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Abstract. Cryptographic constructions of one primitive or protocol from another one

usually come with a reductionist security proof, in the sense that the reduction turns any

adversary breaking the derived scheme into a successful adversary against the underlying

scheme. Very often the reduction is black-box in the sense that it only looks at the

input/output behavior of the adversary and of the underlying primitive. Here we survey

the power and the limitations of such black-box reductions, and take a closer look at the

recent method of meta-reductions.

1 Introduction

Since the beginning of modern cryptography in the 70’s the design methodology for cryp-
tographic protocols has shifted from ad-hoc constructions and “security by obscurity” tech-
niques to well-founded approaches. This transition shows in the agreed-upon methodology
to provide clean attack models and security goals of a protocol, and to give a rigorous proof
that the protocol meets these goals. Here, the term “proof” should be understood from a
reductionist viewpoint, saying that any successful adversary breaking a cryptographic scheme
would entail the efficient break of a presumably hard primitive.

Today a special type of proof, called black-box reduction, is pervasive in cryptography
and provides a very powerful tool to analyze protocols. Roughly, a reduction is black-box if
it does not use any internals of the adversary beyond the input and output behavior, and
analogously if nothing about the structure of the underlying primitive except for its basic
properties is exploited (such reductions are called fully black-box [RTV04]). It turns out
that a vast number of cryptographic primitives such as one-way functions, pseudorandom
generators [HILL99], and pseudorandom functions [GGM86] can all be derived from each
other in a black-box way. Starting with a result by Impagliazzo and Rudich [IR89], though,
for some important problems it has been proven that black-box reductions cannot exist.
These negative results are summarized under the name black-box separations.

In this paper we survey the three main techniques for black-box separation results, namely,
the relativization technique [IR89], the two-oracle technique [HR04], and the increasingly
more popular meta-reduction technique [BV98]. We start with an overview about black-
box constructions and, after having reviewed the three separation techniques, we also briefly
discuss non-black-box constructions to indicate potential limitations and bypasses of black-
box separation results.
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2 Black-Box Constructions

In this section we look at the positive cases of constructions which are black-box and the
equivalence class of symmetric-key primitives, called Minicrypt [Imp95].

2.1 One-Way Functions are Necessary

Most of today’s cryptography is impossible without assuming the existence of (cryptographic)
one-way functions. Of course, we can symmetrically encrypt messages securely with the One-
Time Pad encryption, but as shown by Shannon [Sha49] this basically requires the key to
be of equal length as the message. If, on the other hand, one tries to securely encrypt
messages which are larger than the key, then this immediately implies the existence of one-
way functions, as formally shown by Impagliazzo and Luby [IL89]. In this paper, Impagliazzo
and Luby also show further primitives to imply one-way functions, like bit commitments,
(private-key) identification, and coin-flipping over phone.

It should be mentioned that all these implications are constructive in the sense that one
can build a concrete one-way function f given the primitive in question, even given the
primitive as a black-box only. For instance, for a semantically-secure symmetric encryption
scheme Enc which allows to encrypt messages of twice the length as the key, the one-way
function is given by f(k,m) = Enc(k,m)||m. Furthermore, the reduction from the one-
wayness to the security of the underlying primitive treats both the adversary and the primitive
as black-boxes, such that the overall constructions are also called fully black-box [RTV04].

The implications also mean that most cryptographic primitives are not known to exist
for sure. That is, the existence of (cryptographic) one-way functions implies (worst-case)
one-way functions and thus P 6= NP. In other words, P 6= NP is necessary for numerous
cryptographic tasks. It is, however, currently not known if it is also sufficient [AGGM06,
BT06].

2.2 One-Way Functions are Sufficient for Minicrypt

In a sense, one-way functions appear to be “very low” in the hierarchy of assumptions. They
are not only necessary for most cryptographic tasks, but they also suffice to build a lot of
cryptographic primitives. In a series of papers it has been shown that one-way functions
imply pseudorandom generators [HILL99], that such pseudorandom generators imply pseu-
dorandom functions [GGM86], and that pseudorandom functions imply pseudorandom per-
mutations [LR88]. Once one has the powerful pseudorandom functions then other primitives
like message authentication codes (MACs), private-key encryption, and private-key identifi-
cation are derived easily. All these constructions and reductions are of the fully black-box
type.

Impagliazzo [Imp95] calls the world in which we have cryptographic one-way functions,
but no public-key cryptography, “Minicrypt”; as opposed to “Cryptomania” in which we have
all the power of public-key encryption. In Minicrypt, we can still do a remarkably number of
cryptographic tasks like sending messages securely to parties which we have met before; only
secure communication with strangers in impossible then. Somewhat unexpected, another
very interesting primitive which can also be built from one-way functions and thus lies in
Minicrypt, are secure digital signature schemes. This has been shown in a sequence of papers
[NY89, Rom90], again in the fully black-box sense. The noteworthy property here is that,
structurally, digital signatures are of course related to public-key primitives; existentially,
though, they belong to the family of symmetric-key primitives.
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3 Black-Box Separations

In this section we review the three main techniques for black-box separations ans the questions
which primitives lie (presumably) outside of Minicrypt.

3.1 Relativizing Reductions: Separating Key Agreement from One-Way
Functions

In their seminal paper, Impagliazzo and Rudich [IR89] show that one cannot base (even
weakly) secure key agreement on one-way functions. More precisely, they first use a (ran-
dom) permutation oracle to implement a one-way permutation. This oracle can later be
derandomized and one “good” oracle can be found by standard counting arguments and the
Borel-Cantelli lemma (see [IR89] for details). In the next step they show that relative to
an NP-oracle no key agreement protocol based on the random permutation oracle can be
secure. (A simplified version of this fact for the case of perfectly complete key agreement can
be found in [BKSY11].) Put differently, there cannot exist relativizing constructions of key
agreement from one-way permutations, i.e., where the security of the construction remains
intact in the presence of an arbitrary oracle.

As pointed out by [IR89, Sim98, RTV04] relativing reductions where the relativizing
oracle allows for an embedding of an NP-oracle —or more generally, any PSPACE-oracle,
such that any “standard” cryptography besides the one-way permutation can be broken—
can be shown to rule out so-called ∀∃ semi-black-box reductions [RTV04]. Roughly, these
are efficient reductions which turn efficient successful adversaries for one scheme into an
adversary for the other one, where both the adversary and the reduction have oracle access
to the primitive oracle, potentially also containing the embedded NP or PSPACE oracle.
Since such reductions only use the underlying primitive as a black-box, but can depend in the
adversary’s implementation, separations on this level are “somewhat less black-box” than in
the case of fully black-box reductions, strengthening the separation result.

Relativizing separations can be found in [IR89, Sim98, GKM+00, Fis02, Hof11]. In par-
ticular, Rudich [Rud92] used this technique to separate k-round key agreement from any
(k + 1)-round key agreement, implying an infinite hierarchy of primitive classes.

3.2 Fully Black-Box Reductions: The Two-Oracle Technique by Hsiao and
Reyzin

Since relativizing reductions (with embedding) are equivalent to ∀∃ semi-black-box reductions
[RTV04] showing impossibility results is much more challenging than for the fully black-
box case. Hence, Hsiao and Reyzin [HR04] introduced the idea of moving from relativizing
reductions to fully black-box reductions, and use a so-called two-oracle technique. The idea
is roughly to have an oracle Ω which is used to implement the primitive Q we would like
to have, say, a one-way function or permutation. The second oracle Π is used to break the
primitive P which we are trying to build out of the one given through Ω. For a separation
it then suffices to show that one can implement Q from Ω (ignoring Π), such that that for

all algorithms R there exists some adversary A such that AΠ breaks P , but RAΠ,Ω,Ω cannot
break Q. Note that in the latter case R only has access to Π through the black-box access
to A, although most proofs later use a universal A which basically merely runs Π, such that
this essentially boils down to show that RΠ,Ω should not be able to break Q.

Because the two-oracle technique allows for easier separations it became quite popular and
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(a) (b)

Figure 1: (a) shows the reduction R turning a successful adversary A against scheme S into a successful
attacker RA against a cryptographic game C, by simulating the scheme S; (b) shows the meta-reduction M
simulating the adversary A and turning R into a successful algorithm MR against C directly.

has been applied more often in recent papers. Examples include [HR04, DOP05, BCFW09,
FLR+10, FS12].

3.3 The Meta-Reduction Technique

Recently, a new kind of black-box separation technique has gained significant attention, called
meta-reductions [BV98].1 Roughly, a meta-reduction is a “reduction against the reduction”.
The situation is depicted in Figure 1: The reduction R is given black-box access to an adver-
sary A, which supposedly attacks a scheme S, but where S is now simulated by the reduction.
The reduction itself is supposed to break a so-called cryptographic game C with the help of
A. This game usually models any falsifiable assumption [Nao03], including assumptions like
computing discrete logarithms or inverting the RSA function. We note that, in order to avoid
trivial reductions like to the security of the scheme itself, the game C often consists of less
rounds than the interactive phase of the scheme.

The meta-reduction now simulates the adversarial part in order to turn R in a black-box
manner into an efficient and successful algorithm MR against C directly, without reference
to an allegedly successful adversary A. Note that this clearly requires the existence of a
successful adversary A against S in the first place, or else the reduction R would not need
to break C at all. Usually, one can build such an (inefficient) adversary by using exhaustive
search for the secrets, and then one needs to make sure that the efficientM can still replace
A. Similarly to the case of zero-knowledge, where the efficient simulator can mimic the
behavior of the all-powerful prover, the meta-reduction’s advantage over the adversary here
is that it can rewind the reduction (or potentially take advantage of its code or behavior).
Overall, if the meta-reduction is sufficiently close to A from R’s perspective, it follows that
the probability for MR breaking C is close to the one of RA.

The advantage of meta-reductions over the other separation types is that this technique
usually only makes black-box use of the adversary, but works with arbitrary primitives. The
technique therefore applies to cases where one, say, seeks to show that certain constructions
cannot be based on the RSA assumption. As such, this separation technique is “below”
fully black-box reductions and dual to (∀∃)semi-black-box reductions. On the other hand, it
seems that the method is mainly suitable for interactive protocols in which the scheme can
be queried first, before the adversary is required to produce an output. Examples include un-
forgeability of signature schemes under chosen-message attacks or chosen-ciphertext security
for encryption schemes.

1Albeit the idea appears in [BV98] it seems as if the term meta-reduction has only been mentioned later
in [Bro05] and [PV05].
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In summary, the meta-reduction technique usually consist of the following three steps:

1. Design an all-powerful adversary A which breaks the scheme.

For example, in the signature case let A first compute a secret key sk∗ from pk, then let
it query the signature oracle to collect signatures (note that this step is only necessary
to build the meta-reduction), and finally let A compute a forgery.

2. Replace the (inefficient) adversary by the efficient meta-reduction.

This is usually done by carefully rewinding the reduction at appropriate places in the
query phase. To prevent the reduction from making further queries the rewinding is
usually done when the reduction does not make queries to the game C. This may also
require further conditions on the reduction to prevent the nested-rewinding problem
(the reduction seeking to reset the adversary while the meta-reduction aims to reset
the reduction). This problem may yield an exponential blow-up and is known from the
area of zero-knowledge [DNS04].

3. Show that the meta-reduction’s behavior is sufficiently close to the one of the all-
powerful adversary.

This step is usually the most challenging step as the meta-reduction’s output is some-
what closer entangled with the reduction’s state than the adversary’s behavior, due to
the rewinding.

With these steps it follows thatMR breaks the game C with probability close to the reduction
RA (given adversary A).

Meta-reductions have been successfully applied in a number of cases since [BV98], such as
[Cor02, Bro05, PV05, FS10, Pas11, GW11, DHT12, Seu12]. It is clear that the exact use of
meta-reductions differ, e.g., some results also impose restrictions on the primitives and work
for black-box groups only.

4 Non-Black-Box Constructions

In this section we mention some non-black-box constructions resp. reductions. Both examples
stem form the area of zero-knowledge proofs but the issue is in principle not restricted to this
area.

4.1 Karp Reductions are Non-Black-Box

The first examples touches the issue of Karp reductions between problems. Recall that a
Karp reduction from one language A to another language B is a deterministic polynomial-
time algorithm k such that x ∈ A ⇐⇒ k(x) ∈ B. If such an algorithm exist then we write
A ≤p B, intuitively meaning that the problem B is at least as hard as A (in the sense that
any decision algorithm for B would immediately yield a decider for A). Cook and Levin have
shown that the satisfiability is complete for NP, i.e., any other problem A ∈ NP reduces to
the satisfiability problem. This reduction, however, makes use of the (Turing machine) code
of the algorithm MA deciding A by representing its computation state as a boolean formula.
In other words, the Karp reduction of A to the satisfiability problem requires access to the
code for deciding A.

The code-dependence is exactly where the black-box property for cryptographic purposes
may break down. Given an arbitrary one-way function f and, say, proving in zero-knowledge
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that one knows a pre-image to some y under f , one would reduce this problem to some
NP-complete language L for which such a proof is known via a Karp reduction, and to run
the zero-knowledge protocol for L.2 However, the reduction from f to L would then require
knowledge of the code of f and does not apply to black-box constructions for f . Note that
it may still be possible to find direct zero-knowledge proofs for specific one-way functions,
like the Schnorr proof for discrete logarithms [Sch91], or find other alternatives to the Karp
reduction to L. We finally note that Brakerski et al. [BKSY11] recently introduced special
zero-knowledge oracles to argue about separations in the presence of such proofs.

4.2 Barak’s Non-Black-Box Zero-Knowledge Proofs

The second example is based on a non-black-box use of the adversary. Barak [Bar01] designs
a zero-knowledge proof based on non-black-box use of the adversary which overcomes previous
black-box impossibility results. Neglecting many technical subtleties, the protocol to prove
x ∈ L is roughly as follows. The protocol first runs an initialization phase whose only purpose
is to give the zero-knowledge simulator some freedom. In this phase, the prover commits to
the all-zero string π and the verifier send a random string r. Now the prover and the verifier
engage in a witness-indistinguishable protocol [FS90] that x ∈ L or that the commitment π
describes a program that predicts the verifier’s string r.

A malicious prover cannot take advantage of the initialization phase —predicting the
uknown random string r remains infeasible— and thus really needs to prove x ∈ L in the
second step. A zero-knowledge simulator against a malicious verifier, on the other hand, can
simply use the non-black-box access to the verifier’s code and its randomness, and commit
to the verifier’s program (with fixed randomness) on behalf of the prover. By the hiding
property of the commitment scheme this is indistinguishable from a commitment to zeros. It
is clear that this code π predicts r correctly, such that the simulator can use π as the witness
in the second part of the proof to faithfully simulate these steps, even without knowing a
witness to x ∈ L or by using the usual rewinding techniques. The zero-knowledge property
follows from the hiding of the commitment and the witness indistinguishability of the second
part.

5 Conclusion

Black-box separations (of any kind) are today thought of as good indications that one cannot
derive one primitive out of the other. But they can also been viewed as a shortcoming
of the proof technique itself. A few non-black-box constructions do exist, and one option to
circumvent black-box separations may be to use more non-black-box techniques. For example,
Harnik and Naor [HN06] showed that, using a complexity-theoretic assumption, one can build
(in a non-black-box way) collision-resistant hash functions out of one-way functions, allowing
to bypass Simon’s black-box separation result for this case [Sim98]. Unfortunately, Fortnow
and Santhanam [FS08] later showed that the assumption is unlikely to hold, or else the
polynomial hierarchy collapses. Still, it remains open to explore the limitations of black-box
separations via non-black-box techniques, or to strengthen the separation results along the
line of Brakerski et al. [BKSY11].

2Speaking of zero-knowledge proofs of knowledge in our example, one would need to ensure that the Karp
reduction is such that a witness extracted from the proof for L also allows to recover a pre-image for f ; this
is usually the case and such reductions are sometimes called Levin reductions.
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