
Fast Verification of Hash Chains

Marc Fischlin?

Department of Computer Science & Engineering,
University of California, San Diego, USA

mfischlin@ cs.ucsd.edu

http://www-cse.ucsd.edu/∼ mfischlin/

Abstract. A hash chain is a sequence of hash values xi = hash(xi−1)
for some initial secret value x0. It allows to reveal the final value xn and
to gradually disclose the pre-images xn−1, xn−2, . . . whenever necessary.
The correctness of a given value xi can then be verified by re-computing
the chain and comparing the result to xn. Here we present a method
to speed up the verification by outputting some extra information in
addition to the chain’s end value xn. This information allows to relate
the verifier’s workload to a variably chosen security bound. That is, on
input a putative chain value the verifier determines a security level (i.e.,
security against adversaries with at most T steps and success probability
ε) and performs only a fraction p = p(T, ε) of the original work by using
the additional information. We also show lower bounds for the length of
this extra information.

1 Introduction

A hash chain, introduced by Lamport [Lam81], is a sequence of hash values
xi = hash(xi−1) for a seed x0 where hash is some collision-intractable hash
function (or some other publicly computable one-way function). Such a chain
allows the owner of the seed to publish the chain’s end value xn and to stepwise
release the pre-images xn−1, xn−2, . . . such that revealing xn−i at step i does
not help to find some of the values xn−i−1, . . . , x0. The receiver can check the
validity of some received xn−i by re-calculating the chain starting with xn−i up
to xn.

Hash chains have numerous applications. One of the best known is Micali’s
suggestion to use them as certificate chains [Mic96]. Roughly, for the user’s
public key pk of a signature or encryption scheme the certification authority
(CA) publishes a certificate of xn and pk (and possibly further information). For
the i-th time period of some pre-determined length the CA hands the pre-image
xn−i to the user who can then provide this value as a certificate for his public
key during this time period. To revoke the certificate the CA stops delivering
the pre-images. Since it is infeasible to find the pre-image of the previously given
value, forgery of certificates for future time periods is unlikely.

? This work was supported by the Emmy Noether Programme Fi 940/1-1 of the Ger-
man Research Foundation (DFG).

A preliminary version appears in
RSA Security 2004 — Cryptographer’s Track,

Lecture Notes in Computer Science, Springer-Verlag.

Other applications areas of hash chains include the design of micropay-
ments schemes [HSW96,RS97], the S/KEY one-time authentication (RFC 1760)
[Hal94,Hal95], securing routing information (e.g., [HPT97,HJP02,HPJ03]) and
spam-fighting protocols [DGN03]. Similarly, one-way chains —where the hash
function is replaced by a one-way function— have been deployed for the BiBa
signature scheme [Per01] and for multicast authentication [PCST02].

In some of the aforementioned areas the verification procedure can be short-
ened significantly. Namely, if the verifier stores a previously verified chain value
xm for m < n, then the next time a value is presented, the verifier merely has
to re-calculate the chain up to the stored value xm. However, considering certifi-
cates for example, the owner of the seed may visit some sites only sporadically.
Similarly, for routing protocols the information may be passed unfrequently. Or,
the verifier may not be able to store previous chain values due to memory limita-
tions or other restrictions. Finally, in some solutions, like the anti-spam solution
of Dwork et al. [DGN03], the values are not released gradually but rather require
the verifier to re-compute a full hash chain. Hence there are cases where large
parts of the chain may still have to be verified.

Related Results. The need for faster verification of hash chains has immediately
lead to so-called hash trees [Mer88]. Such constructs condense the long chains
to tree-like structures such that the path from any value to the published root
shrinks to logarithmic length. Unfortunately, in order to verify a given value
the user has to supply logarithmically many inner nodes of the tree as a proof
of correctness. Hence, two of the advantages of hash chains, low communication
complexity and structural simplicity, vanish and are traded for faster verification.

Interestingly, quite a few efforts have dealt with the problem of fast compu-
tation of intermediate values xi, for both chains and trees [CJ02,JLMS03,Sel03].
That is, if the user only stores the seed x0 then, in order to release xi of a hash
chain, he needs to re-calculate the chain starting with x0 up to xi. It is prefer-
able for the seed owner, of course, to keep some intermediate values xi1 , . . . , xik

confidentially, and to recover any xi from these values much faster.

The results in [CJ02,JLMS03,Sel03] give constructions for storing and re-
covering intermediate values of chains and trees. They also give lower bounds
showing that the constructions are optimal with respect to time/storage trade-
offs. However, none of these solutions improves the verification time. This is
especially true for the hash chains, and which would lessen the disadvantage of
chains versus trees.

Our Results. Our solution is to let the owner of the seed generate some sup-
plementary information which is published together with the chain’s end value
xn. This extra information then allows to improve the verification time when
the verifier is presented an allegedly correct chain value. Specifically, for secu-
rity bound T and ε on the adversarial running time and success probability,
respectively, our construction allows to decide correctness after roughly a frac-
tion p = (log T + log 1

ε)/128 of the original workload. Here, the workload is
the number of hash function evaluations (i.e., it is equal to i if xn−i is given).

2

Alternative choices for the constant 128, depending on parameter settings, are
possible.

The interesting property of our construction is that the two security param-
eters T and ε can be chosen individually by any verifier, even differently for each
verification run. Once the verifier has selected “his” security level this determines
the fraction p = p(T, ε) of hash chain computations. In other words, the more
liberal the verifier chooses the security level the less work he has to carry out.
In this sense, the property is related to the notion of progressive verification,
recently introduced in the context of message authentication in [Fis03].

We emphasize that the security level (T, ε) for the fast verification should not
be confused with security of the hash functions against collision-finders. As for
collisions we know that, by the birthday paradox, collisions for hash functions
with n-bits output can be generated with probability more than 1/2 within
2n/2 steps. Once such a collision is found the complete hash chain becomes
disaffected. In our model, we simply assume that finding such collision is beyond
feasible attacks. Security here refers to attacks in which the verifier should be
forced to perform more than a fraction p(T, ε) of the work; even if the adversary
overcomes this security bound the verifier can may still raise the level for the
next verification.

In our solution the extra information the seed owner attaches to xn is called
a check-bit vector. As explained, this check-bit vector is a universal parameter
enabling different security/workload levels for the verifiers. Another interesting
characteristic, in addition to the time improvement, is the length of such check-
bit vectors: very long vectors may outweigh the gain in verification time. We
therefore investigate lower bounds for this length.

The bounds on the length of check-bit vectors vary with the way the vectors
are created. In the most simple case the extra information is chosen according
to the time period i and merely consist of some fixed number of the bits of the
intermediate value xn−i. For this type of schemes, under which our construction
falls, we show that approximately1 (log T−logn+log 1

ε) log n bits are required. In
comparison, our solution produces check-bit vectors of about 128(log2 n−4) bits,
which for n = 1, 024, T = 240 and ε = 2−20 and p = 48.5% for example, yields
respectable 768 bits. Still, this is better than the usual 160 log2 n = 1, 600 bits
to communicate the inner nodes of a tree, and the communication of the public
check-bit vector amortizes over the time periods. Yet, hash trees are usually
much faster verifiable, in particular with respect to “standard” security levels.

Organization. In Section 2 we define check-bit schemes and their security for-
mally. We present our lower bounds in Section 3 and our construction appears
in Section 4. We conclude with a brief discussion in Section 5.

2 Definition

In the most simple form, a hash chain (for a given length parameter n) can be
described by two algorithms G and V , the generator and verification algorithm.

1 The bound depends on further parameters not discussed here in the introduction.

3

The former algorithm simply chooses a random x0 and computes the chain up
to xn, and the verifier on input xn and some putative chain value x for time
period i merely checks that hash

i(x) = xn.

Check-Bit Schemes. Here we augment the basic hash chain generation and ver-
ification. Algorithm G, when generating the chain for seed x0, repeatedly runs
a deterministic selection algorithm S as subroutine for each hash function iter-
ation. For each such execution, for i = n− 1 down to 0, algorithm S produces a
string cbi (possibly the empty string λ), which is determined by the time period
number i, the intermediate value xn−i = hash

n−i(x0) and the preceding strings
cbi+1, . . . , cbn−1.

The so-called check-bit vector cb is the concatenation of all strings cb0, cb1,
. . . , cbn−1, ordered according to the release time. We assume that the position
of cbi within cb and its length are recoverable from cb; this clearly inhibits lossy
encodings and we thus call the constructions allowing to recover cbi schemes with
lossless encoding. Nonetheless, since we only deal with such schemes throughout
the paper we often drop this appendix. Let cb≥i be the string cbi|| . . . ||cbn−1

and set cb>i = cb≥i+1 for i ≤ n− 1 (where cb>n−1 = λ).
As before, the verifier V takes a value x and integer i together with the chain’s

end value xn as input, and verifies that x is the correct pre-image for time period
i. This time, however, the verifier also gets the check-bit vector cb as extra input
and uses this value to shorten the verification: For each hash function iteration in
time period j the verifier now also calls S(j, hash

j−i(x), cb>j) and compares the
result to the given cbj . If a mismatch occurs then reject, else continue (possibly
up to the chain’s end).

Moreover, the verifier gets two parameters T and ε representing the bounds
on the adversarial running time and success probability (both characteristics
are specified below). Instructively, one may think of these two variable security
parameters as determined by V before starting the verification, although for ease
of notation we sometimes set these parameters instead and then provide these
fixed values to the verifier.

Definition 1. A check-bit scheme with lossless encoding and for parameter n is
a triple (G,V ,S) of algorithms (of which G is probabilistic) such that

Algorithm G:

– picks a seed x0 according to some efficiently samplable distribution,
– computes xi = hash(xi−1) for i = 1, 2, . . . , n,
– computes cbi = S(i, xn−i, cb>i) for i = n− 1, . . . , 0,
– outputs (x0, xn, cb).

Algorithm V:

– gets inputs xn, cb and x, an integer i as well as T and ε,
– repeats the following until i = 0 or halt:
• if cbi 6= S(i, x, cb>i) then reject and stop2

• else set i← i− 1 and x← hash(x)

2 Here V recovers cbi, cb>i from cb.

4

– if x = xn then accept, else reject.

Algorithm S:

– takes an integer i, a value x and a string cb>i as input,
– computes and returns cbi = S(i, x, cb>i).

In addition, the scheme is complete, i.e., the verifier never rejects a valid input
xn, cb, i and x = xn−i produced by G, independently of T and ε.

Note that the selection algorithm S is defined to be deterministic. On one
hand, this simplifies the definition and analysis significantly. On the other hand,
it does not weaken the model too much. Namely, for a given hash function
hash define hash

′(xi||r) = hash(xi)||r such that r remains unchanged during the
iterations. If x0||r is chosen at random by G then S can use r as externally
provided random coins. This corresponds, of course, to public coins, as the right
part of the chain’s end value xn||r is output, too. However, public randomness
ensures that any verifier can re-calculate the selection algorithm’s output and
compare it to the given check-bit vector.

Attacks. In order to define security we have to specify the attack mode first. We
measure the running time T of the adversary by counting the hash function eval-
uations only. Formally, we therefore provide the attacker with an oracle hash(·)
which she can access, but for which “guessing” images, i.e., generating images
without querying the oracle, is infeasible. We let ε ∈ [0, 1) represent a bound on
the adversary’s success probability

We also introduce a parameter p ∈ [0, 1) which bounds the fraction of the
original work the verifier performs, at least if the position of the given value
exceeds a certain distance ∆ from the end. This offset allows to overcome the
problem of verifying values within the given bound if the values are too close to
the end, e.g., checking the second to last value with less than 50% of the work.
Nonetheless, the offset should be small and, in particular, not depend on the
chain length n in order to rule out trivial solutions like ∆ = n. It may, however,
depend on the adversarial bounds because ∆ is likely to depend on p which, in
turn, varies with T and ε.

We now define the following experiment for a check-bit scheme (G,V ,S) with
parameter n:

Experiment ExpA(T, ε, p, ∆):

– Algorithm G generates (x0, xn, cb).
– The adversaryA gets as input (xn, cb). The adversary also gets access to the

hash oracle hash(·) and an oracle Release(·) which takes integers j as input
and returns xn−j . Let r denote the maximum over all queries to Release

(where r = 0 if A has never queried the oracle).
– In addition to oracle queries the adversary performs internal computations

and finally outputs (x, k).
– The verifier V is invoked on (xn, cb, x, k, T, ε) and returns a decision after V

hash function evaluations.

5

We say that adversary A wins experiment ExpA(T, ε, p, ∆),

– if the adversary makes at most T hash function evaluations, and
– if the adversary has queried the hash oracle about hash

i(x) for all i =
0, 1, . . . , bpkc − 1, and

– if the adversary has queried the oracle Release only about values smaller
than k, i.e., if k > r, and

– if the position k exceeds the offset, i.e., if k ≥ ∆, and
– if the verifier does not reject within V ≤ pk hash function evaluations.

The mere purpose of letting the adversary query about the output is to charge
the adversary’s running time also for the time to verify the output.

Security. Informally, a check-bit scheme is (T, ε, p, ∆)-verifiable if no adversary
running in time T can cause the verifier to perform a fraction p or more of
the work with probability more than ε. Here, the work refers to the number k
of hash function evaluations required to verify the correct value xn−k at time
period k. As explained above, we usually envision the security bound as chosen
by the verifier, and that this bound then determines the required fraction of the
work. In this sense, p = p(T, ε) is a function of the security level, and we call a
check-bit scheme (p, ∆)-verifiable if for any (T, ε) it is (T, ε, p(T, ε), ∆)-verifiable.
More formally,

Definition 2. A check-bit scheme (G,V ,S) with parameter n is (T, ε, p, ∆)-
verifiable if, for any adversary A running in time at most T , the probability
of A winning experiment ExpA(T, ε, p, ∆) is at most ε. The scheme is (p, ∆)-
verifiable if, for any adversary A and any T, ε, the probability of A winning
experiment ExpA(T, ε, p(T, ε), ∆) is at most ε.

We have chosen a relative bound to measure the work to be performed, i.e.,
if p = 1/2 then at time period 3n/4 the verifier needs 3n/8 hash evaluations,
at time period n the verifier has to compute n/2 hash values etc. Alternatively,
one may define an absolute bound saying that the verifier has to do w = w(T, ε)
(or less) hash function evaluations, independently of the time period. But first
note that such an absolute bound easily follows if we set w = pn. Second, some
applications may bear in mind that verification is faster for the first time periods.
In this case, it is preferable to have a relative work reduction saying that you
save up to 50%, for instance, at any time period and independent of the length
n of the chain.

3 Lower Bounds

We first show a lower bound for special check-bit procedures in Section 3.1.
This bound holds for arbitrary security parameters T, ε and thus even yields
a bound for the more liberal case of (T, ε, p, ∆)-verifiable schemes. The bound
says that the selection algorithm S must essentially generate check-bit vectors
of (log T − log hn + log 1

ε) log n
∆ bits, where h is the maximum number of hash

6

function evaluations for each of the n iterations (including the ones for the
computation of S).

The bound above holds for selection algorithms where the length of the out-
put cbi may depend on the position i but not the intermediate value. We call
such schemes position-driven selection algorithms:

Definition 3. Let (G,V ,S) be a check-bit scheme (for parameter n). Algorithm
S is position-driven if for any two seeds x0, y0 we have |cbi(x0)| = |cbi(y0)|.

In general, the length of cbi may depend on the preceding values or check
bits as well, and thus |cbi(x0)| can be different from |cbi(y0)|. In this case, the
generator G possibly outputs some seeds x0 with very short check-bit vectors.
For such schemes we yet show in Section 3.2 that check-bit vectors with only a
slightly smaller length than above must still be produced with high probability.

For both bounds, i.e., even if |cbi(x0)| 6= |cbi(y0)|, we make the following
assumption which basically says that the adversary will find matching check
bits for random samples with at least the guessing probability.

Assumption 1. Let (G,V ,S) be a check-bit scheme with lossless encoding and
parameter n. Then, for any i, we assume that for random x0, y0 the probability
that cbi(x0) = cbi(y0) is at least 2−min{|cbi(x0)|,|cbi(y0)|}. The probability is over
the choice of x0 and y0.

3.1 Lower Bound for Position-Driven Selection Algorithms

Throughout this section we use the following notation (visualized in Figure 1):
We let [1, n] be the set of integers between 1 and n. Each integer represents the
number of hash function evaluations that are required to verify a given value x
at time period i.

We divide [1, n] into disjoint intervals. For this, let α0, . . . , αI be a sequence
of increasing values with α0 = 0 and αI = 1 for an appropriate integer I (which
we will specify later). For ` = 1, . . . , I define the `-th interval I` to be [α`−1n +
1, α`n], where we assume for simplicity that all α`n’s are integers.

Let (G,V ,S) be a (T, ε, p, ∆)-verifiable check-bit scheme with a position-
driven selection algorithm. For a seed x0 chosen by G let c` be the number of
check-bit positions in the interval I`. Note that, by assumption, c` does not
depend on x0. The sum over all c`’s for ` > log ∆ is therefore the total number
of check bits for which we prove our lower bound.

time period i
(releasing x)n−i

α Iα 0 α1 α I−2 α I−1

0 1 nn−1...

...

...

I−1I−2 interval no. I

Fig. 1. Idea of Lower Bound

7

In the sequel we set q = 1− p for p > 0 of the (T, ε, p, ∆)-verifiable scheme
and we let α` = qα`+1 for ` = I − 1, . . . , 1. Then α` = qI−` for ` ≥ 1 and each
interval I` is of size pα`n and by a factor 1/q larger than the previous one. Recall
that we also assume that α`n is an integer for all `, thus n must be a power of
1/q and we must have I = log1/q n for the number I of intervals. For instance,
for p = 1/2 we have log2 n intervals, each one half the size of the following one.

Let h be the maximum of G’s hash function evaluations when computing xi

and cbi in some i-th step. Then h includes the single evaluation to derive the
next chain value and at most h− 1 hash function computations of S.

Lemma 1. For all ` =
⌈

log1/q ∆
⌉

, . . . , I we have

c` ≥ log2 T − log2 hn− log2 ln 1
1−ε

Note that, for very small ε, the term log2 ln 1
1−ε becomes roughly log2 ε.

Hence, the smaller the error should be the more check bits are requried.

Proof. Suppose that for some interval I` the number c` is strictly less than the
given bound. We show how to construct an adversary A then that runs at most
T = 2t steps and succeeds with probability more than ε in making the verifier
evaluate more than a fraction p of the k = α`n iterations for xn−α`n, i.e., beyond
interval I`. Note that k ≥ ∆ by construction.

Adversary A repeats the following at most r = T/hn times. A selects a
random seed y0 and iterates the hash function until all check bits c` in interval
I` have been computed. If these check bits match the original ones, then output
x = hash

n−α`n(y0) and stop, else repeat.

Note that the adversary’s running time is certainly bounded above by T .
This holds since the computation of the c` check bits via the position-driven
selection algorithm in each round requires at most hn hash function iterations,
and since the number of repetitions is at most r.

It remains to calculate the success probability. In each loop the probability
of A finding a value x for which the check bits match is, by Assumption 1, at
least 2−c` . Hence, the probability that A does not find a suitable x during all r
rounds is at most:

(

1− 2−c`

)r

≤ exp
(

−r2−c`

)

= exp
(

− 2t−log
2

hn−c`

)

< exp
(

− 2
t−log

2
hn−

(

t−log
2

hn−log
2
ln

1
1−ε

)

)

= exp
(

− 2
log

2
ln

1
1−ε

)

= exp
(

− ln 1
1−ε

)

= 1− ε

The probability of A finding such an x is therefore strictly more than ε, contra-
dicting the security of the scheme. Therefore, the assumption about c` falling
below the bound must be false. ut

We immediately get from the previous lemma:

8

Theorem 2. Let (G,V ,S) be a (T, ε, p, ∆)-verifiable check-bit scheme with loss-
less encoding and parameter n. Let S be a position-driven selection algorithm
and assume that Assumption 1 holds. Presume further that the computation of a
chain of length n requires at most hn hash function evaluations. Then the length
of the check-bit vector is at least

(

log2 T − log2 hn− log2 ln 1
1−ε

)

log1/(1−p)
n
∆

Proof. According to the lemma, for each ` ≥
⌈

log1/q ∆
⌉

and interval I` we have
for the number of check bits:

c` ≥ t− log2 hn− log2 ln 1
1−ε

It follows for the overall number of check bits:

I
∑

`=dlog ∆e

c` ≥
(

t− log2 hn− log2 ln 1
1−ε

)

·
(

log1/q n− log1/q ∆
)

This proves the lower bound. ut

For example, if n = 1, 024, h = 1 and the verifier chooses a security level
of T = 240 and ε = 2−20, then for p = 1/2 = q and offset ∆ = 64 we need
approximately (40− 10 + 20) · (10− 6) = 200 bits.

3.2 Lower Bound for General Check-Bit Schemes

For non-position-driven selection algorithms the size of the output cbi may vary
with the intermediate values. Luckily, we can modify the proof above to obtain
a slightly relaxed bound.

Take all the values α`, I` etc. as in the previous section and let (G,V ,S) be a
check-bit scheme, not necessarily with a position-driven selection algorithm. Let
c` denote again the number of check bits in interval I` —which now is a random
variable over G’s choice. In addition, fix some constant a ∈ (0, 1).

Lemma 2. The probability that G picks a seed x0 such that

c` ≥ log2 T − log2 hn− log2 ln 1
1−ε1−a for all ` =

⌈

log1/q ∆
⌉

, . . . , I

is at least 1− (I − log1/q ∆)εa.

Substituting log2 ln 1
1−ε1−a by the approximation log2 ε1−a again, the success

probability now enters as (1−a) log2 ε. Hence, the smaller a the larger the vector
length —but the smaller the probability of outputting such a long vector as well.

Proof. Suppose for sake of contradiction that this probability is less than 1−(I−
log1/q ∆)εa. Then there exists a fixed `0 in the range such that the probability
of G picking a seed x0 such that

c`0 < bound`0 := log2 T − log2 hn− log2 ln 1
1−ε1−a

9

is at least εa.
Next, as in the previous case, we construct an adversary A trying to cause

more than a fraction p of the work for interval I`0 with probability more than ε.A
repeats the following r = T/hn times. A selects a random seed y0 and computes
the chain for this seed up to time period α`0n. Let x be hash

n−α`0
n(y0). The

adversary continues to iterate the hash function (α`0 − α`0−1)n times. If the
check bits do not match the given ones then repeat the process. Else return x.

The running time of A is bounded above by T since the adversary makes
at most hn hash function iterations for each of the r tries. As for the success
probability, condition on the event that G outputs some x0 for which c`0 <
bound`0 . This happens with probability at least εa. Next note that the adversary
succeeds if the at most bound`0 bits of the attempt match. This happens with
probability at least 2−bound`0 according to Assumption 1.

Hence, under the condition that G’s seed x0 causes c`0 to be less than the
bound, it follows as before that A fails with probability

(

1− 2−bound`0

)r

< 1− ε1−a

The probability that A succeeds in the experiment is therefore more than ε1−a

times the probability that c`0 < bound`0 for G’s output. Multiplying these two
probabilities we obtain a successful attack with probability more than ε. Thus
the initial assumption must have been wrong. ut

Theorem 3. Let (G,V ,S) be a (T, ε, p, ∆)-verifiable check-bit scheme with loss-
less encoding and parameter n. Presume that the computation of a chain of length
n requires at most hn hash function evaluations and let a ∈ (0, 1) be a constant.
Then, under Assumption 1, with probability at least 1− εa log1/(1−p)

n
∆ (over G’s

seed choice) the check-bit vector has at least
(

log2 T − log2 hn− log2 ln 1
1−ε1−a

)

log1/(1−p)
n
∆

bits.

4 Constructions of Check-Bit Schemes

In this section we present our check-bit scheme. We start with an elementary
attempt which provides an absolute work bound of w = log2 T + log2

1
ε hash

function evaluations for the desired security parameter. However, the relative
performance (relative to the time period and the original number of hash function
evaluations) is rather bad, so we elaborate on a construction with relative bound
p = (log2 T + log2

1
ε)/128. This, unfortunately, comes with an increase in the

length of check-bit vector.

4.1 Construction with Absolute Bound

In our construction with absolute bound the selection algorithm S simply out-
puts the least significant bit of intermediate value xn−i for each percent of com-
putation (i.e., if i = bjn/100c for some j). Here, the value 100 is chosen rather

10

arbitrarily; any other granularity may be selected as well. The verifier, when
checking some input x, i, then merely compares the least significant bits of the
intermediate values when re-calculating the chain, and stops if a mismatch oc-
curs.

Construction 4. The check-bit scheme (Gabs,Vabs,Sabs) with parameter n >
100 is described by the following selection algorithm:

Algorithm Sabs(x, i):

if i = bjn/100c for some j ∈ {1, . . . , 100}
then output cbi = [least signifcant bit of x]
else output cbi = λ

Note that the length of the check-bit vector is constant and adds 100 bits to
the public chain’s end value xn of typically 160 or 256 bits.

The idea of the scheme is as follows. Suppose that the distribution of the bits
is approximately uniform, and that the adversary cannot do better than com-
puting chains for randomly chosen seeds. Then, for such a seed the probability
of hitting w = log2 T + log2

1
ε of the given check bits is at most 2−w = εT−1.

Hence, the overall success probability of the adversary making T or less steps is
at most ε.

The scheme, as is, does not provide a reasonable relative security level,
though. For instance, consider the time period k which is log2

1
ε − 1 percent

from the end value n. An adversary that outputs a random x together with k
makes V evaluate the whole hash function till the end with probability 2ε (be-
cause there are at most log2

1
ε − 1 check bits in this interval). Hence, for any

given ε the verifier performs 100% of the original computation with probability
more than ε for some point k. We remark that this argument still holds if there
is a small offset ∆ because k = (log2

1
ε − 1)n/100 eventually surpasses this value

for large n’s.
Because of our interest in relative bounds we omit a formal security statement

and analysis of this scheme here and turn to the next construction instead.

4.2 Construction with Relative Bound

The problem with the approach in the previous subsection is that the check bits
are distributed equidistantly over the chain of length n. Yet, the workload of
the verifier varies with the distance to the end value and is thus relative to the
position. The idea is now to increase the density of check bits towards the end of
the chain such that the number of check bits compensates for the reduced work
towards the first time periods.

Construction. For our construction we also let the time period number enter
into the hash function computation. We formally reduce this to the basic case as
follows. Let 〈·〉 be some fixed-length encoding (such that the encoding is one-to-
one for integers 0, 1, . . . , n) and let hash

′(·) be a hash function. Then we define
a function hash for inputs xi = 〈i〉||x′

i by

hash(xi) = 〈i + 1〉||hash
′(〈i〉||x′

i)

11

For random x′
0 we can now set the start value as x0 = 〈0〉||x′

0 and derive the chain
by iterating hash on x0. The verifier, when presented a hash value xi = 〈i〉||x′

i,
should now also check that i matches the current time period. Observe that the
least significant bits of the chain values are still well distributed if hash

′ is an
appropriate hash function.

Next we specify our construction. We partition the chain of length n into I =
log2 n intervals of length 1, 2, 4, . . . , n/4, n/2. For ease of notation we presume
that n is a power of 2. For ` = 1, . . . , I interval I` ranges from 2`−1 to 2` − 1
(and we add the point n to interval II).

3 We also introduce an even value B,
the base, which determines the density of the check bits. Typically, B = 100 as
in the previous section or, for ease of implementation, B should be a power of
two, say 128.

In interval II we let Srel output the least significant bit of the intermediate
values at positions jn/B. In interval II−1 we double the check bits by outputting
the bits of each value at position jn/2B. In general, we output the least signifi-
cant bit of value xn−i for i ∈ I` if i = jn/(B · 2I−`) = j2`/B (with appropriate
rounding).

Another refinement is to return the b least significant bits instead of a single
one only. This improves the error detection probability. We thus define our check-
bit scheme with respect to parameters b and B which are arbitrary integers
(except that B is even) and which are fixed for a specific instance.

Construction 5. The check-bit scheme (Grel,b,B,Vrel,b,B ,Srel,b,B) with parame-
ter n > B is described by the following selection algorithm:

Algorithm Srel,b,B(x, i):

if i ∈ I` and i =
⌊

j2`/B
⌋

for some j ∈ { 1
2B, 1

2B + 1, . . . , B − 1}
then output cbi = [b least significant bits of x]
else output cbi = λ

For each interval I` such that |I`| = 2`−1 ≥ B/2 the variable j runs through
B/2 values, for each such values producing b bits output. The union of the
remaining intervals with ` < log2 B ranges (at most) from 1 to B. Hence, there
are at most B further indices producing a non-empty check-bit output. The
overall length of a check-bit vector is therefore bounded by:

1
2bB · (I − log2 B + 1) + bB = 1

2bB ·
(

log2
n
B + 3

)

.

If we choose B = 128 and b = 2, for instance, then we get a check-bit vector of
maximal 128(log2 n − 4) bits, and for n = 1, 024 the check-bit vector is at most
768 bits. We remark that we have rounded off some values for sake of readability;
depending on the choice of parameters the actual length may even be smaller.

To eliminate the division with rounding the base B can be chosen as a power
of two, B = 2β with, say, β = 7. Then, with j running through 2β−1 and 2β − 1,
the rounded values of j2`/B = j2`−β equal the integers 2`−1, . . . , 2`−1. To check
that i matches one of these values, it therefore suffices to check that i� (`− 1),
i.e., i with the least significant `− 1 bits knocked off, equals 1.

3 In contrast to the lower bound we move the intervals one position to the left to
simplify the implementation.

12

Assumptions. In order to show security we first need to specify the assumptions
about the hash function. The first assumption basically says that finding pre-
images for the given chain is impossible, at least within a given bound like
T0 ≈ 260 and ε0 ≈ 2−40. In particular, giving away some bits of pre-images of
chain values must not facilitate the search.

We remark that the parameters T0, ε0 should not be confused with the flex-
ible and lightweight parameters T, ε of our improved verification procedures.
The values T0, ε0 are large bounds for adequate security against inverters and
collision-finders. They are determined by the choice of the hash function and
are usually fixed. Still, they limit of course the choices for T, ε because the least
requirement to make our fast verification algorithm work, is that the chain is
not compromised.

To formulate the assumption we can use the description of experiment ExpA:

Assumption 6. For the scheme (Grel,b,B ,Vrel,b,B ,Srel,b,B) in Construction 5 for
any adversary A running in time at most T0 the probability of A winning exper-
iment ExpA(T0, ε0, 1, 1), i.e., the experiment with bounds p = 1 and ∆ = 1, is
at most ε0.

Note that the bound p = 1 implies that the verifier can check the complete
chain and, in particular, also compares the final value to the original end value.
The assumption therefore says that the adversary is not able to find (x, k) within
the success bound (T0, ε0) such that x has not been released before and such
that xn = hash

k(x). It follows that xn−i 6= hash
k−i(x) for any i with 1 = ∆ ≤

i ≤ k. In conclusion, according to the assumption the adversary is not able to
find collisions (or possibly the pre-image itself) except with some very small
probability, even if given some additional information in form of the check-bit
vector.

Although the adversary may not be able to find a pre-image of the chain’s
end value, it might still be possible to find a related pre-image such that large
parts of the check-bit vectors coincide. The following assumption rules this out:

Assumption 7. For any two seeds x0, y0 such that hash
i(x0) 6= hash

i(y0) for all
i = 0, 1, . . . , n we assume that the check-bit vectors cb(x0) and cb(y0) generated
by Srel,b,B are uniformly and independently distributed strings of the correspond-
ing length (where the probability is over the choice of the hash function hash).

Note how this assumption captures the adaptive queries of the adversary to
Release(·) in an attack. Specifically, the assumption quantifies over all seeds and
thus, even if the adversary knows a seed x0 generated by Grel,b,B , it is infeasible
to find a different seed complying with (parts of) cb(x0) better than with trial-
and-error.

Both assumptions are satisfied if hash is for example modelled as a random
oracle [BR93]. In this case, inverting the chain or finding collisions is extremely
unlikely and the bits are then uniformly and independently distributed. From a
practical point of view, well-known hash functions like SHA-1 and RIPEMD-160
seem to approximate the assumptions quite well. To best of our knowledge the
distribution of the least significant bits is not known to be biased significantly.
Similarly, providing very few bits of a pre-image is not known to substantially
help inverting the hash function. See [BK03] for results.

13

Security. We next prove security of our construction under the stated assump-
tions:

Theorem 8. Under Assumption 6 (for parameters T0, ε0) and Assumption 7
the check-bit scheme (Grel,b,B ,Vrel,b,B ,Srel,b,B) in Construction 5 is a (p, ∆)-
verifiable check-bit scheme for

p =
log2 T + log2

1
ε−ε0

+ b
1
2bB

and ∆ = B/2

if T ≤ T0 and ε0 ≤ ε (and p = 1 otherwise). For chains of length n the check-bit
vectors have at most

1
2bB ·

(

log2
n
B + 3

)

bits.

Proof. The case p ≥ 1 is trivial, so we condition on p < 1, T ≤ T0 and ε0 ≤ ε.
Consider the adversary’s final output (x, k) with k ≥ ∆. Let ` be the interval
number in which k lies, i.e.,

n

2 · 2I−`
≤ k <

n

2I−`

Then, one percent of the work to verify the pair (x, k) corresponds to at least
1
2 ·

1
2I−` percent of the work to verify the whole chain. By construction, on the

other hand, the density of the check bits in each interval Ii for i ≤ ` is at least
2I−i ≥ 2I−` times the one of check bits in II . Hence, if we perform a fraction p
of the verification work for (x, k), reading at least a fraction p2−(I−`+1) of the
complete chain, then we consult at least

b
⌊

p2−(I−`+1) · B2I−`
⌋

= b
⌊

pB/2
⌋

= b
⌊ log

2
T+log

2

1
ε−ε0

+b

b

⌋

≥ log2 T + log2
1

ε−ε0

check bits in total. Note that bpB/2c ≤ p∆ ≤ k and therefore we do not reach the
end of the chain before accessing all these check bits. In summary, the adversary
must find an x such that it matches at least log2 T + log2

1
ε−ε0

check bits.
During the attack the adversary may probe at most T inputs x = (〈i〉, x′)

by forwarding them to the hash function oracle. First notice that none of these
samples yields a collision hash(x) = xi+1 for any unreleased part of the chain,
except with probability ε0. Else this would contradict Assumption 6, because
we could easily devise an algorithm from the adversary, winning experiment
expA(T0, ε0, 1, 1) with probability more than ε0. In the sequel we condition on
the event that no such pre-image of the chain pops up.

Fix some sample x = 〈i〉||x′ and perform the thought experiment of iterating
Srel,b,B for input i, x, cb>i until b bpB/2c check bits have been produced (or the
end is reached). Here we exploit the fact that the sample implicitly defines the
position i. We can assume that no chain value xj for i < j such that x =
hash

j−i(xj) has been released before; else the adversary could derive the hash
value of x for free by simply querying Release instead. In this case, it follows

14

again by Assumption 6 that none of the values during the “virtual” iteration
matches the values in the chain. According to Assumption 7, the probability
that the “virtual” check bits match the b bpB/2c corresponding bits in cb is then
at most 2−bbpB/2c. Hence, the probability that any of the at most T samples of
the adversary matches is at most

T · 2−bbpB/2c ≤ T · 2
− log

2
T−log

2

1
ε−ε0 = ε− ε0.

Together with the bound ε0 of the probability that the adversary finds a pre-
image of the given chain, the result now follows. ut

Returning to our example with n = 1, 024, B = 128 and b = 2, for T = 240

and ε = 2−20 (and ε0 ≈ 0) the verifier requires about p = 48.5% of the original
workload. For b = 3 and vectors of 1, 152 bits the work in this case even reduces
to 33%.

We finally contrast the length of check-bit vectors in our solution to the
lower bound. Suppose we want to achieve a reduction of 50% and fix p = 1/2.
We further fix the adversarial parameters T, ε, or at least some upper bound
for them. Assume for simplicity that ε0 = 0. Then the lower bound says check-
bit vectors must be roughly (log2 T + log2

1
ε − log2 n) log2

n
∆ bits. If we now set

bB = 4(log2 T + log2
1
ε) in our construction, then we achieve p ≈ 1/2 and the

vector length becomes 2(log2 T + log2
1
ε)(log2

n
∆ + 2) for ∆ = B/2. In this sense,

our solution is close to the lower bound.

5 Discussion

We have presented constructions to improve the verification time of hash chains.
Our solutions enable the verifier to select a flexible security level and to relate the
work to be done to this security level. Our constructions and lower bounds rely on
so-called check-bit schemes where basically some bits of the intermediate values
are output. Fortunately, such schemes are very simple and can be integrated
quite easily; they preserve the simplicity of hash chains and are applicable in
general. Disadvantageously, as we have shown, those schemes cannot go below
certain bounds when it comes to the length of the check-bit vectors.

It remains an open problem to provide other check-bit schemes with shorter
vectors, e.g., by using lossy encoding techniques. Yet, those schemes should have
comparable simplicity as the basic scheme in this paper, otherwise the running
time may be dominated by the additional effort, invalidating the benefits of
faster verification. Similarly, it would be interesting to show lower bounds for
more general check-bit schemes.

Acknowledgment

We thank the anonymous reviewers of RSA-CT 2004 for valuable comments.

15

References

[BK03] M. Bellare and T. Kohno. Hash Function Balance and its Impact
on Birthday Attacks. Number 2003/65 in Cryptology eprint archive.
eprint.iacr.org, 2003.

[BR93] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols. Proceedings of the Annual Conference
on Computer and Communications Security (CCS). ACM Press, 1993.

[CJ02] D. Coppersmith and M. Jakobsson. Almost Optimal Hash Sequence Traver-
sal. Financial Cryptography (FC) 2002, Volume 2357 of Lecture Notes in
Computer Science. Springer-Verlag, 2002.

[DGN03] C. Dwork, A. Goldberg, and M. Naor. On Memory-Bound Funtions for
Fighting Spam. Advances in Cryptology — Crypto 2003, Volume 2729 of
Lecture Notes in Computer Science. Springer-Verlag, 2003.

[Fis03] M. Fischlin. Progressive Verification: The Case of Message Authentication.
Progress in Cryptology — Indocrypt 2003, Volume 2904 of Lecture Notes
in Computer Science. Springer-Verlag, 2003.

[Hal94] N. Haller. The S/KEY One-Time Password Scheme. Symposium on Net-
work and Distributed Systems Security, pages 151–157. Internet Society,
1994.

[Hal95] N. Haller. The S/KEY One-Time Password Scheme, 1995.
[HJP02] Y.-C. Hu, D. Johnson, and A. Perrig. SEAD: Secure Efficient Distance

Vector Routing in Mobile Wireless Ad Hoc Networks. Workshop on Mobile
Computing Systems and Applications (WMCSA) 2002. IEEE Computer
Society Press, 2002.

[HPJ03] Y.-C. Hu, A. Perrig, and D. Johnson. Efficient Security Mechanisms for
Routing Protocols. Annual Symposium on Network and Distributed System
Security (NDSS) 2003. Internet Society, 2003.

[HPT97] R. Hauser, A. Przygienda, and G. Tsudik. Reducing the Cost of Security
in Link State Routing. Annual Symposium on Network and Distributed
System Security (NDSS)’97. Internet Society, 1997.

[HSW96] R. Hauser, M. Steiner, and M. Waidner. Micro-Payments Based on iKP.
Proceedings of SECURICOM’96, Worldwide Congress on Computer and
Communications Security and Protection, pages 67–82. ???, 1996.

[JLMS03] M. Jakobsson, T. Leighton, S. Micali, and M. Szydlo. Fractal Merkle Tree
Representation and Traversal. Topics in Cryptology — Cryptographer’s
Track, RSA Conference (CT-RSA) 2003, Volume 2612 of Lecture Notes in
Computer Science, pages 314–326. Springer-Verlag, 2003.

[Lam81] L. Lamport. Password Authentication with Insecure Communication. Com-
munications of the ACM, 24(11):770–772, 1981.

[Mer88] R. Merkle. A Digital Signature Based on a Conventional Encryption Func-
tion. Advances in Cryptology — Crypto’87, Volume 293 of Lecture Notes
in Computer Science, pages 369–378. Springer-Verlag, 1988.

[Mic96] S. Micali. Efficient Certificate Revocation. Technical Report
MIT/LCS/TM-542b, MIT Laboratory for Computer Science, 1996.

[PCST02] A. Perrig, R. Canetti, D. Song, and D. Tygar. The TESLA Broadcast
Authentication Protocol. CryptoBytes, Volume 5, pages 2–13. RSA Security,
2002.

[Per01] A. Perrig. The BiBa One-Time Signature and Broadcast Authentication
Protocol. Proceedings of the Annual Conference on Computer and Com-
munications Security (CCS), pages 28–37. ACM Press, 2001.

16

[RS97] R. Rivest and A. Shamir. PayWord and MicroMint: Two Simple Micro-
payment Schemes. Security Protocols, Volume 1189 of Lecture Notes in
Computer Science, pages 69–87. Springer-Verlag, 1997.

[Sel03] Y. Sella. On the Computation-Storage Trade-Offs of Hash Chain Traversals.
Financial Cryptography (FC) 2003, Lecture Notes in Computer Science.
Springer-Verlag, 2003.

17

