
This paper appears in CT-RSA 2008, Lecture Notes in Computer Science, Springer-Verlag, 2008.

Security of NMAC and HMAC
based on Non-Malleability

Marc Fischlin∗

Darmstadt University of Technology, Germany

marc.fischlin@ gmail.com www.fischlin.de

Abstract. We give an alternative security proof for NMAC and HMAC when deployed

as a message authentication code, supplementing the previous result by Bellare (Crypto

2006). We show that (black-box) non-malleability and unpredictability of the compres-

sion function suffice in this case, yielding security under different assumptions. This also

suggests that some sort of non-malleability is a desirable design goal for hash functions.

1 Introduction

HMAC is one of the most widely deployed cryptographic algorithms today. Proposed by
Bellare et al. [BCK96a] it is nowadays standardized in several places like ANSI X9.71 and
incorporated into SSL, SSH and IPSec. It is used as a universal tool to derive keys, to
provide a pseudorandom function or simply to authenticate messages. Roughly, for keys
kin, kout algorithm HMAC, and its generalized version NMAC, are defined as

HMAC(kin,kout)(M) := H(IV, kout||H(IV, kin||M))
NMAC(kin,kout)(M) := H(kout,H(kin,M))

where H is an iterated hash function like MD5 or SHA1, based on some compression function
h.

In the original paper of Bellare et al. [BCK96a] algorithms HMAC and NMAC have been
shown to be a pseudorandom function assuming that the compression function h is pseu-
dorandom and collision-resistant. With the emerging attacks on the collision-resistance on
popular hash functions like MD5 and SHA1 [WY05, WYY05] the trustworthiness of HMAC
and NMAC was slightly tarnished, but subsequently Bellare [Bel06] proved both algorithms
to be pseudorandom under the sole assumption that the compression function is pseudoran-
dom. This result is complemented by several works [CY06, KBPH06, RR07] showing that
weaknesses in collision-resistance can be actually exploited to successfully attack HMAC and
NMAC.

∗This work was supported by the Emmy Noether Program Fi 940/2-1 of the German Research Foundation
(DFG).

1

Our results. Here, we present alternative assumptions about the compression function to
yield a security proof for HMAC and NMAC when used as a message authentication code
(MAC), instead of being deployed as a pseudorandom function. We require two orthogonal
properties of the compression function which are both implied simultaneously if, for instance,
the compression function h is pseudorandom:

• non-malleability: learning images of the iterated compression function (with an un-
known key involved) does not lend any additional power to create another hash value
under this key.1

• unpredictability: it is infeasible to predict the output of the iterated compression func-
tion (with an unknown key involved).

Intuitively, unpredictability says that it is impossibile to guess images from scratch (i.e., with
no other images available). This is a very weak form of a MAC but does not guarantee the
common notion of security under adaptive chosen-message attacks. Adding non-malleability
then provides this stronger security notion, as seeing other images does not facilitate the
task.

We also show that, if there are pseudorandom functions at all, then there are compression
functions which obey these two properties but are not pseudorandom. Hence, our result shows
security under weaker prerequisites on the compression function, strengthening the confidence
in the security of NMAC and HMAC when deployed as a MAC. Moreover, the result here
indicates that non-malleability (or at least some relaxation thereof) is an eligible property
for hash functions and their designs.

Related results. We stress that Bellare [Bel06], although using a stronger assumption,
also derives a stronger statement, namely, that the pseudorandomness of the compression
function carries over. Since HMAC is used for distinct purposes such as key derivation or as
a pseudorandom function, this security claim is required for such cases. Our result merely
supplements Bellare’s more general result and shows that security of MACs is somewhat
easier to achieve than pseudorandomness (cf. [AB99]).

In [Bel06] Bellare also considers weaker requirements for HMAC and NMAC used as a
MAC. He introduces the notion of privacy-preserving MACs and shows that this condition
suffices to guarantee security of the MAC, together with the fact that the compression func-
tion is computationally almost universal which, in turn, follows from the pseudorandomness
of the compression function. Although resembling each other, privacy-preserving MACs and
our notion of non-malleability are in general incomparable (as we discuss in Section 5.2). Our
result can therefore be seen as an alternative security claim based on different assumptions.
At the same time, for some specific cases, our notion of non-malleability implies privacy-
preservation and thus also helps to characterize this property.

2 Preliminaries

We start by recalling HMAC and NMAC and then define our two properties, non-malleability
and unpredictability, before formalizing security of message authentication codes.

1Here, depending on the padding of the hash function, we may require a special form of “black-box”
non-malleability, implemented via so-called simulatable images.

2

2.1 HMAC and NMAC

Algorithms HMAC and NMAC are built from iterated hash functions based on a compression
function h, mapping {0, 1}n × {0, 1}b to {0, 1}n. For such a compression function let the
iteration of the compression function h∗(k, M) for input k ∈ {0, 1}n and M = M [1] . . .M [n],
consisting of b-bit blocks M [i], be given by the value zn, where z0 = k and zi+1 = h(zi,M [i+
1]) for i = 0, 1, . . . , n − 1. For notational convenience we write B = {0, 1}b and B≤N =
∪i≤NBi and B+ = ∪i∈NBi such that h∗ : {0, 1}n ×B+ → {0, 1}n.

Given the iterated compression function we can define the hash function H as follows.
Let H(k, M) = h∗(k, pad(M)) where pad(M) stands for the message padded to a multiple of
b bits. Here pad(·) is an arbitrary one-to-one function, and we write TimeL(pad) for the time
to compute the padding function for any input of length at most L, and ExtendL(pad) for
the maximal number of bits the padding function adds to each string of at most L bits. We
furthermore assume that the padding length only depends on the input length. For example,
the standard padding appends a 1-bit to M and then adds the smallest number of 0-bits to
obtain a multiple of b bits, such that TimeL(pad) = O(L + b) and ExtendL(pad) = b + 1.

We presume that the hash function’s description also contains a fixed, public value IV
and we set H(M) = H(IV,M). Define algorithms HMAC and NMAC now as:

HMAC(kin,kout)(M) := H(kout||H(kin||M))
NMAC(kin,kout)(M) := H(kout,H(kin,M))

where keys kin, kout for NMAC consist of n-bits each and are used instead of IV, and keys
kin, kout ∈ {0, 1}b for HMAC are prepended to the strings.

In practice, HMAC is typically used with dependent keys kin = k ⊕ ipad and kout =
k ⊕ opad for fixed constants ipad = 0x3636 . . . 36 and opad = 0x5c5c . . . 5c and a key k
of at most b bits. In either case, one can view HMAC as a special case of NMAC with
kNMAC
in = h(IV, kHMAC

in) and kNMAC
out = h(IV, kHMAC

out).

2.2 Non-Malleability and Simulatability

Non-malleability of a cryptographic function refers to the (in)ability to construct an image
which is related to previously seen images. This is formalized by considering an experiment in
which an adversary A can first ask to see hash values yi = H(xi) of pre-images xi distributed
according to some distribution X . Then A tries to find a hash value y∗ of a related pre-image
x∗, where related pre-images are specified through a relation R. The success probability of
A should not be significantly larger than in an experiment of a simulator S which does not
get to learn the images yi but should still be able to find a related value y∗.

Non-malleability for hash functions has been defined in [BCFW07] and we follow their
approach but state the property in terms of concrete security. The authors of [BCFW07]
point out that the most general notion for hash functions and arbirtrary distributions and
relations is not achievable. Fortunately, here we deal with the easier problem of considering
only very special distributions and specific relations.

Below we formalize non-malleability for the compression function instead of the hash
function to make a claim about the security propagation. In the adversary’s experiment we
let A “bias” the distribution of the pre-images xi via a parameter pi ∈ B+ passed to the
(stateful) distribution X (k, ·), using a random seed k. Formally, oracle GenSample takes the
parameter pi as input, computes xi ← X (k, pi) and the image yi = h(xi). After having seen
some sample images adversary A outputs an image y∗ and a transformation T which maps

3

x1, x2, . . . to x∗. That is, the adversary does not need to know the pre-image x∗ when creating
y∗, but must only commit to the transformation which determines x∗ once x1, x2, . . . become
known (in fact, T produces x∗ from k, p1, p2, . . . from which x1, x2, . . . can be derived). The
simulator S only gets a restricted oracle GenSample0 which samples the xi’s but does not
return the image yi to S. Still, the simulator should create a valid pair (T, y∗).

Definition 2.1 (Non-Malleable Compression Function) A compression function h :
{0, 1}n×{0, 1}b → {0, 1}n is called (tA, tS , Q,N, µ)-non-malleable with respect to distribution
X and relation R if for any algorithm A with running time tA there exists a simulator S
with running time tS , such that

Prob
[
Expnm-adv

h,A = 1
]
≤ Prob

[
Expnm-sim

h,S = 1
]
+ µ

where

Experiment Expnm-adv
h,A

k ← {0, 1}n
(T, y∗)← AGenSample(k,·)

where GenSample(k, pi) computes
xi ← X (k, pi)
yi = h(xi)

and returns yi

x∗ ← T (k, p1, p2, . . .)
Return 1 iff

R(T, k, p1, p2, . . . , x
∗)

∧ (x∗, y∗) /∈ {(x1, y1), (x2, y2), . . . }
∧h(x∗) = y∗

Experiment Expnm-sim
h,S

k ← {0, 1}n
(T, y∗)← SGenSample0(k,·)()

where GenSample0(k, pi) computes
xi ← X (k, pi)

x∗ ← T (k, p1, p2, . . .)
Return 1 iff

R(T, k, p1, p2, . . . , x
∗)

∧h(x∗) = y∗

Here A and S each make at most Q queries to their oracle, each query having at most N
blocks.

We consider here a special distribution XNMAC(k, ·) which, on input pi = Mi[1] . . .Mi[j+1]
first computes the j-th iteration of the compression function zi = h∗(k, Mi[1] . . .Mi[j]) for
random key k and then returns the pre-image xi = (zi,Mi[j + 1]) (from which yi = h(xi)
is then derived). The relation RNMAC for input (T, k, p1, p2, . . . , x

∗) merely checks that the
transformation T computes the output (h∗(k, M [1] . . .M [j]),M [j + 1]) for some constants
M [1], . . . ,M [j + 1] ∈ B hardwired into T , and such that M [1] . . .M [j + 1] has at most N
blocks, and no pi is a prefix of M [1] . . .M [j + 1]. The prefix-check is necessary to prevent
standard extension attacks.

In a refinement of the non-malleability notion we consider π-simulatable compression
functions which allow to simulate images (given only a fraction π(pi) of the parameter) and
which can potentially be used to construct a black-box non-malleability simulator. Simu-
latability essentially says that images can be created without the (complete) pre-image, and
thus immediately suggests a strategy for constructing the non-malleability simulator. Below
we formalize the notion of simulatability by demanding that no efficient distinguisher can
tell apart whether it is communicating with the GenSample oracle or the oracle SimAnswer
simulating images:

Definition 2.2 (π-Simulatability) A compression function h : {0, 1}n×{0, 1}b → {0, 1}n
is called (tD, tSim, Q,N, σ)-π-simulatable for distribution X if there is an algorithm SimAnswer

4

running in time tSim such that for any algorithm D running in time tD and making at most
Q queries, each of at most N blocks,

Prob
[
DGenSample(k,·) = 1

]
≤ Prob

[
DSimAnswer(π(·)) = 1

]
+ σ

where oracle GenSample is defined as in Definition 2.1, and where we assume that D never
queries its oracles about the same value twice. The probabilites are taken over D’s random
choices, and k ← {0, 1}n in the first case and the randomness of SimAnswer in the second
case.

Given algorithm SimAnswer one can construct a black-box non-malleability simulator as
follows. Consider another algorithm Interface which basically provides the interface between
the simulator’s oracle GenSample0 and the queries made by the simulated adversary A. Then
the non-malleability simulator is of the form S = AInterface(·), where Interface on input pi

forwards this value to oracle GenSample0 of S and then computes yi ← SimAnswer(π(pi))
and returns it to A. This simulator basically inherits the properties of SimAnswer, namely,
runs in time tS = tA + Q · (Time(SimAnswer) + Time(π)), makes at most Q queries and is
σ-close. This is under one condition: it must be possible to map the difference in the output
behavior (T, y∗) of A when communicating with oracle GenSample or with oracle SimAnswer
to a distinguisher with binary output. This will indeed be the case for our application.

2.3 Unpredictability

A trivial example of a (π-simulatable) non-malleable compression function is a constant func-
tion: any information available through images is known beforehand and therefore redundant.
Of course, such examples do not yield a good MAC, and in order to avoid such contrived
cases we introduce the mild assumption of unpredictability. Basically, a compression function
is unpredictable if one cannot determine a parameter p ∈ B∗ (specifying a distribution as in
the non-malleability definition), a message block m ∈ B and its image z = h(h∗(k, p),m),
before the key k is chosen:

Definition 2.3 (Unpredictablility) A compression function h : {0, 1}n×{0, 1}b → {0, 1}n
is (t, N, ρ)-unpredictable if for any algorithm P running in time t, the probability that for
(p, m, z)← P() and k ← {0, 1}n we have h(h∗(k, p),m) = z and p||m ∈ B≤N , is at most ρ.

In the sequel we often view p and m as one message M = p||m such that the defini-
tion says one cannot predict h∗(k, M) = h(h∗(k, p),m). A trivial example of a (t, N, 2−n)-
unpredictable compression function is the identity function (on the key part), h(k, m) = k.
Another example are pseudorandom compression functions, as we prove formally in Section 5.

The examples of a constant compression function h(k, m) = 0n and (a modification of)
the “identity-on-key-part” function h(k, m) = k also separate the notions of non-malleability
and unpredictability. The former function is clearly π-simulatable (for any π) and non-
malleable —the simulator can easily simulate the oracle’s answers— but not unpredictable.
In contrast, a slight modification of the latter function, namely h(k, m) = k⊕ lsbn(m) for the
n least significant bits lsbn(m) of m ∈ {0, 1}b, is unpredictable, yet malleable for XNMAC and
RNMAC. Malleability follows as an adversary is able to recover the key k from a single query
about message m = 0b and can then output the image k ⊕ 1n for message m∗ = 1b (and the
corresponding transformation). A simulator, on the other hand, needs to output the image
k ⊕m for constant m in clear without having any information about the key k.

5

We claim that h(k, m) = k ⊕ lsbn(m) is not π-simulatable for any π with output length
strictly less than n. A distinguisher D merely forwards distinct random values m0,m1 ∈
{0, 1}b and checks that the replies y0, y1 satisfy y0 ⊕ y1 ⊕m0 ⊕m1 = 0n. For the function
h this will be the case with probability 1. For SimAnswer this probability cannot be more
than 1

2 , since SimAnswer lacks at least one bit of information about lsbn(m0 ⊕ m1) from
π(m0), π(m1).

2.4 Message Authentication Codes

Our goal is to show that non-malleability of the compression function (plus unpredictability)
gives a secure message authentication code. Formally, a message authentication code M =
(KeyGen,MAC,Vf) consists of three (probabilistic) algorithms, the key generation algorithm
returning a key K ← KeyGen(), the MAC algorithm computing a message authentication code
τ ← MAC(K, M) for a message M , and a verification algorithm deciding upon acceptance
a ← Vf(K, M, τ) for a message M and a putative MAC τ . MACs generated by the key-
holder should always be accepted, i.e., for any K ← KeyGen(), any message M and any
τ ← MAC(K, M) we always have Vf(K, M, τ) = 1.

Definition 2.4 A MAC M = (KeyGen,MAC,Vf) is called (t, Q, L, ε)-unforgeable if for any
algorithm B running in time t, the probability that for K ← KeyGen(), (M∗, τ∗)← BMAC(K,·)()
making at most Q queries M1,M2, . . . to oracle MAC(K, ·), each query and M∗ of at most
L bits, we have Vf(K, M∗, τ∗) = 1 and M∗ /∈ {M1,M2, . . . }, is at most ε.

In the definition above we let the adversary make only a single verification query. Bellare
et al. [BGM04] have shown that for HMAC and NMAC this implies security against adver-
saries which make v arbitrarily interleaved verification queries for fresh messages not queried
previously. This comes with a loss of at most a factor v in security (and some minor change
in the running time parameter t).

3 Security of NMAC

We first show that NMAC is a secure MAC, given that the compression function is non-
malleable, simulatable and unpredictable. For simplicity we refer to NMAC as both the MAC
algorithm and the scheme (with straightforward key generation and verification algorithm).

We simply state the theorem and present the proof for π-simulatable, where π is a constant
function 0; afterwards we discuss that the theorem holds for more general functions. We also
remark that we can give a proof based on non-malleability and unpredictability only (i.e.,
without simulatability) if the padding function is prefix-free. See Appendix A.

Theorem 3.1 Let the compression function h : {0, 1}n×{0, 1}b → {0, 1}n be (tA, tS , Q,N, µ)-
non-malleable with respect to distribution XNMAC and relation RNMAC, and (tD, tSim, Q, σ)-0-
simulatable for XNMAC. Assume further that h is (tS , N, ρ)-unpredictable. Then NMAC is a
(t′, Q′, L′, ε′)-unforgeable MAC where

t′ = min{tA, tS , tSim} − (Q + 1) · TimebN (pad)−Θ(NQ log Q · (Time(h) + n + b))

Q′ = Q, L′ = bN − ExtendbN (pad), ε′ ≤ 4QN2 · (ρ + µ) + σ.

Proof. We first make two simplifying assumptions about the MAC adversary B. First we
assume that B always pads any message before outputting it or submitting it to the MAC

6

oracle. Since the padding function is one-to-one, the padded forgery attempt is still distinct
from all (padded) submissions. Furthermore, the adversary’s running time only increases by
(Q+1)·TimeL(pad) and the length by at most ExtendL(pad) bits for each message. Secondly,
we presume that B never submits the same message twice. Since the MAC computation is
deterministic such queries can be easily answered by keeping track of previous queries and
these checks only add the running time O(bNQ log Q).

For a successful attacker B on the MAC we distinguish between two cases:

Case NoColl: In the final output the MAC adversary B returns a (now padded) message
M∗ such that h∗(kin,M∗) 6= h∗(kin,Mi) for all previous queries Mi, i = 1, 2, . . . , Q.

Case Coll: The MAC adverary B returns a forgery attempt M∗ such that h∗(kin,M∗) =
h∗(kin,Mi) for some i.

Adding (the bounds for) the two probabilities then gives an upper bound on B’s success
probability.

Case NoColl. Assume B succeeds and that the first case happens. Consider the following
adversary Aout against the non-malleability for distribution XNMAC and relation RNMAC. Ad-
versary Aout initially chooses a key kin ← {0, 1}n at random. It next runs a simulation of B
and answers each query Mi to the MAC oracle by computing locally zi = h∗(kin,Mi) and
submitting pi = pad(zi) to its oracle GenSample. Adversary Aout sets τi = yi for the oracle’s
answer and returns τi to B. When B eventually produces its output (M∗, τ∗) attacker Aout

computes z∗ = h∗(kin,M∗) and prepares the transformation T (k, p1, p2, . . .) which computes
h∗(k, pad(z∗)) for fixed value pad(z∗). Aout finally outputs (T, y∗) for y∗ = τ∗.

It is easy to see that Aout’s success probability in the non-malleability experiment equals
the success probability of B attacking the MAC scheme, given that h∗(kin,M∗) 6= h∗(kin,Mi)
for all i. The latter implies that z∗ 6= z1, z2, . . . and therefore (x∗, y∗) 6= (xi, yi) for all i in the
non-malleability experiment. Furthermore, the padding function is one-to-one and appends
only the same amount of bits for each z∗, z1, z2, . . . such that no pi is a prefix of pad(z∗).
Hence, by assumption, there exists a simulator S making tS steps and which is µ-close to
Aout’s probability, but which does not get to see any image under h∗(kout, ·). In particular,
without any knowledge about kout, the simulator outputs an image y∗ and a transformation
T involving a constant c ∈ B≤N such that h∗(kout, c) = y∗. But since the compression
function is (tS , N, ρ)-unpredictable, the claim for this case follows (in particular, ε′ ≤ µ + ρ).

Case Coll. Now consider the second case, that B succeeds and finds a collision in the inner
function. In fact, we only need that B is able to generate such a collision M∗ 6= M1,M2, . . . ,
possibly not even succeeding in forging a MAC. We then construct an attacker Ain on the
non-malleability of the compression function, again with respect to distribution XNMAC and
relation RNMAC. The idea is that such a collision can be guessed in advance and can then be
used to predict the image for the second value.

But first we assume that, instead of communicating with oracle NMAC(kin,kout), adversary
B instead receives the answers from oracle SimAnswer(π(h∗(kin, ·))) = SimAnswer(0) guaran-
teed by the π-simulatability (where π is constantly 0). We claim that the probability of B
producing a collision for the inner function cannot drop by more than σ when communicat-
ing with SimAnswer. Else, one can easily devise a distinguisher D separating GenSample and
SimAnswer.

7

More formally, distinguisher D picks kin itself and is given access to an oracle either
implementing h∗(kout, ·) or SimAnswer and runs a simulation of B. Each query Mi of B is
answered by first computing zi = pad(h∗(kin,Mi)). Then D checks if this value has appeared
before, in which case D fetches the previous answer and handing it back to B. Else, D
forwards zi to its oracle and returns the answer to B. When B eventually outputs a forgery
attempt (M∗, τ∗) the distinguisher verifies that M∗ 6= M1,M2, . . . (if not, it outputs 0),
computes z∗ = pad(h∗(kin,M∗)) and checks that there is a collision between z∗ and some zi.
If so, then D outputs 1, in any other case it returns 0.

The probability of returning 1 when given access to oracle GenSample is identical to the
probability that B generates a collision on the inner function between M∗ and some (distinct)
Mi when attacking NMAC. On the other hand, if D is given access to SimAnswer then the
probability for returning 1 corresponds exactly to the probability that B produces such a
collision when given access to SimAnswer instead. By assumption this difference cannot be
more than σ, taking into account that D essentially runs in the same time as B but needs to
compute the inner function and check for collisions.

Given B with access to SimAnswer we now build adversary Ain playing against the non-
malleability of the inner function. Adversary Ain is granted access to oracle GenSample. It
first picks random indices i0 between 1 and Q as well as j0, `0 between 0 and N − 1. It
also flips a coin c ← {0, 1}. Then it runs a black-box simulation of B for oracle SimAnswer
(which works independent of the actual content of the queries of B). Only for the i0-th query
Mi0 = Mi0 [1] . . .Mi0 [ni0], if c = 0, adversary Ain also forwards pi0 = Mi0 [1] . . .Mi0 [j0 + 1] to
its oracle GenSample to receive a value z′i0 = h∗(kin,Mi0 [1] . . .Mi0 [j0 + 1]).2 Note that Ain

does not forward this value to B but rather uses the value generated by SimAnswer. If c = 1
then A does not call its oracle at this point.

When B finally outputs (M∗, τ∗) and we have c = 1 then Ain has not queried ora-
cle GenSample so far, and now submits p∗ = M∗[1] . . .M∗[`0 + 1] to receive the value
z′ = h∗(kin,M∗[1] . . .M∗[`0 + 1]).3 Adversary Ain then returns y∗ = z′ and the trans-
formation T (kin, , p1, p2, . . .) which for fixed j0,Mi0 [1], . . . ,Mi0 [j0 + 1] computes the value
x∗ = (h∗(kin,Mi0 [1] . . .Mi0 [j0]),Mi0 [j0 + 1]). Else, if c = 0, then Ain returns y∗ = z′i0
and the transformation T (kin, , p1, p2, . . .) which for fixed `0,M

∗[1], . . . ,M∗[`0 +1] computes
x∗ = (h∗(kin,M∗[1] . . .M∗[`0]),M∗[`0 + 1]).

Figure 1: Proof idea to Theorem 3.1: collisions among values

For the success probability note that, given that B creates a collision between some
message Mi and M∗, adversary Ain predicts i0 = i and the right block numbers j0, `0

2We assume that j0 < ni0 ; else stop immediately with no output.
3Again, if `0 exceeds the number of blocks of M∗ we stop with no output.

8

such that Mi0 [1] . . .Mi0 [j0 + 1] 6= M∗[1] . . .M∗[`0 + 1] collide under h∗(kin, ·) but xi =
h∗(kin,Mi[1] . . .Mi[j0]) 6= x∗ = h∗(kin,M∗[1] . . .M∗[`0]), with probability at least 1/QN2.
See Figure 1. Furthermore, either Mi0 is a prefix of M∗ or vice versa (or neither one is a
prefix of the other one), and we make the “right” choice c with probability at least 1/2 to
submit the message which is not a prefix to oracle GenSample. Hence, Ain’s success proba-
bility is only a factor 1/2QN2 smaller than the one of B in this case. The overall running
time of Ain is essentially equal to the one of B, plus some time to prepare the submissions
and the final output.

By the non-malleability there must exist a simulator with µ-close success rate to Ain. But
this simulator never gets to see any information about kin and must first commit to y∗ and
M∗ = M∗[1] . . .M∗[n∗] for n∗ ≤ N (via T), allowing only a success probability ρ by the
unpredictability of the compression function. Hence, the probability of B succeeding for a
collision on the inner function is at most 2QN2(µ + ρ) + σ. �

Compared to the proof in [Bel06], showing that NMAC is pseuodorandom given that h is
pseudorandom, we obtain a different loss factor in the success probability, switching the roles
of the number of queries and the length of messages (Θ(QN2) vs. Θ(Q2N) as in [Bel06]).

In the proof we have assumed that π(·) is the constant 0-function. We note that the
theorem still holds for more general cases, as long as there is a function Π such that
π(h∗(k, M)) = Π(M) for all k, M . Recall the idea from the second part of the proof that
we can simulate images for the outer function without knowing h∗(kin,Mi). Yet, in order to
execute SimAnswer(π(h∗(kin, ·))) we need the information π(h∗(kin,Mi)). This information
is easy to derive for constant π, but also if we can deduce from Mi (known to us) via Π.
Hence, the proof goes through and we obtain:

Corollary 3.2 Let the compression function h : {0, 1}n×{0, 1}b → {0, 1}n be (tA, tS , Q,N, µ)-
non-malleable with respect to distribution XNMAC and relation RNMAC, and (tD, tSim, Q, σ)-π-
simulatable for XNMAC, such that there exists a function Π with π(h∗(k, M)) = Π(M) for all
k ∈ {0, 1}n and all M ∈ B+. Assume further that h is (tS , N, ρ)-unpredictable. Then NMAC
is a (t′, Q′, L′, ε′)-unforgeable MAC where

t′ = min{tA, tS , tSim} −Θ(NQ log Q · (Time(h) + n + b + TimebN (pad) + TimebN (Π)))

Q′ = Q, L′ = bN − ExtendbN (pad), ε′ ≤ 4QN2 · (ρ + µ) + σ.

As an example for such a function π consider a 0-simulatable compression function which
appends some (fixed) subset of its input M to the output, and let π denote the projection onto
the corresponding suffix. Then this information is clearly computable from Π(M). Somewhat
interestingly, the simulatability requirement depends to the padding function of the hash
function. Namely, in Appendix A we show that for prefix-free paddings the simulatability
requirement vanishes completely.

4 Security of HMAC

As explained in [BCK96a], one can map HMAC to NMAC by considering kNMAC
in = h(IV, kHMAC

in)
and kNMAC

out = h(IV, kHMAC
out) and

HMAC(kHMAC
in ||kHMAC

out ,M) = NMAC(kNMAC
in ||kNMAC

out ,M).

Put differently, HMAC includes a first step in which the NMAC-keys are computed via h(IV, ·)
and the HMAC-keys are used as input block.

9

To transfer the security claims from NMAC, Bellare [Bel06] defines the “dual” compression
function h : B×{0, 1}n → {0, 1}n with h(b, a) = h(a, b). Then, if h and h are pseudorandom,
the security of NMAC carries over to HMAC. For the precise claim and a discussion about
the validity see [Bel06, Sections 5.1 and 5.4].

We can extend the notions of non-malleability, π-simulatability and unpredictability to
these special cases. For this consider distribution XHMAC which, for input (k, p) computes
k′ = h(IV, k) and samples x← XNMAC(k′, p). Analogously, relation RHMAC merely checks that
the transformation T in the first step computes k′ = h(IV, k) and proceeds as RNMAC. Then
we demand that h is non-malleable with respect to XHMAC and RHMAC and π-simulatable for
XHMAC.

Similarly, we say that h is HMAC-unpredictable if it is infeasible to predict h(h(IV, k),M);
a more formal characeterization is easy to deduce. All assumptions are implied if h and h are
pseudorandom (where we only need that h is pseudorandom with respect to distinguishers
that make only a single oracle call). Under the assumptions about non-malleability, π-
simulatability for suitable π and unpredictability we conclude:

Theorem 4.1 Let the compression function h : {0, 1}n×{0, 1}b → {0, 1}n be (tA, tS , Q,N, µ)-
non-malleable with respect to distribution XHMAC and relation RHMAC, and (tD, tSim, Q, σ)-π-
simulatable for XHMAC, such that there exists a function Π with π(h∗(k, M)) = Π(M) for all
k ∈ {0, 1}n and all M ∈ B+. Assume further that h is (tS , N, ρ)-HMAC-unpredictable. Then
HMAC is a (t′, Q′, L′, ε′)-unforgeable MAC where

t′ = min{tA, tS , tSim} −Θ(NQ log Q · (Time(h) + n + b + TimebN (pad) + TimebN (Π)))

Q′ = Q, L′ = bN − ExtendbN (pad), ε′ ≤ 4QN2 · (ρ + µ) + σ.

For the single-keyed HMAC variant with kin = k ⊕ ipad and kout = k ⊕ opad one can in
principle adapt the notions of non-malleability, simulatability and unpredictability for this
case, too. Both properties are then implied if h is pseudorandom under related-key attacks
[BK03] (see also [Bel06, Section 5.3]), and single-keyed HMAC is a secure MAC under these
versions of non-malleability, simulatability and unpredictability.

5 Relations among Security Notions

In this section we show that pseudorandom compression function have our two properties but
are stronger than both properties together. We also discuss that there are (simulatable) non-
malleable compression functions which are not privacy-preserving according to the notion in
[Bel06]. Below we simply write $N,n for a randomly chosen function from all mappings with
domain B≤N and range {0, 1}n.

Definition 5.1 A function f : {0, 1}n × B+ → {0, 1}n is called (t, Q, N, δ)-pseudorandom
if, for any algorithm D running in time t, we have

Prob
[
Df(k,·) = 1

]
− Prob

[
D$N,n(·) = 1

]
≤ δ

where the probability in the first case is over D’s coin tosses and k ← {0, 1}n, and in the
second case over D’s coin tosses and the choice of $N,n. In both cases D makes at most Q
queries to its function oracle, each query of at most N blocks.

10

Below we sometimes make use of the following fact of Bellare et al. [BCK96b] about cas-
caded iteration of pseudorandom functions. The statement basically says that the cascaded
evaluation is also pseudorandom with respect to prefix-free distinguishers, i.e., distinguishers
such that no oracle query is a prefix of another one:

Lemma 5.2 ([BCK96b]) If the compression function h : {0, 1}n × {0, 1}b → {0, 1}n is
(t, Q, 1, δ)-pseudorandom, then h∗ : {0, 1}n×B+ → {0, 1}n is also (t′, Q,N, δ′)-pseudorandom
with respect to prefix-free distinguishers, where t′ = t−Θ(QNb + NTime(h)) and δ′ = Nδ.

5.1 Pseudorandom ⇒ Non-Malleable ∧ Unpredictable ∧ Simulat-
able

Recall from the security of NMAC that we defined XNMAC to be the distribution which,
for random k ∈ {0, 1}n and parameter p = M [1] . . .M [j + 1] ∈ B+ outputs the pre-
image x = (h∗(k, M [1] . . .M [j]),M [j + 1]). Also, RNMAC is the relation which, on in-
put T, k, p1, p2, . . . , x

∗ checks that T computes x∗ = (h∗(k, M∗[1] . . .M∗[j]),M∗[j + 1]) for
some fixed M∗[1] . . .M∗[j + 1] of at most N blocks (and checks that no pi is a prefix of
M∗[1] . . .M∗[j + 1]).

Proposition 5.3 Let h be (t, Q, 1, δ)-pseudorandom. Then it is also (tA, tS , Q,N, µ)-non-
malleable with respect to distribution XNMAC and relation RNMAC, where

tA = t−Θ(QNb log Q · (Time(h) + n)), tS = t + O(bNQ log Q + n), µ = 2Nδ.

Proof. Consider any adversary A against non-malleability, running in time tA and making at
most Q queries. We may assume that A never queries its oracle GenSample about a parameter
whose prefix has been submitted before; such values could be computed by A itself easily
and skipping these oracle queries can only increase A’s success probability. This increases
the adversary’s running time by at most O(bNQ log Q · (Time(h) + n)).

Construct the non-malleability simulator S running a black-box simulation ofA as follows.
Each time the adversary submits a parameter pi = Mi[1] . . .Mi[j+1] to its oracle, S emulates
the oracle perfectly except that, instead of using the iterated compression function, S uses
lazy sampling to simulate a truly random function.4 When the adversary A eventually
outputs (T, y∗) the simulator, too, stops with this output.

For the analysis we first consider A’s behavior if, instead of giving it access to h∗(k, ·)
we use a truly random function $N,n, also to check that y∗ = $N,n(M∗) for the final output
(instead of verifying y∗ = h∗(k, M∗)). By the pseudorandomness of h (and therefore of
h∗) we get that the probability of A winning in this new experiment is at least Nδ-close
to the original success probability. This can be easily turned formally into a (prefix-free5)
distinguisher, simulating A in a black-box way and calling its function oracle for each message
and the final check that T is of the right form and that y∗ is an image for M∗.

Next, consider the slightly changed experiment in which we give A random answers for
its message queries as before, but then evaluate correctly h∗(k, M∗) to compare it to y∗. It
is easy to see that the success probability of A in this experiment cannot grow more than
Nδ, again by the pseudorandomness. That is, it is once more straightforward to construct a
prefix-free distinguisher turning this into a formal statement.

4Meaning that S picks an independent random string when supposed to evaluate the function on a new
value, or repeats a previously given answer for previously evaluated values.

5Here we use the fact that no pi is a prefix of the message encoded in T .

11

But the final experiment is identical to the success probability of the simulator, showing
the claim. �

The proposition above shows that the same remains true for π-simulatable compression
functions (for arbitrary π) if we let SimAnswer simply return random strings.

Corollary 5.4 Let h be (t, Q, 1, δ)-pseudorandom. Then it is (tA, tSim, Q,N, µ)-π-simulatable
with respect to distribution XNMAC, where π is arbitrary and

tA = t−Θ(QNb log Q · (Time(h) + n)), tSim = t + O(bNQ log Q + n), µ = Nδ.

Finally, we show that pseudrandomness implies unpredictability:

Proposition 5.5 Let h be (t, 1, 1, δ)-pseudorandom. Then it is (t′, N, ρ)-unpredictable, where
t′ = t−Θ(QNb + N · Time(h)) and ρ = N(δ + 2−n).

Proof. Since h is pseudorandom it remains pseudorandom if we make a single query of (at
most) N blocks. Only the running time drops slightly and the distinguishing advantage
increases to Nδ. But this implies that any algorithm P trying to predict a function value
cannot be better than for a truly random function —which can be predicted with probability
at most N · 2−n— plus the distinguishing advantage of Nδ. �

5.2 Non-Malleable ∧ Unpredictable ∧ Simulatable 6⇒ Pseudoran-
dom

We next prove that non-malleability, simulatability and unpredictability together do not im-
ply pseudorandomness. Since this result only serves as a separation we drop the viewpoint of
concrete security and adopt the usual “asymptotic” notion (with regard to parameter n). For
example, being pseudorandom means to be (poly(n),poly(n),poly(n), δ(n))-pseudorandom
for any polynomial poly(n) and some negligible function δ(n) (which may depend on the
polynomial). The other security notions can be adopted analogously.

Below we show that pseudorandomness is stronger than non-malleability, unpredictability
and π-simulatability for π = 0. Afterwards we discuss that the claim also holds for a non-
trivial functions π like the rightmost-bit function rmb.

Proposition 5.6 Assume that there exists a pseudorandom compression function h : {0, 1}n×
{0, 1}b → {0, 1}n and a pseudorandom generator G : {0, 1}bn/2c → {0, 1}n. Then there exists
a compression function hsep : {0, 1}n × {0, 1}b → {0, 1}n which is (a) non-malleable with
respect to distribution XNMAC and relation RNMAC, (b) unpredictable, (c) 0-simulatable for
XNMAC, but (c) not pseudorandom.

Proof. First consider the truncated compression function htrunc(k, x) which splits the key k
into bn/2c bits kL and the remaining n − bn/2c bits kR, then computes h(G(kL), x) and
outputs only the first bn/2c bits of the result. It follows easily from the pseudorandomness of
G and h that this compression function is pseudorandom, too, and therefore non-malleable,
unpredictable and 0-simulatable.

Now define hsep(k, x) = htrunc(k, x)||0n−bn/2c. With this definition one can compute the
iterated output h∗sep(k, M) for any M ∈ B+ by evaluating htrunc and appending n − bn/2c
bits π(x) to the output in each stage (including the final evaluation).

It is clear that hsep is not pseudorandom, because every function evaluation yields only
zeros in the right half of output. It is, however, still unpredictable. If it was not unpredictable

12

this would easily contradict unpredictability of htrunc by cutting off the n− bn/2c rightmost
bits from the output. Moreover, hsep inherits non-malleability for XNMAC and RNMAC from
htrunc because one can easily transform attackers and simulators for the two cases (by ap-
pending or cutting off zeros in the output). Simulatability can be shown easily, too, as one
can output random strings followed by a sequence of zeros. �

Again, the claim remains true for π-simulatability for some non-trivial functions π. For
instance, if π(x) returns the rightmost bit rmb(x) of x and we use the compression function
hsep in the proof and replace the padding with zeros by (rmb(x))n−bn/2c —call this function
hrmb— then the proposition still holds. In particular, the rmb-simulatability (together with
non-malleability and unpredictability) would suffice to prove NMAC to be secure.

We also remark that the example hrmb shows that there are π-simulatable (and non-
malleable and unpredictable) compression functions which are not a privacy-preserving MAC
according to [Bel06]. Such a MAC has the additional property that one cannot tell if either
of two messages has been MACed. However, for inputs with distinct rightmost bit this is
easy for hrmb, of course. Still, 0-simulatable compression functions are privacy-preserving,
giving an alternative characterization of this notion.

Acknowledgments

We thank the anonymous reviewers for valuable comments.

References

[AB99] Jee Hea An and Mihir Bellare. Constructing VIL-MACs from FIL-MACs: Mes-
sage Authentication under Weakened Assumptions. Advances in Cryptology —
Crypto’99, Volume 1666 of Lecture Notes in Computer Science, pages 252–269.
Springer-Verlag, 1999.

[BCFW07] Alexandra Boldyreva, David Cash, Marc Fischlin, and Bogdan Warinschi. Non-
Malleable Hash Functions. manuscript, 2007.

[BCK96a] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for
Message Authentication. Advances in Cryptology — Crypto’96, Volume 1109
of Lecture Notes in Computer Science, pages 1–15. Springer-Verlag, 1996.

[BCK96b] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom Functions
Revisited: The Cascade Construction and Its Concrete Security. Proceedings of
the Annual Symposium on Foundations of Computer Science (FOCS)’96, pages
514–523. IEEE Computer Society Press, 1996.

[Bel06] Mihir Bellare. New Proofs for NMAC and HMAC: Security Without Collision-
Resistance. Advances in Cryptology — Crypto 2006, Volume 4117 of Lecture
Notes in Computer Science, pages 602–619. Springer-Verlag, 2006.

[BGM04] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The Power of Verifica-
tion Queries in Message Authentication and Authenticated Encryption. Number
2004/309 in Cryptology eprint archive. eprint.iacr.org, 2004.

13

[BK03] Mihir Bellare and Tadayoshi Kohno. A Theoretical Treatment of Related-Key
Attacks: RKA-PRPs, RKA-PRFs, and Applications. Advances in Cryptology
— Eurocrypt 2003, Volume 2656 of Lecture Notes in Computer Science, pages
491–506. Springer-Verlag, 2003.

[CY06] Scott Contini and Yiqun Lisa Yin. Forgery and Partial Key-Recovery Attacks
on HMAC and NMAC Using Hash Collisions. Advances in Cryptology — Asi-
acrypt 2006, Volume 4284 of Lecture Notes in Computer Science, pages 37–53.
Springer-Verlag, 2006.

[KBPH06] Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong. On the Secu-
rity of HMAC and NMAC Based on HAVAL, MD4, MD5, SHA-0 and SHA-1.
Security in Communication Networks (SCN), Volume 4116 of Lecture Notes in
Computer Science, pages 242–256. Springer-Verlag, 2006.

[RR07] Christian Rechberger and Vincent Rijmen. On Authentication With HMAC and
Non-Rondom Properties. Financial Cryptography (FC) 2007, Lecture Notes in
Computer Science. Springer-Verlag, 2007.

[WY05] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
Advances in Cryptology — Eurocrypt 2005, Volume 3494 of Lecture Notes in
Computer Science, pages 19–35. Springer-Verlag, 2005.

[WYY05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. Advances in Cryptology — Crypto 2005, Volume 3621 of Lecture Notes
in Computer Science, pages 17–36. Springer-Verlag, 2005.

A Security of NMAC for Prefix-Free Paddings

Here we show that regular (i.e., not necessarily black-box) non-malleability suffices to show
security of NMAC and HMAC, given that the padding function pad() is prefix-free. Formally,
the function pad() is called prefix-free if for any distinct M 6= M ′ the value pad(M) is not
equal to any block-wise prefix of pad(M ′). An example of a prefix-free padding is the standard
padding with the exception that we prepend a block containg the bit size of the original input.
Then, any messages with distinct length are clearly not a prefix of each other, and for equal
length messages pad(M) is either longer than any block-wise prefix of pad(M ′) or of equal
length, in which case they must be distinct since M 6= M ′.

Theorem A.1 Let the compression function h : {0, 1}n×{0, 1}b → {0, 1}n be (tA, tS , Q,N, µ)-
non-malleable with respect to distribution XNMAC and relation RNMAC. Assume further that
h is (tS , N, ρ)-unpredictable and that pad is prefix-free. Then NMAC is a (t′, Q′, L′, ε′)-
unforgeable MAC where

t′ = min{tA, tS} − (Q + 1) · TimebN (pad)−Θ(NQ log Q · (Time(h) + n + b))

Q′ = Q, L′ = bN − ExtendbN (pad), ε′ ≤ 2QN2 · (ρ + µ).

Proof. We remark that we again presume that B pads each message first and that it never
queries the MAC oracle about the same message twice. The first part of the proof (the case
that there is no collision between the inner value for M∗ and any Mi) is identical to the
“non-prefix-free” case and is therefore omitted. We next consider the second case that B

14

causes h∗(kin,Mi) = h∗(kin,Mi) for some i. We again construct a non-malleability attacker
Ain against the inner function.

Initially, adversaryAin picks a random index i0 between 1 and Q and indices j0, `0 between
0 and N − 1. It next invokes the MAC adversary B and simulates each answer for query Mi

as follows.

• For i 6= i0 adversary Ain first submits pi = Mi to its oracle GenSample to get an answer
zi = yi. Then it computes τi = h∗(kout, pad(zi)) and returns this value to B.

• For i = i0 and message Mi0 = Mi0 [1] . . .Mi0 [ni0] it sends pi0 = Mi0 [1] . . .Mi0 [j0 + 1]
to the oracle6 to receive a value z′i0 = h∗(kin,Mi0 [1] . . .Mi0 [j0 + 1]). Compute zi0 =
h(z′i0 ,Mi0 [j0 + 2] . . .Mi0 [ni0]) and τi0 = h∗(kout, pad(zi0)) and return the latter value
to B.

When B stops with output (M∗, τ∗) (for the padded message M∗) adversary Ain sets its
output to y∗ = z′i0 for the answer of the previously guessed index i0. The adversary fur-
thermore defines T (kin, , p1, p2, . . .) for fixed `0,M

∗[1], . . . ,M∗[`0 + 1] to compute x∗ =
(h∗(kin,M∗[1] . . .M∗[`0]),M∗[`0 + 1]).7

To analyze Ain’s success probability let ` denote some index such that, when computing
h∗(kin,M∗[1] . . .M∗[` + 1]) iteratively, this value matches any of the intermediate values
h(kin,Mi[1] . . .Mi[j +1]) for some i, j but such that M∗[1] . . .M∗[`+1] 6= Mi[1] . . .Mi[j +1].
See again Figure 1 on Page 8. According to the assumption a collision between the value for
M∗ and an image of some query occurs and such indices must exist.

Furthermore, by the prefix-free padding function pad it follows from M∗ 6= M1,M2, . . .
that no Mi is equal to a block-wise prefix of M∗. Hence, there must exists indices `0, i0, j0
such that we obtain a collision on the inner function and no Mi for i 6= i0 and neither
Mi0 [1] . . .Mi0 [j0 + 1] is a prefix of M∗[1] . . .M∗[`0 + 1]. But then Ain picks the right indices
i0, j0, `0 with probability at least 1/QN2. Under this condition, (x∗, y∗) 6= (xi, yi) for all i
and Ain wins if B generates a collision for the inner function.

Overall, Ain has a success probability which is smaller by a factor 1/QN2, and there
must exist a simulator with µ-close success rate. But this simulator never gets to see any
information about kin and must first commit to y∗ and M∗ = M∗[1] . . .M∗[n∗] for n∗ ≤ N
(via T), allowing only a success probability ρ by the unpredictability of the compression
function. The overall running time of Ain is essentially equal to the one of B, plus the time
to pad each message, to check for double queries and to evaluate the compression function
for each oracle call. �

6We assume that j0 < ni0 ; else stop immediately with no output.
7We assume that `0 + 1 is at most the number of blocks in M∗; else stop immediately with no output.

15

