
A preliminary version appears in PKC 2007, Lecture Notes in Computer Science, Springer-Verlag, 2007.

Anonymous Signatures Made Easy

Marc Fischlin∗

Darmstadt University of Technology, Germany

marc.fischlin@ gmail.com www.fischlin.de

Abstract. At PKC 2006, Yang, Wong, Deng and Wang proposed the no-

tion of anonymous signature schemes where signatures do not reveal the

signer’s identity, as long as some parts of the message are unknown. They

also show how to modify the RSA scheme and the Schnorr scheme to de-

rive anonymous signatures in the random oracle model. Here we present a

general and yet very efficient approach to build such anonymous schemes

from ordinary signature schemes. When instantiated in the random or-

acle model, our solution is essentially as efficient as the original scheme,

whereas our construction also supports an almost as efficient instantiation

in the standard model.

Keywords. Anonymity, perfectly one-way hash function, randomness

extractor, signature scheme.

1 Introduction

In an anonymous signature scheme, introduced by Yang et al. [YWDW06], a
signature σ to a message m should hide the identity of a signer. That is, one
should not be able to tell whether σ has been produced by the user with public
key pk0 or by the user with public key pk1. This holds as long there is some
hidden residual randomness in the signed message m, otherwise one can easily
check the validity of m and σ with respect to the public keys.

Yang et al. discuss several applications of anonymous signature schemes
such as authenticated key-transportation with client anonymity and anonymous
paper reviewing. Another example are anonymous auctions where bidders can
publish their bid and sign the bid prepended by some hidden random string,
such that the bidder’s identity remains secret and is only revealed if winning the
auction. Yang et al. also show that well-known signatures schemes like RSA and
Schnorr do not have the anonymity property, yet can be turned into anonymous
ones (in the random oracle model).

∗This work was supported by the Emmy Noether Program Fi 940/2-1 of the German
Research Foundation (DFG).

1

Our Results. Here we give a very simple and yet general construction method
for anonymous signatures from arbitrary signature schemes. Depending on the
instantiation of the underlying tools in our transformation we either get an
anonymous scheme in the random oracle model, which is essentially as efficient
as the original signature scheme, or we get a solution in the standard model with
a marginal loss in efficiency only (assuming the existence of regular collision-
intractable hash functions1).

For the underlying idea suppose for the moment that we have an unforge-
able but identity-revealing signature scheme producing signatures σ of length `.
Assume further that the unknown message m is distributed uniformly over `-bit
strings. If we now define a modified signature scheme where we let σ′ = σ⊕m,
then the new scheme would clearly retain unforgeability. At the same time,
signatures should still look random to an attacker who is oblivious about m
and should thus provide anonymity. The fallacy in this argument —in addition
to the overly optimistic assumption about completely random and unknown
messages— is that the original signature value σ itself depends on m and thus
σ′ may not be uniformly distributed anymore.

The solution for the problem with arbitrary message distributions is to use
randomness extractors [NZ96, NTS99, Sha02]. Such extractors gather a suf-
ficient amount of “smooth” randomness Ext(m) from an input m, as long as
the input distribution has some intrinsic entropy. That is, if sufficiently large
parts of the message are unknown to an attacker, the extracted value Ext(m)
still looks like a uniformly distributed variable.2 Hence, instead of using the
message m to mask the signature we now add the value Ext(m).

For the second problem, dependencies between the signature of the message
and the extracted randomness, we will introduce special randomness extractors
whose output Ext(m) looks random, even if one sees an additional (possibly
randomized) hash value H(m) of the message m. Given such a “good” hash
function and extractor combination we can compute the signature σ for the
hash value H(m), and then mask this signature with the extracted value Ext(m)
of the original message:

Sig′(sk,m) = Sig(sk,H(m))⊕ Ext(m).

We note that, if the hash function or the extractor are randomized, then the
signature will also include the (public) randomness used to evaluate the func-
tions. It is also worth noticing that signatures constructed as above actually
achieve the stronger notion of being pseudorandom, and that this even holds if
an attacker knows the secret signing key.

Instantiations. It remains to specify how to build a “good” hash function
and randomness extractor pair. In the random oracle model this is very easy.

1A function is regular if any image has the same number of pre-images.
2In the literature randomness extractors are typically defined to produce an output that is

statistically close to the uniform distribution. Here we merely need the relaxation to compu-
tational indistinguishability where the output appears to be random for efficient observers.
We will use this algorithmic relaxation throughout the paper.

2

Namely, for a random function H simply define the hash function to be H(0, ·)
and the randomness extractor to be H(1, ·), such that both functions essentially
yield independent outputs H(m) = H(0,m) and Ext(m) = H(1,m) for non-
trivially distributed messages m. Note that with this instantiation the derived
signature scheme is basically as efficient as the original scheme.

To get a solution in the standard model we deploy so-called perfectly one-
way hash functions [Can97, CMR98] where it is infeasible to distinguish between
randomized hash values (H(x; r),H(x; r′)) of the same pre-image x, and hashes
(H(x; r),H(x′; r′)) of independent pre-images x, x′. Take the first part of such
a pair (H(m; r),H(m; r′)) for our message m as the hash input to the signature
scheme, and the second part of the pair to be the output of our extractor (appro-
priately modified to yield pseudorandom outputs). Then the values appear to
come from independent inputs m and m′ and we get the desired computational
independence of the two parts.

Very efficient instantiations of perfectly one-way hash function can de de-
rived, for example, from regular collision-intractable hash functions, together
with universal hash functions [CMR98]. Namely, the randomized hash evalua-
tion H(m) is described by picking an almost universal hash permutation π as
public randomness and outputting h(π(m)) for a regular collision-intractable
hash function h. According to our approach this hash function also defines the
basic steps of our extractor, except that we have to produce a pseudorandom
output. This additional property can be accomplished, for instance, by apply-
ing another almost universal hash function ρ to the h(π(m)) portion and by
stretching the outcome with a pseudorandom generator G, i.e., the extractor’s
output for public randomness π, ρ equals Ext(m) = G(ρ(h(π(m)))).

We remark that the informal discussion above hides some technical nui-
sances. For instance, if we use the suggested instantiation through the perfectly
one-way hash functions, then the fact that we apply universal hash functions
twice and stretch the final output with a pseudorandom generator, only yields a
provably secure solution if we start with enough hidden entropy in the message.
This entropy bound exceeds the one for the random-oracle based solution, but
still appears to be within reasonable bounds for most applications.

Relationship to Ring Signatures. Ring signatures [RST01] allow each
user from an “ad-hoc” group, the ring, to sign a message such that the signer’s
identity remains secret, yet everyone can verify that the message has been signed
by someone in the ring. In this sense, anonymous signatures are an attenuation
of ring signatures, because for anonymous schemes the signer’s identity only
remains undisclosed as long as the parts of the message are unknown. In fact,
this weaker requirement allows us to give a simple and yet general construction
of anonymous signatures, whereas ring signatures typically depend on specific
assumptions (e.g. [RST01, DKNS04]) or are rather feasibility constructions as in
[BKM06]. One advantage of anonymous signatures over ring signature schemes
is that anonymity is not bound to a certain group.

Our approach shows that there are anonymous signature schemes which are

3

not ring signatures. Given the complete message m one can easily “peel off” the
mask Ext(m) in our construction and figure out the signer’s identity by checking
the validity with respect to the keys. It remains an interesting open problem
if there is a general and efficient transformation from anonymous signatures to
ring signatures (by that we refer to a transformation which does not involve
general non-interactive zero-knowledge proofs as in [BKM06]).

Organization. In Section 2 we introduce the notions of unforgeability and
anonymity of signature schemes. In Section 3 we present the construction of the
hash function and extractor pairs. In Section 4 we prove our derived anonymous
signature scheme to be secure.

2 Preliminaries

For an algorithm A we write x ← A(y) for a (possibly random) output x of A
for input y. Likewise, x← X for a set X denotes a uniformly chosen element x
from X, and with x← X (y) we refer to x sampled according to distribution X
(parameterized by input y). To make the random coins in probabilistic processes
more specific we sometimes write x ← A(y;ω) for the output of algorithm A
on input y for random coins ω. We say that an algorithm or a distribution
is efficient if it runs in polynomial time in its input length (and, unless stated
differently, we assume that efficient algorithms are probabilistic).

Signature Schemes. A signature scheme S = (SKGen,Sig,SVf) consists of
efficient algorithms such that SKGen on input 1n generates a key pair (sk, pk)←
SKGen(1n), algorithm Sig for input sk and a message m ∈ {0, 1}∗ outputs a
signature σ ← Sig(sk,m), and algorithm SVf for input pk, m and σ returns a
decision bit d← SVf(pk,m, σ). Furthermore, for all security parameters n ∈ N,
all keys (sk, pk) ← SKGen(1n), all messages m ∈ {0, 1}∗ and all signatures
σ ← Sig(sk,m) it holds SVf(pk,m, σ) = 1.

A signature scheme S is existentially unforgeable under adaptively chosen-
message attacks (or, for short, unforgeable) if for any efficient algorithm A the
probability for (sk, pk) ← SKGen(1n) and (m∗, σ∗) ← ASig(sk,·)(pk) such that
SVf(pk,m∗, σ∗) = 1 and m∗ is not among the queries to oracle Sig(sk, ·), is neg-
ligible (as a function of n). We say that S is strongly unforgeable if we relax the
requirement on the adversarial output (m∗, σ∗), such that SVf(pk,m∗, σ∗) = 1
and m∗ has never been answered with σ∗ by oracle Sig(sk, ·), i.e., the message m∗

may have been signed by Sig(sk, ·) previously but then the adversarial signature
σ∗ must be new.

Anonymous Signatures. For anonymity we adopt the strongest notion given
by Yang et al. [YWDW06], called anonymity under chosen-message attacks.
This notion basically says that no efficient algorithm D should be able to dis-
tinguish whether a message m (generated secretly according to a distribution
M) has been signed with secret key sk0 or sk1. This should even hold if D gets

4

to learn other signatures for chosen messages. See [YWDW06] for a discussion
of this notion.

In comparison to the original definition we consider here the most simple
case of two users and public keys, respectively, among which D must distinguish
(instead of polynomially many users). Security for the case of two users implies
anonymity for polynomially many users, because the two “target keys” can
always be guessed among the polynomially many keys (with sufficiently large
probability).

In addition, as for ring signatures [BKM06] we also consider the notion of
anonymity with respect to full key exposure where the signer’s identity cannot be
determined even if one knows the signing keys of the two users. This guarantees
anonymity even if the adversary corrupts the users and gets to know the secret
key.

Definition 2.1 A signature scheme S is called signer anonymous under adap-
tive chosen-message attacks (or simply anonymous) with respect to distribu-
tion M if for any efficient algorithm D the random variables Expanon,b

S,M,D(n) for
b = 0, 1 are computationally indistinguishable:

Experiment Expanon,b
S,M,D(n):

let (sk0, pk0)← SKGen(1n) and (sk1, pk1)← SKGen(1n)
sample m←M(pkb) and compute σ ← Sig(skb,m)
let d← DSig(sk0,·),Sig(sk1,·)(pk0, pk1, σ)
output d

The scheme is called anonymous with respect to full key exposure if the random
variables are still computationally indistinguishable, even if D gets the secret
keys sk0, sk1 as additional input.

The definition above considers anonymity with respect to designated distri-
butions M, i.e., the signature scheme itself may depend on the distribution in
question. Such schemes may be sufficient in some settings, but it often seems
be desirable to have schemes which are anonymous with respect to any distri-
butions from a larger class CM, e.g., including all efficient distributions with
non-trivial entropy. The definition extends straightforwardly to this case by
demanding anonymity with respect to any distribution M from CM. For the
constructions we mostly focus on the case of designated distributions and briefly
discuss how our solutions extend to classes of distributions.

3 Constructing Hash-and-Extractor Combinations

Recall from the introduction that our goal is to design a (probabilistic) random-
ness extractor whose output still looks random, even if one sees an additional
hash value of the extractor’s input. We first recall the two required primitives,
hash functions and randomness extractors. Both algorithms will be randomized
in the sense that they get an auxiliary random input and compute the output
from the input and this random string, and the random string becomes part of
the output (public randomness).

5

Hash Functions and Extractors. A (probabilistic) hash function H =
(HKGen,H) consists of efficient algorithms such that HKGen on input 1n returns
a key K and H on input a key K and a string x ∈ {0, 1}i(n) picks a random string
r ← {0, 1}t(n) and outputs an image y ← H(K, x; r) (to which one appends the
randomness r). The hash function H is called collision-intractable if for any
efficient algorithm C the probability that for K ← HKGen(1n) and (r, x, x′) ←
C(K) it holds x 6= x′ but H(K, x; r) = H(K, x′; r), is negligible (as a function of
n). Note that we define such collisions x, x′ with respect to the same random
string r, as required for our applications.

We next define randomness extractors [NZ96, NTS99, Sha02]. Recall that
we want to combine a hash function and an extractor and we therefore extend
the basic definition of extractors and allow the key generation algorithm of
the extractor to depend on hash function keys. Namely, a (strong3) extractor
E = (EKGen,Ext) associated to hash function H consists of two probabilistic
algorithms such that EKGen for input K ← HKGen(1n) returns a random key
E ← EKGen(K), and algorithm Ext for input E and x ∈ {0, 1}i(n) picks a
random string u ← {0, 1}d(n) and outputs an `(n)-bit string e ← Ext(E, x;u)
(to which one appends again the randomness u).

The extractor E (associated to H) is called pseudorandom for distribution
X if the following two random variables (one describing a hash value and the
related extractor output, and the other one a hash value and an independent
random output) are computationally indistinguishable:

• Let K ← HKGen(1n), x ← X (1n), y ← H(K, x; r), and E ← EKGen(K),
u← {0, 1}d(n) and e← Ext(E, x;u). Output the tuple (K, r||y, E, u||e).

• Let K ← HKGen(1n), x ← X (1n), y ← H(K, x; r), and E ← EKGen(K),
u← {0, 1}d(n) and v ← {0, 1}`(n). Output the tuple (K, r||y, E, u||v).

In the literature it is usually assumed that the extractor’s output is sta-
tistically close to uniform. For our purpose it suffices that the output can-
not be efficiently distinguished from random. This also requires a form of
non-triviality of the distribution X , usually demanding that the min-entropy
H∞(X)= minx−(log Prob[X (1n) = x]) of X is super-logarithmic (so called
well-spread distributions). We also note that we get the regular definition of ex-
tractors by setting K = 1n and letting H(K, x; r) and r be the empty strings. In
this case we drop the addendum “associated to H” and simply speak of regular
extractors.

Instantiations. As for the existence of such extractors we give two exam-
ples. Assume that we work in the random oracle model, for random function
H : {0, 1}∗ → {0, 1}`(n). Define H(0, ·) as the collision-intractable hash func-
tion. Then it is easy to see that Ext(·) = H(1, ·) is a (deterministic) extractor
(associated to H(0, ·)) which is pseudorandom for any fixed well-spread distri-
bution X . This is so because the super-logarithmic min-entropy of X prevents

3The term “strong” typically refers to extractors that give the auxiliary random input as
part of the output. Since this is always the case here we usually do not mention this explicitly.

6

a distinguisher to query H(0, ·) or H(1, ·) about a randomly sampled and se-
cret pre-image x, except with negligible probability, making the hash values
independent and uniformly distributed.

To get a solution in the standard model, which is only slightly less efficient,
assume that we have a 2-value perfectly one-way hash function (with public ran-
domness) [Can97, CMR98], i.e., where hash value pairs (H(K, x; r),H(K, x; r′))
of the same pre-image x are indistinguishable from pairs (H(K, x; r),H(K, x′; r′))
of independent pre-images x, x′. Formally, a perfectly one-way hash function
(with respect to distribution X) is a probabilistic collision-resistant hash func-
tion H such that the following random variables are computationally indistin-
guishable:

• Let K ← HKGen(1n), x ← X (1n) and r, r′ ← {0, 1}t(n). Compute y ←
H(K, x; r) and y′ ← H(K, x; r′). Output the tuple (K, r, r′, y, y′).

• Let K ← HKGen(1n), x, x′ ← X (1n) and r, r′ ← {0, 1}t(n). Compute
y ← H(K, x; r) and y′ ← H(K, x′; r′). Output the tuple (K, r, r′, y, y′).

Very efficient perfectly one-way hash functions (for any fixed well-spread dis-
tribution X) can be derived from any regular collision-resistant hash function
[CMR98].

The perfectly one-way hash function basically allows us to compute two
hashes of the same input but such the hash values appear to originate from
independent inputs. Hence, if we now take the first hash value for the signing
process and apply a regular extractor Ereg to the second hash value, the result
will almost look as if we have run both algorithms on independent inputs.

On a technical side, we note that the regular extractor Ereg (not associated to
a hash function) gets as input a hash value sampled according to the distribution
which picks x← X (1n), K ← HKGen(1n) and r ← {0, 1}t(n) and which returns
H(K, x; r). We denote this distribution by H(X), and we say that such an
extractor is pseudorandom with respect to H(X) if the extractor’s output is
indistinguishable from random, even when given K and r in clear.

We remark that the distribution H(X) “essentially preserves” the entropy
of the input distribution X . That is, if X is well-spread and efficient, then with
overwhelming probability over the choice K ← HKGen(1n) and r ← {0, 1}t(n),
the min-entropy of H(K,X (1n); r) remains super-logarithmically. Else, for a
random input key K, sampling r ← {0, 1}t(n) and x, x′ ← X (1n) would yield a
non-trivial collision with noticeable probability (i.e., because of the min-entropy
of X the values x, x′ will be different with overwhelming probability, whereas
the hash values collide with noticeable probability by presumption about the
entropy loss of H). The entropy of H(X) can be determined explicitly in terms
of the entropy of X and the “entropy loss” of H. In particular, if we use the
construction of H via regular collision-resistant hash functions [CMR98] then a
(fixed) min-entropy λ(n) of X yields a distribution H(X) with min-entropy at
least λ(n)/6 + 3.

Recall that we usually consider an extractor Ereg as the composition of a sta-
tistical randomness extractors, producing output which is statistically close to

7

the uniform distribution, and a cryptographically-secure pseudorandom genera-
tor G. Note that the pseudorandom generator G needs to be able to stretch the
short random input of, say, super-logarithmically many bits, into a pseudoran-
dom output of polynomially many bits. Whether G achieves such an expansion
factor or not depends on the concrete implementation. But we can safely as-
sume for any pseudorandom generator that, if G takes nc inputs bits (for some
constant c > 0), it can stretch this input to any output of polynomial size. Thus,
using the [CMR98] perfectly one-way hash function, we get a secure construc-
tion if the starting distribution has min-entropy Ω(nc). Below, however, we still
state our result in its general form, assuming that we have a good extractor
with respect to the distribution H(X).

Construction 3.1 Let H be a hash function and Ereg be a regular extractor
(for distribution H(X)). Define extractor E = (EKGen,Ext) associated to H as
follows:

• The key generator EKGen on input K generates Ereg ← EKGenreg(1n) and
outputs E ← (Ereg,K).

• The extraction procedure Ext on input E, x ∈ {0, 1}i(n) and u = r||ureg ∈
{0, 1}t(n)+d(n) computes e← Extreg(Ereg,H(K, x; r);ureg) and outputs e.

We next prove that the derived extractor is pseudorandom:

Proposition 3.2 Let H be a perfectly one-way hash function (for distribution
X) and Ereg be a pseudorandom extractor (for distribution H(X)). Then E in
Construction 3.1 is an extractor associated to H which is pseudorandom (with
respect to distribution X).

Proof. Consider the random variable

Let K ← HKGen(1n), x← X (1n) and r, r′ ← {0, 1}t(n). Let Ereg ←
EKGenreg(1n) and ureg ← {0, 1}d(n). Compute y ← H(K, x; r) and
ereg ← Extreg(Ereg,H(K, x; r′);ureg). Output (K, r||y, (K, Ereg), r′||ureg||ereg).

which describes the output of our extractor E for a random sample x (together
with the additional hash value). By the computational indistinguishability of
the perfectly one-way hash function this variable is indistinguishable from the
following random variable, where we pick an independent input x′ for the “ex-
tractor’s hash value”:

Let K ← HKGen(1n), x, x′ ← X (1n) and r, r′ ← {0, 1}t(n). Let
Ereg ← EKGenreg(1n) and ureg ← {0, 1}d(n). Compute y ← H(K, x; r)
as well as ereg ← Extreg(Ereg,H(K, x′; r′);ureg). Output the tuple
(K, r||y, (K, Ereg), r′||ureg||ereg).

It next follows from the pseudorandomness of the extractor Ereg that the previous
random variable with independent inputs x, x′ is indistinguishable from the
following random variable, where we replace the extractor’s output by a random
value:

8

Let K ← HKGen(1n), x ← X (1n), r, r′ ← {0, 1}t(n) and Ereg ←
EKGenreg(1n). Pick ureg ← {0, 1}d(n) as well as vreg ← {0, 1}`(n).
Compute y ← H(K, x; r). Output (K, r||y, (K, Ereg), r′||ureg||vreg).

The indistinguishability of this final variable from the starting case proves the
claim. �

Our extractors so far work for specific distributions H(X). In particular,
they depend (only) on the knowledge of the min-entropy of distribution H(X).
Hence, such extractors also work with classes CH(X) of distributions, as long as
any such distribution H(X) ∈ CH(X) obeys a fixed lower bound λ(n) on the min-
entropy (e.g., λ(n) = ω(log n) if one assumes a strong pseudorandom generator
G, or λ(n) = nc for some constant c > 0 if we assume standard pseudorandom
generators).

4 Constructing Anonymous Signatures

With the primitives of the previous section we can now give the formal de-
scription of our transformation from any regular signature scheme to an anony-
mous one. We assume without loss of generality that the signature size is
bounded by some publicly known polynomial `(n) (such a bound exists by
the limited running time of the signature algorithms), and that the extrac-
tor Ext(E,m;u) produces `(n)-bit outputs e. Below, if we mask the signature
σ with e it is understood that the signature is padded with zeros if necessary,
i.e., σ ⊕ e = (σ||0`−|σ|)⊕ e.

Note that our construction of the extractor (associated to a hash function)
requires that the message has some fixed input length i(n) (which nonetheless
can depend on the security parameter). We therefore assume that messages
to be signed have exactly i(n) bits, and that the distribution M itself is de-
fined over such bit strings. This requirement can be implemented by hashing
longer messages first with some collision-intractable hash function. Accord-
ingly, we have to consider the distribution of hashed messages then (which, by
the collision-intractability, is also well-spread if the original message distribution
is).

Construction 4.1 Let S be a signature scheme, let H be a hash function and
E be an extractor (associated to H). Define the following signature scheme
S ′ = (SKGen′,Sig′,SVf ′):

• The key generation algorithm SKGen′(1n) runs SKGen(1n) to get a key
pair (sk, pk). It also runs HKGen(1n) to generate a key K for the hash
function, as well as a key E ← EKGen(K) for the extractor. It outputs
sk′ ← (sk,K,E) and pk′ ← (pk,K,E).

• The signing algorithm Sig′(sk,m) samples r ← {0, 1}t(n) and u← {0, 1}d(n),
computes a signature σ ← Sig(sk,H(K, m; r)) as well as τ ← σ⊕Ext(E,m;u)
and finally outputs σ′ ← τ ||r||u.

9

• The verification algorithm SVf ′(pk′,m, σ′) for σ′ = τ ||r||u first computes
σ ← τ ⊕ Ext(E,m;u) and then outputs SVf(pk,H(K, m; r), σ).

Proposition 4.2 Let S be an unforgeable signature scheme, let H be a collision-
intractable hash function and E be an extractor (associated to H). Then S ′ in
Construction 4.1 is an unforgeable signature scheme.

Note that we do not need to assume that E is a good extractor for proving
unforgeability. This property will only be required for the anonymity proof.

Proof. We show that we can transform any forger A′ on the derived scheme
S ′ into one on the original scheme, essentially preserving the running time and
success probability of A′. We assume without loss of generality that A′ always
outputs a new message m∗ in the forgery attempt (i.e., such that m∗ has never
been signed by the signing oracle before).

For transforming the attackerA′ into one for the underlying signature scheme
we let ASig(sk,·)(pk) run a black-box simulation of A′ for input pk′ = (pk,K,E)
where keys K and E are generated by A by running HKGen(1n) and EKGen(K).
Then, A simulates the signing oracle Sig′ for A′ as follows:

Each time A′ submits a message m ∈ {0, 1}i(n) to its (putative) sign-
ing oracle attacker A first picks r ← {0, 1}t(n) and u ← {0, 1}d(n)

and forwards H(K, m; r) to its oracle Sig to get a signature σ. Algo-
rithm A next computes τ ← σ ⊕ Ext(E,m;u) and σ′ ← τ ||r||u and
returns σ′ on behalf of Sig′ to attacker A′.

WhenA′ eventually outputs a forgery attempt (m∗, τ∗||r∗||u∗) we letA compute
σ∗ ← τ∗ ⊕ Ext(E,m∗;u∗) and let it return (H(K, m∗; r∗), σ∗).

It is easy to see that the simulation above perfectly mimics an actual attack.
Hence, in the simulation above A′ outputs a successful forgery with the same
probability as in an attack on the derived scheme. By the collision-intractability
of H we can also conclude that, with overwhelming probability, H(K, m∗; r∗) is
different from all hash values that A has passed to its oracle Sig previously
(else, since m∗ is different from all previously signed messages, it would be
straightforward to derive a successful collision-finder against the hash function).
It follows that, if A′ produces a successful forgery against the derived scheme
with noticeable probability, then so does A in the attack on the underlying
signature scheme. �

Theorem 4.3 Let S be a signature scheme, let H be a hash function and E be an
extractor (associated to H) which is pseudorandom with respect to distribution
M. Then S ′ in Construction 4.1 is an anonymous signature scheme (with
respect to M). It is even anonymous with respect to full key exposure.

Here we merely require that the extractor is pseudorandom; the original
signature scheme and the hash function only need to be efficient. This fact also
shows anonymity against full key exposure.

10

Proof. Fix an arbitrary attacker D against the (basic) anonymity property and
some distributionM. We need to show that the outputs of the random variables
Expanon,b

S′,M,D(n) for b = 0, 1 are indistinguishable. In the sequel we also fix the
bit b.

In experiment Expanon,b
S′,M,D(n) we now change the way the challenge signature

for m ← M(pkb) is computed as follows. As before we sample r ← {0, 1}t(n)

and u ← {0, 1}d(n) and compute a signature σ ← Sig(sk,H(K, m; r)). But now
we let τ ← σ ⊕ v for an independent random value v, instead of computing
τ ← σ ⊕ Ext(E,m;u) as before. We output σ′ ← τ ||r||u for the modified value
τ . We denote this experiment by Expmod-anon,b

S′,M,D (n).
It follows from the pseudorandomness of the extractor (associated to H) that

the way we compute the signature in the modified experiment cannot change
the output behavior of experiment Expanon,b

S′,M,D(n) noticeably. Else it would
be easy to construct an algorithm Bb (with b hardwired into its description)
which gets (K, r||y, E, u||v) for v = Ext(E,m;u) or random v as input, and
which successfully distinguishes these two cases (by simulating D in experiment
Expanon,b

S′,M,D(n) for fixed bit b and using the given values to prepare the challenge
signature). Hence, Expanon,b

S′,M,D(n) and Expmod-anon,b
S′,M,D (n) are computationally

indistinguishable for both b = 0, 1.
But in experiment Expmod-anon,b

S′,M,D (n) the signature τ ||r||u for τ ← σ⊕v is now
independently distributed of σ and it follows that the output Expmod-anon,b

S′,M,D (n)
for both b = 0, 1 is identical. In conclusion, the random variables Expanon,0

S′,M,D(n)
and Expanon,1

S′,M,D(n) must be computationally indistinguishable.
Note that the proof still works if D knows the signing keys since we merely

need the pseudorandomness of the extractor. This shows that the scheme re-
mains anonymous with respect to full key exposure. �

Some remarks follow. First, note that our proof actually shows that signa-
tures in our scheme are pseudorandom, even when knowing the signing keys.
Clearly, such pseudorandom signatures imply anonymity (with respect to full
key exposure), because it is hard to tell such signatures apart from random
strings.

Second, we can modify our signature scheme to get a strongly unforgeable
scheme, given that the starting scheme is strongly unforgeable. To this end we
let the signature algorithm sign H(K, m; r)||r||u instead of the hash value only.
It follows similarly to the unforgeability proof above that the scheme is strongly
unforgeable.

As a proof outline of the strong unforgeability of our modified scheme, as-
sume that the adversary outputs a valid forgery (m∗, τ∗||r∗||u∗) such that the
values (m∗, r∗, u∗) have never appeared before. Then this would contradict the
unforgeability of the original signature scheme. Assume, on the other hand, that
such values have appeared before (in which case there is a unique signature reply
τ ||r∗||u∗ in which they appear, with overwhelming probability over the random
choices of r, u in the signing process). This implies that the adversary has only
modified τ to a different τ∗. But then the validity of the forgery attempt would

11

imply that σ∗ ← τ∗⊕Ext(E,m∗;u∗) is different from σ in the original signature,
and that this value σ∗ together with “message” H(K, m∗; r∗)||r∗||u∗ contradicts
the strong unforgeability of the underlying scheme. And this modified scheme
is still anonymous with respect to full key exposure.

Third, we finally notice that our result extends to classes CM of message
distributions, if the underlying extractor is pseudorandom with respect to this
class. Hence, we get a provably secure construction assuming that CM only
contains distributions of min-entropy at least λ(n), where the fixed bound λ(n)
depends on the extractor in question (see Section 3).

References

[BKM06] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring Signa-
tures: Stronger Definitions, and Constructions Without Random
Oracles. Theory of Cryptography Conference (TCC) 2006, Vol-
ume 3876 of Lecture Notes in Computer Science, pages 60–79.
Springer-Verlag, 2006.

[Can97] Ran Canetti. Towards Realizing Random Oracles: Hash Func-
tions That Hide All Partial Information. Advances in Cryptol-
ogy — Crypto’97, Volume 1294 of Lecture Notes in Computer
Science, pages 455–469. Springer-Verlag, 1997.

[CMR98] Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly
One-Way Probabilistic Hash Functions. Proceedings of the An-
nual Symposium on the Theory of Computing (STOC)’98, pages
131–140. ACM Press, 1998.

[DKNS04] Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor
Shoup. Anonymous Identification in Ad Hoc Groups. Advances
in Cryptology — Eurocrypt 2004, Volume 3027 of Lecture Notes
in Computer Science, pages 609–626. Springer-Verlag, 2004.

[NTS99] Noam Nisan and Amnon Ta-Shma. Extracting Randomness: A
Survey and New Constructions. Journal of Computer and System
Science, 58(1):148–173, 1999.

[NZ96] Noam Nisan and David Zuckerman. Randomness is Linear in
Space. Journal of Computer and System Science, 52(1):43–52,
1996.

[RST01] Ronald Rivest, Adi Shamir, and Yael Tauman. How to Leak a
Secret. Advances in Cryptology — Asiacrypt 2001, Volume 2248
of Lecture Notes in Computer Science, pages 552–565. Springer-
Verlag, 2001.

12

[Sha02] Ronen Shaltiel. Recent Developments in Extractors — a Survey.
Bulletin of the European Association for Theoretical Computer
Science, 77:67–95, 2002.

[YWDW06] Guomin Yang, Duncan Wong, Xiaotie Deng, and Huaxiong Wang.
Anonymous Signature Schemes. Public-Key Cryptography (PKC)
2006, Volume 3958 of Lecture Notes in Computer Science, pages
347–363. Springer-Verlag, 2006.

13

