactive crypto-computing pro-
tocols in the introduction. We give a very succinct description; for a more formal
definition see [18]. Also, our definition merely deals with honest-but-curious par-
ties, i.e., parties that follow the prescribed program but try to gain advantage
from listening. The general case of dishonest parties is discussed afterwards.

Recall that a non-interactive crypto-computing protocol consists of two par-
ties, the client (with input y) and the server (possessing a circuit C), such that
the client sends a single message to the server and receives a single message as
reply. The following holds:

– completeness: for any input y and any circuit C the honest client is able to
extract the value C(y) from the answer of the honest server.

– (computational) privacy for the client: the client’s message for input y is not
significantly distinguishable from a message generated for any other input
y′ of the same length



– (perfect) privacy for the server: the distribution of the server’s answer de-
pends only on the circuit’s output C(y) (where y is the message that the
honest client sends encrypted).

A dishonest client could cheat by sending incorrect encryptions or system
parameters. In case of the Goldwasser-Micali scheme the client should therefore
send also a non-interactive proof of correctness for the modulus N and the non-
redisue z; in practice these parameters are likely to be certified by some trusted
authority anyway, and an additional correctness proof is redundant. Moreover, it
is easy to see that, once the parameters’ correctness is approved, the server can
check that the client sends n encrypted bits by verifying that the n transmitted
elements belong to ZZ∗N (+1).

As for dishonest servers, Sander et al. [18] suggest that the server publishes
a pair (y0, C(y0)). The client may now ask about several input pairs where each
pair consists of encryptions of y and y0 in random order. It can then be checked
that the server answers consistently. Yet, the client must now also prove that
each pair equals encryptions of y, y0 for the same y.

We stress that in some settings neither party seems to gain any noticeable
advantage by deviating from the protocol. Recall the flight ticket example. As
explained, the company as the client in the crypto-computing protocol essentially
cannot cheat if it uses certified system parameters. And, since it wants to sell its
product, it is likely to announce the deal if it later decrypts and finds out that
the bid is high enough; since nothing else than this relationship is leaked about
the bid, there does not seem to be a point in delaying the deal to wait for better
offers. Similarly, if the customer sends garbage the company may blacklist him.

3 Non-Interactive Crypto-Computing for Comparison

In this section we present our protocol for non-interactively computing the
greater-than function. As discussed before, we only deal with the case of honest-
but-curious client and server. Clearly, a number x is greater than another number
y if, for some i, we have xi = 1 and yi = 0 and xj = yj for all more significant
bits for j = i+ 1, . . . , n. More formally,

[x > y] :⇐⇒
n∨
i=1

(
xi ∧ ¬yi ∧

n∧
j=i+1

(xj = yj)
)

(1)

Note that xj = yj can be written as ¬(xj ⊕ yj) and that both operations ⊕,¬
can be easily implemented for the basic GM-scheme.

The disjunction in Expression (1) is an exclusive OR, i.e., only one impli-
cant is satisfiable simultanously. This suggests the following strategy to compute
the formula: we process each implicant individually and compute xi ∧ ¬yi ∧∧n
j=i+1(xj = yj) using the basic and the AND-homomorphic GM-system, re-

spectively, for ⊕,¬ and AND. This is done by performing the computations for
xj = yj and ¬yi with the basic GM-encryption scheme, and by embedding the



results and the encryption for xi into the extended system and computing the
AND. Then we permute the resulting n encryptions of the implicants and output
them. If and only if [x > y] then there exists a random AND-GM-encryption
of 1, and this appears at a random position. Otherwise we have a sequence of
random 0-encryptions. The protocol is given in Figure 1.3

In Figure 2 we reduce the number of multiplications. This is done by first
noting that one can re-use the encryption for

∧n
j=i+1(xj = yj) from stage i for

stage i − 1. That is, for i = n, n − 1, . . . , 1 we compute and store the product
PAND
i representing

∧n
j=i+1(xj = yj). Then we merely compute the AND of this

stored encryptions with the ciphertext for xi = yi. Moreover, if we know x
explicitly then we can compute xi = yi directly by Enc0(yi) · z1−xi instead of
first encrypting x and then computing Enc0(yi) · Enc0(xi). Finally, we remark
that we only need to rerandomize one of the encryptions of XAND

i , Ȳ AND
i and

PAND
i in order to rerandomize each product TAND

i = XAND
i · Ȳ AND

i · PAND
i . In

Figure 2 this is done for XAND
i , whereas for Ȳ AND

i and EAND
i we choose the fixed

quadratic residue 1 ∈ QRN instead of a random GM-encryption Enc(0) when
embedding.

Some easy but important observations follow:

Lemma 1. For inputs x, y ∈ {0, 1}n and security and error parameter k and λ
the protocol in Figure 1 with the optimized server algorithm in Figure 2 satisfies:

– for x ≤ y the T AND
i are all random AND-encryptions EncAND(0) of 0.

– for x > y there exists exactly one uniformly distributed i for which T AND
i

represents a random 1-encryption EncAND(1); for all other j 6= i we have
random 0-encryptions EncAND(0) for T AND

j .
– the evaluation takes only 6nλ multiplications in ZZ∗N for the server in the

worst case, and 5nλ multiplications on the average (over the random choices
in the encryption process).

– the error is at most 5n · 2−λ.

We thus derive the following result:

Theorem 1. The protocol in Figure 1 and Figure 2 constitutes a non-interactive
crypto-computing protocol for GT(x, y) = [x > y] such that for inputs x, y ∈
{0, 1}n and security parameter k and error parameter λ the client has to perform
2n modular multiplications (plus the number of multiplications to generate a GM-
instance N, z for security parameter k in a preprocessing step) and the server
has to carry out at most 6nλ multiplications. The error of the protocol is at most
5n · 2−λ.

3 We remark that the fact that we do not have to compute the disjunction explicitly
supports our improved protocol. Otherwise we would have to compute the OR of
AND-encryptions which we do not know how to do without blowing up the number
of multiplications like in [18].



Fig. 1. Non-Interactive Crypto-Computing for GT

security parameter k, error parameter λ
Client’s algorithm I:

– generate GM-instance N, z for security parameter k
– encrypt input y bit-wise: Yi ← Enc(yi) for i = 1, . . . , n
– send N, z, Y1, . . . , Yn to server

Server’s algorithm:

– receive N, z, Y1, . . . , Yn from client
– encrypt input x bit-wise: Xi ← Enc(xi) for i = 1, . . . , n
– compute encryptions of ei = [xi = yi] = ¬(xi ⊕ yi):

for all i = 1, . . . , n compute Ei = Yi ·Xi · z mod N
– embed Ei into extended encryptions EAND

i :
for all i = 1, . . . , n set EAND

i := (EAND
i,1 , . . . , EAND

i,λ ), where EAND
i,j ← Rand(zEi)

or Enc(0), the choice made by a fair coin flip.
– embed encryptions Xi and Ȳi of xi and ¬yi into encryptions XAND

i and Ȳ AND
i :

for all i = 1, . . . , n set XAND
i := (XAND

i,1 , . . . , XAND
i,λ ), where XAND

i,j ← Rand(zX)
or Enc(0), the choice made by a fair coin flip.
for all i = 1, . . . , n set Ȳ AND

i := (Ȳ AND
i,1 , . . . , Ȳ AND

i,λ ), where Ȳ AND
i,j ← Rand(Yi) or

Enc(0), the choice made by a fair coin flip.
– compute terms ti := [xi ∧ ¬yi ∧

∧n
j=i+1 xj = yj ]:

for i = 1, . . . , n let TAND
i = XAND

i · Ȳ AND
i ·

∏n
j=i+1 E

AND
j mod N

– randomly permute TAND
1 , . . . , TAND

n and return them to the client

Client’s algorithm II:

– receive n sequences of λ elements from ZZ∗N from server
– if there exists a sequence of λ quadratic residues then output ‘x > y’, else output

‘x ≤ y’.

4 Applications

In the previous section, we have shown how to compute the function GT(x, y) =
[x > y] with few modular multiplications. Here, we discuss several applications
of this result.

4.1 Conditional Oblivious Transfer

With an oblivious transfer protocol [17] a sender hands with probability 1/2 a
secret bit to a receiver such that the sender remains oblivious about the fact
whether the receiver has actually learned the bit or not. As for a conditional
oblivious transfer [7], the random choice is replaced by a predicate evaluation
depending on some additional private inputs of both parties. For example, in [7]
such a protocol has been used to derive a time-release encryption scheme where



Fig. 2. Optimized Non-Interactive Crypto-Computing for GT

security parameter k, error parameter λ
Optimized server algorithm:

– receive N, z, Y1, . . . , Yn from client
– embed input x into extended encryptions XAND

i :
for all i = 1, . . . , n let XAND

i := (XAND
i,1 , . . . , XAND

i,λ ), where XAND
i,j ← Enc(z1−xi)

or Enc(0), the choice made by a fair coin flip.
– embed [xi = yi] into extended encryptions EAND

i :
for all i = 1, . . . , n set EAND

i := (EAND
i,1 , . . . , EAND

i,λ ), where EAND
i,j := Yj · zxi mod

N or 1 ∈ QRN , the choice made by a fair coin flip.
– compute extended encryptions PAND

i of pi =
∧n
j=i+1[xj = yj ]:

for i = n− 1, . . . , 1 let PAND
i := PAND

i+1 · EAND
i+1 mod N where PAND

n := (1, . . . , 1).
– embed encryptions Ȳi of ¬yi into encryptions Ȳ AND

i :
for all i = 1, . . . , n set Ȳ AND

i := (Ȳ AND
i,1 , . . . , Ȳ AND

i,λ ), where Ȳ AND
i,j = Yi or 1 ∈

QRN , the choice made by a fair coin flip.
– compute terms ti := [xi ∧ ¬yi ∧

∧n
j=i+1[xj = yj ]:

for i = 1, . . . , n let TAND
i := XAND

i · Ȳ AND
i · PAND

i mod N
– randomly permute TAND

1 , . . . , TAND
n and return them to the client

a trusted party releases a secret only if a predetermined release time has expired.
In this case, the predicate is given by the greater-than function and the private
inputs are the release time and the current time, respectively.

Since the current time is publicly known anyway in the setting of time-release
encryption, the conditional oblivious transfer scheme in [7] does not hide the
private input of the sender. In some settings, though, this information may be
confidential and should be kept secret. Our non-interactive crypto-computing
protocol provides a solution. We stress that we do not know how to construct
such a scheme with the non-interactive crypto-computing protocol from [18] for
the greater-than function.

The outset is as follows. The sender possesses a bit b which is supposed to
be transferred to the receiver if and only if the sender’s input x is greater than
the receiver’s input y. The receiver generates an instance of the GM-system and
sends N, z (together with a proof of correctness, if necessary) and a bit-wise
GM-encryption of his private input y to the sender. Then the sender computes
Formula (1) on these encryptions and his private input x. Recall that this evalu-
ation yields n sequences of λ bits for x, y ∈ {0, 1}n. Exactly if x > y then there is
a sequence with quadratic residues exclusively; otherwise all sequences contain
random entries from ZZ∗N (+1). Now, for each i = 1, . . . , n the sender splits the
bit b to be transferred into λ pieces bi,1, . . . , bi,λ with b = bi,1 ⊕ . . . ⊕ bi,λ. In
addition to the TAND

i ’s send (zTAND
i,j )bi,j · r2

i,j mod N for random ri,j ’s. That is,
the receiver also gets the bit bi,j if TAND

i,j is a quadratic residue, and a uniformly
distributed quadratic residue if TAND

i,j ∈ QNRN (and therefore no information
about bi,j). In other words, the receiver learns all random pieces bi,1, . . . , bi,λ for



some i —and thus b— if x > y, and lacks at least one random piece for each i
if x ≤ y (unless an encryption error occurs, which happens with probability at
most 5n · 2−λ).

Bottom line, if x > y then the receiver gets to know the sender’s bit b, whereas
for x ≤ y the bit b is statistically hidden from the receiver. Furthermore, the
receiver does not learn anything about the sender’s private input x except the
predicate value [x > y]. On the other hand, the sender gets only an encryption
of the receiver’s input y and does not know if b has been transferred. Hence, this
is a conditional oblivious transfer protocol that keeps the private inputs secret.

4.2 Private Bidding and the Millionaires’ Problem

In a private bidding protocol [3] two parties A and B compare their inputs
x, y with the support of an active third party T . Although the third party T is
trusted to carry out all computations corectly it should remain oblivious about
the actual outcome of the comparison. Furthermore, T does not collude with
either of the other parties. Note that such a bidding protocol immediately gives
a fair solution to the millionaires’ problem in presence of an active third party.

An efficient protocol for private bidding has been presented in [3]. The so-
lution there requires the trusted party to compute n exponentiations, whereas
A and B have to compute n encryptions. Yet, for technical reasons, the basic
GM-system is not applicable, and the suggested homomorphic schemes need at
least one exponentiation for each encryption. Also, the protocol there requires
potentially stronger assumptions than the quadratic residuosity assumption.

Security of a bidding protocol in [3] is defined in terms of secure function eval-
uation against non-adaptive adversaries [6, 9]. Namely, an adversary corrupting
at most one of the parties at the outset of the protocol does not learn anything
about the other parties’ inputs beyond what the compromised party should learn
about the outcome of the bidding, i.e., for corrupted A or B the adversary merely
learns the function value GT(x, y) and for compomised T it learns nothing about
x, y at all. It is assumed that all parties are mutually connected via private and
authenticated channels; this can be achieved using appropriate cryptographic
primitives. A formal definition of secure bidding is omitted from this version.

The Honest-But-Curious Case. We first discuss the idea of our protocol
in the honest-but-curious case. Also, to simplify, suppose that always x 6= y.
The trusted party T publishes a GM-instantiation N, z such that neither A nor
B knows the factorization of N . Party A sends an encryption of his input x
under N, z to B who answers with an encryption of y. Then one party, say A,
sends a random bit b and two random strings that are used to compute the
non-interactive crypto-computing evaluation procedure on both encryptions of
x, y; one time the parties inattentively compute GT(x, y) and the other time
they evaluate GT(y, x). Note that both parties obtain the same strings by this
since they use the same encryptions and identical random strings. Each party
sends both strings in random order according to bit b to the third party. The



third party decrypts the strings if and only if it receives the same strings from A
and B. T computes the decision bits [x > y], [y > x] for b = 0 or [y > x], [x > y]
for b = 1 —but does not know which of the cases has occured— and returns the
bits to each party. A and B can then decide whether x > y or y < x.

Let us briefly discuss that this protocol is secure against honest-but-curious
adversaries. First note that if A and B are honest then T learns nothing (in a
statistical sense) about x and y. The reason is that T merely gets random answers
of the non-interactive crypto-computing protocol for GT(x, y) and GT(y, x) in
random order (and exactly one of the predicates is satisfied by assumption about
inequality of x and y).

Assume that an adversary sees all internal data and incoming and outgoing
messages of A, but does not have control over A and, in particular, cannot bias
the random bits used for the crypto-computation. This, however, means that
unless an error occurs in the crypto-computation the adversary gets only the
information about [x > y] from the trusted party, and a secure encryption of y
from B. Hence, with very high probability the adversary does not learn anything
in a computational sense from listening to the execution. Similarly, this follows
for a dishonest B.

Fig. 3. Private Bidding with an Oblivious Third Party

Trusted party T publishes a GM-instantiation N, z and random quadratic non-
residues wA and wB .

– A and B jointly generate two random strings each of nλ bits and a bit b using
a coin-flipping protocol with N,wA.

– A sends bit-wise GM-encryptions Enc(x) under N, z to B and gives a zero-
knowledge proof of knowledge based onN, z,wA;A also sends a sufficient number
of random elements from ZZ∗N .

– Vice versa, B sends an encryption Enc(y) under N, z to A and proves in zero-
knowledge with N, z,wB that he knows the plaintext.

– Each party computes the server’s evaluation procedure for GT(x, y) and
GT(y, x) on the encryptions with the predetermined elements from ZZ∗N and
submits the result to the trusted party (in random order according to bit b).

– If and only if both incoming values are equal then the trusted party decodes
both sequences and returns the bits.

– Both parties output the result GT(x, y).

The Malicious Case. In order to make the protocol above secure against
actively cheating adversaries we have to ensure that the parties do not choose the
encryptions in an adaptive manner. Formally, we need to extract the encrypted
values from the dishonest party A or B and for this purpose add an interactive
zero-knowledge proof of knowledge to the encryptions; this proof of knowledge



can be carried out in three rounds with the data N, z, wA, wB published by T .
Details are postponed to Appendix A.

Also, we have to ensure that the non-interactive crypto-computation is really
based on truly random bits: biased bits may increase the probability that the
result of an AND of encryptions is incorrect and thus the outcome might reveal
some information about x or y, respectively. This is solved by using a coin-
flipping protocol in which one party commits to a random string a and the other
publishes a random string b and the outcome is set to a ⊕ b. Again, the reader
is refered to Appendix A for details. It is important to notice that we only need
random bits for the embedding of basic GM-encryptions into AND-encryptions.
That is, only the choice whether we encode the i-th component as Enc(d) or
as Enc(0) when embedding a basic GM-encryption Enc0(d) must be made at
random. Hence, we only need nλ random bits for each evaluation; the necessary
elements from ZZ∗N for embedding can be announced by one of the parties.

We present an informal argument why this scheme is secure; a formal proof
is deferred from this version. Say that the adversary corrupts party T . Then
the same argument as in the honest-but-curious case applies: T only sees two
honestly generated outcomes of crypto-computations for GT(x, y) and GT(y, x)
in random order.

Consider the case that the adversary corrupts A. We have to present a sim-
ulator that is allowed to query an oracle GT(·, y) once, and outputs a protocol
execution which is indistinguishable from a true execution with honest T and
B (with secret input y). Roughly, the simulator extracts the input x∗ from
the adversary’s proof of knowledge for the encryption and simulates T ’s and
B’s behavior by the zero-knowledge property.4 The simulator then queries the
oracle about x∗ to obtain GT(x∗, y). Given this bit the simulator finally out-
puts T ’s answer; this is possible since it knows the order of the transmitted
crypto-computations and both parties must send the same crypto-computation
for GT(x∗, y) and GT(y, x∗). Additionally, since the computation involves truly
random bits because of the coin tossing, the result of the crypto-computation is
correct with very high probability. In this case, T ’s decoding would be identical
to the simulator’s output for GT(x∗, y).

The case that the adversary corrupts B is analogous. Hence, we obtain a
secure constant-round private-bidding protocol with an active oblivious third
party; the protocol requires at most 19nλ+ 2λ modular multiplications for each
party, where n is the length of the bids and λ determines the error.

Above we presumed that x 6= y. It is not hard to see that our non-interactive
crypto-computing protocol in Section 3 can be modified to a scheme which
computes EQ(x, y) and where the server’s answer is identical distributed to
the one for GT(x, y) (for the same instance N, z). Therefore, if one alters the

4 At first glance, it seems that the simulator could choose N on behalf of T such that it
knows the factorizaton p, q of N and such that it can extract x∗ directly by decoding.
Yet, the simulator has to present a fake encryption of y pretending to be B, and we
were not able to prove this to be indistinguishable from a correct encryption of y if
the simulator knows p, q. Therefore, we take the detour using a proof of knowledge.



bidding protocol by letting A and B passing three crypto-computations for
GT(x, y),GT(y, x),EQ(x, y) in random order to T , then one obtains a secure
bidding protocol where A and B know which input is bigger (if any), or if the
inputs are equal.

Acknowledgements

We thank the anonymous reviewers of RSA 2001 for comprehensive comments.

References

1. D.Beaver: Minimal-Latency Secure Function Evaluation, Eurocrypt 2000, Lec-
ture Notes in Computer Science, Vol. 1807, Springer-Verlag, pp. 335–350, 2000.

2. F.Boudot, B.Schoenmakers, J.Traoré: A Fair and Efficient Solution to the
Socialist Millionaires’ Problem, to appear in Discrete Applied Mathematics, Spe-
cial Issue on Coding and Cryptography, Elsevier, 2000.

3. C.Cachin: Efficient Private Bidding and Auctions with an Oblivious Third Party,
6th ACM Conference on Computer and Communications Security, pp. 120–127,
1999.

4. C.Cachin, J.Camenish: Optimistic Fair Secure Computations, Crypto 2000, Lec-
ture Notes in Computer Science, Vol. 1880, Springer-Verlag, pp. 93–111, 2000.

5. C.Cachin, J.Camenish, J.Kilian, J.Müller: One-Round Secure Computation
and Secure Autonomous Mobile Agents, ICALP 2000, Lecture Notes in Computer
Science, Springer-Verlag, 2000.

6. R.Canetti: Security and Composition of Multiparty Cryptographic Protocols,
Journal of Cryptology, Vol. 13, No. 1, Springer-Verlag, pp. 143–202, 2000.

7. G.Di Crescenzo, R.Ostrovsky, S.Rajagopalan: Conditional Oblivious
Transfer and Time-Release Encryption, Eurocrypt ’99, Lecture Notes in Com-
puter Science, Vol. 1592, Springer-Verlag, pp. 74–89, 1999.

8. U.Feige, A.Fiat, A.Shamir: Zero-Knowledge Proofs of Identity, Journal of
Cryptology, Vol. 1, No. 2, pp. 77–94, Springer-Verlag, 1988.

9. O.Goldreich: Secure Multi-Party Computation, (working draft,
version 1.2), available at http://www.wisdom.weizmann.ac.il/

home/oded/public html/pp.html, March 2000.
10. O.Goldreich, S.Micali, A.Wigderson: How to Play any Mental Game —or—

a Completeness Theorem for Protocols with Honest Majorities, Proceedings of the
19th Annual ACM Symposium on the Theory of Computing, pp. 218–229, 1987.

11. O.Goldreich, S.Micali, A.Wigderson: Proofs That Yield Nothing About
Their Validity —or— All Languages in NP Have Zero-Knowledge Proof Systems,
Journal of the ACM, Vol.8, No. 1, pp. 691–729, 1991.

12. S.Goldwasser, S.Micali: Probabilistic Encryption, Journal of Computer and
System Sciences, Vol. 28(2), pp. 270–299, 1984.

13. S.Goldwassser, S.Micali, C.Rackoff: The Knowledge Complexity of Interac-
tive Proof Systems, SIAM Journal on Computation, Vol. 18, pp. 186–208, 1989.

14. G.Hardy, E.Wright: An Introduction to the Theory of Numbers, Oxford Uni-
versity Press, 1979.

15. M.Jakobsson, M.Yung: Proving Without Knowing: On Oblivious, Agnostic and
Blindfolded Provers, Crypto ’96, Lecture Notes in Computer Science, Vol. 1109,
Springer-Verlag, pp. 186–200, 1996.



16. M.Naor, B.Pinkas, R.Sumner: Privacy Preserving Auctions and Mecha-
nism Design, 1st ACM Conference on Electronic Commerce, available at
http://www.wisdom.weizmann.ac.il/˜bennyp/, 1999.

17. M.Rabin: How to Exchange Secrets by Oblivious Transfer, Technical Report TR-
81, Harvard, 1981.

18. T.Sander, A.Young, M.Yung: Non-Interactive Crypto-Computing for NC1,
Proceedings of the 40th IEEE Symposium on Foundations of Computer Science
(FOCS), 1999.

19. A.Yao: Protocols for Secure Computation, Proceedings of the 23rd IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pp. 160–164, 1982.

20. A.Yao: How to Generate and Exchange Secrets, Proceedings of the 27th IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 162–167, 1986.

A Fair Coin-Tossing and Zero-Knowledge Proof of
Knowledge for GM-Encryptions

In this section we review the missing sub protocols of Section 4.2: a three-
round zero-knowledge [13] proof of knowledge for GM-encryptions [8], and a
coin-flipping protocol to generate unbiased random bits. We start with the coin-
flipping protocol as we will need it for the proof of knowledge, too.

A.1 Fair Coin-Tossing

Assume that a trusted party publishes a modulus N and a quadratic non-residue
wA ∈ QNRN . To generate a single unbiased random bit,

– party A commits to a bit a by sending a random encryption Enc(a, s) under
N,wA.

– B sends a random bit b.
– A decommits to a by sending a, s to B (who verifies that Enc(a, s) equals

the ciphertext from the first step).
– the random bit c is set to c = a⊕ b.

These basic steps can be repeated 2nλ+ 1 times in parallel to generate 2nλ+ 1
random bits as required in our application.

We show that the protocol can be used to generate an unbiased bit even if
one party is dishonest; furthermore, we show that a simulator playing A can bias
the outcome to any predetermined value c.

If A is corrupt then c is uniformly distributed because the encryption of a
binds perfectly. If B is controlled by the adversary this is accomplished by letting
T announce an invalid but correct looking wA which is a quadratic residue
instead of a non-residue; moreover, assume that we know a root vA of wA =
v2
A mod N . We bias the coin flipping by first choosing a random c ∈ {0, 1} before

the protocol starts and by sending an encryption Enc(1, s) of a = 1 under N,wA.
Then, after having received b from the adversary, we decommit to a′ = c⊕ b by
sending (0, svA) for a′ = 0 and (1, s) for a′ = 1. It is readily verified that this is a
corret decommitment for a′. Conclusively, the coin flip is biased to the previously
selected, but uniformly distributed c. On the other hand, under the quadratic
residuosity assumption, B cannot distinguish that wA is quadratic residue.



A.2 Zero-Knowledge Proof of Knowledge

Next, we introduce the proof of knowledge, but we start with a special case of
a short challenge. Assume again that the trusted party publishes a modulus N
(which can be same as in the coin flipping protocol) and a quadratic non-residue
z ∈ QNRN (which is also used for encryption). Party A has published a bit-wise
encryption Xi = Enc(xi, ri) of x ∈ {0, 1}n under N, z.

– party A commits to an n-bit string u by sending a bit-wise encryption Ui =
Enc(ui, si) of u under N, z.

– party B sends a random bit c.
– if c = 0 then A sends u and the randomness s1, . . . , sn used to encrypt u. If
c = 1 then A sends v = u⊕ x ∈ {0, 1}n and ti = risi mod N .

– B verifies the correctness by re-encrypting the values with the reveled ran-
domness and comparing it to the given values. Specifically, for c = 0 party
B checks that Ui = Enc(ui, si), and verifies that UiXi = Enc(vi, ti) mod N
for c = 1.

Under the quadratic residuosity assumption this protocol is computational zero-
knowledge, i.e., there exist an efficient simulator that, for any malicious B, im-
itates A behavior in an indistinguishable manner without actually knowing x.
This zero-knowledge simulator basically tries to guess the challenge at the outset
and sends appropriate phony values in the first step.

This basic protocol for bit-challenges allows to cheat with probability 1/2 by
simply guessing the challenge. But the steps can be repeated independently in
parallel for λ in order to decrease the error to 2−λ. However, while this protocol
is provably zero-knowledge for logarithmically bounded λ, it is not known to be
zero-knowledge for large λ.

Fortunately, the problem is solvable by tossing coins. That is, we generate
λ bit-challenges with a coin flipping protocol as described above. This can be
interleaved with the proof of knowledge to obtain a three-round protocol. Since
the outcome of the coin flips can be chosen a priori if we have a quadratic
residue wA, the protocol becomes zero-knowledge; the zero-knowledge simulator
does not even have to guess the challenge bits because it can choose them for
himself before the protocol starts.

As for our bidding protocol, we announce independent wA and wB for each
party: either party that is under control of the adversary gets a quadratic non-
residue (to force this party to provide a correct proof of knowledge and to gener-
ate truly random bits), whereas the simulator playing the honest party is given
a quadratic residue in order to “cheat”. For an adversary this is not detectable
under the quadratic residuosity assumption.


