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Abstract. In a multipath key exchange protocol (Costea et al., CCS’18)
the parties communicate over multiple connection lines, implemented for
example with the multipath extension of TCP. Costea et al. show that, if
one assumes that an adversary cannot attack all communication paths in
an active and synchronized way, then one can securely establish a shared
key under mild cryptographic assumptions. This holds even if classical
authentication methods like certificate-based signatures fail. They show
how to slightly modify TLS to achieve this security level.
Here we discuss that the multipath security can also be achieved for TLS
1.3 without having to modify the crypto part of protocol at all. To this
end one runs a regular handshake over one communication path and then
a key update (or resumption) over the other path. We show that this
already provides the desired security guarantees. At the same time, if
only a single communciation path is available, then one obtains the basic
security properties of TLS 1.3 as a fall back guarantee.

1 Introduction

Secure connection establishment ultimately relies on the ability to authenticate
the intended communication partner. Otherwise sensitive data may be transmitted
to the wrong party, rendering any attempt to protect data-in-transit useless.
Modern key establishment methods such as TLS therefore use various forms of
authenticating the partner (unilaterally or mutually), ranging from shared secrets
to the common certificate-based signatures.

However, the reliable binding of certified keys to identities is often hard
to realize. These may be due to rogue certificates, issued to the wrong party
such as in the Comodo and DigiNotar cases [20]. Another source of problems are
misconfigured libraries which skip (parts of) the verification [14] or implementation
errors as in Apple’s goto fail [18]. Sometimes, connection proxies may also
break up end-to-end connections and thereby weaken security, e.g., by insufficient
certificate checks [4].

1.1 Multipath Key Exchange

Some solutions towards hedging against certificate misbinding have been proposed,
including certificate pinning [10] to temporarily store known links, and certificate
transparency [19] to log valid certificates. Recently, Costea et al. [5] discussed



another possibility to enhance security by using the multipath extension of the
TCP connection protocol (MPTCP) in [13]. Roughly, the multipath extension
allows to establish further sub flows in a TCP connection to ensure reliable and
possibly parallel data transmission over different communication channels (such
as WiFi and mobile networks). While being primarily a tool for network efficiency,
Costea et al. [5] point out that it can also be used to build multipath key exchange
protocols.

In a multipath key exchange protocol the two parties send partial information
of the key exchange protocol over different connections to create a shared key.
One usually assumes that there are two connections available. The optimistic
assumption is that an adversary can either be active on both connections but
then cannot synchronize during the execution, called A/A adversary in [5]. This
happens if the latency of the sub connections is small. Or, the adversary may be
able to synchronize during the key establishment but then does not have means
to actively attack both connections and thus only passively eavesdrop on one of
the connections. This is called an A−P attacker in [5].

Costea et al. [5] continue by designing a multipath key exchange scheme
SMKEX based on the Diffie-Hellman problem. The protocol only requires a
Diffie-Hellman exchange over one flow, and the exchange of nonces over the
other flow, together with a hash confirmation value. No further authentication is
required. They prove their protocol to be secure in a multipath variant of the
Canetti-Krawcyzk (CK) model [3] in the random oracle model, against A/A and
A−P adversaries. In addition, they also comprehensively discuss the practical
feasibility of the multipath approach, and how to modify the crypto part of TLS
slightly to incorporate the enhanced security guarantees. The resulting protocol
is called MTLS.

1.2 Our Contribution

We adopt the idea to relax the assumption about authentication guarantees
by using multiple communication paths. We present here a TLS 1.3 compliant
protocol [21] to enhance the security of the key establishment. The idea is to run
a regular handshake execution over the MPTCP main flow, followed by the key
update sub protocol of TLS 1.3 over the MPTCP sub flow. See Figure 1. The key
update step renews the traffic secrets. Alternatively, one may run the resumption
sub protocol of TLS 1.3 over the sub flow. The advantage of running the more
expensive resumption step is that it updates all keys which TLS 1.3 established,
including for example the resumption and exporter master secrets.

In comparison to the SMKEX and MTLS proposals in [5], our approach has
some advantages:

– Our protocol works on top of existing TLS 1.3 implementation, without
requiring any modifications of the cryptography. This is contrast to SMKEX
which is built from scratch, and MTLS which modifies TLS slightly.

– Our protocol provides security against A/A and A−P adversaries simultane-
ously, even if the TLS certificates are completely broken, relying on network

2



Multipath TLS 1.3

Client Server

. . . . . . . . . . . . . . . . . . . . . . Main TCP Flow . . . . . . . . . . . . . . . . . . . . . .

TLS 1.3 handshake←−−−−−−−−−−−−−−−−−−−−−−−−−−−→

. . . . . . . . . . . . . . . . . . . . . . . Sub TCP Flow . . . . . . . . . . . . . . . . . . . . . . .

TLS 1.3 key update or resumption
←−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 1: MPTCP-TLS 1.3 Overview

assumptions instead. However, since it runs the basic TLS 1.3 mechanisms,
even if the network assumptions turn out to be false, e.g., the parties exchange
the information only over a single connection, then one still has the original
TLS 1.3 security guarantees as fallback. MTLS in [5] is also considered to
have this property.

– We discuss our approach concretely for TLS 1.3, but the idea of running
the key exchange step over one flow, and then some form of key update or
confirmation message over the other flow, should be applicable in general.

In terms of the security model, we introduce a multipath extension of the
Bellare-Rogaway (BR) model [2,1]. The difference to the CK model [3] essentially
is the latter allows for session-state reveals. But TLS 1.3 has not been designed
to withstand such attacks and so far has been analyzed only in (multi-stage
extensions [11] of) the BR model [8,9]. We note that we only consider security of
the traffic secrets such that we restrict ourselves to a single-stage security model
here. We also introduce some minor strengthenings compared to the model in [5].

We finally prove the TLS 1.3 (EC)DHE key exchange followed by a key update
to be secure against A/A and A−P adversaries in our security model. We do not
rely on the random oracle assumption but need some standard assumptions about
the Diffie-Hellman problem, the pseudorandomness of HKDF, and the integrity
of the record protocol (which follows from the security of the AEAD schemes
stipulated in TLS 1.3). In the A−P case we also need a slightly stronger integrity
assumption for the record protocol and discuss its plausibility.

2 Preliminaries

2.1 Multipath TCP

The MPTCP protocol [13] allows to establish multiple TCP subflows underneath
an (MPTCP) connection. This allows for an improved and more reliable through-
put. For establishing an MPTCP connection the initiator and responder start
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a regular TCP connection but use a special flag MP_CAPABLE, i.e., both sides
agree on an MPTCP connection by setting the MP_CAPABLE flag in the TCP
flow of SYN,SYN/ACK, and ACK messages. In the course of this the parties also
pick random cryptographic keys and a locally unique 32-bit token, which are all
transmitted (in clear) to the other side. The token is in fact a truncated hash
value of the responder’s key.

To open up a new subflow between addresses either party can start a new
TCP connection, but this time include the MP_JOIN flag in the SYN,SYN/ACK,ACK
flow. The link to the initial connection is via the token which is included in the
MP_JOIN part. During the new establishment both parties exchange nonces, and
authenticate both nonces via a (truncated) HMAC computation for the keys
from the initial MPTCP connection. The nonces should prevent replay attacks.

While the deployment of MPTCP should be transparent for TCP-only con-
nections, the sender of data over an MPTCP connection in principle has full
control over the distribution of data through different sub flows. The routing
can be set arbitrarily through the scheduler, albeit not all operating system may
support arbitrary choices by default. The receiver may request to prioritize a sub
flow via the MP_PRIO flag, and the sender should obey to this request. For our
advanced security guarantees, however, we require that the second part of our
key agreement protocol indeed runs over a fresh sub flow. If not then one falls
back to the ordinary security of TLS 1.3 against active network attackers.

2.2 Transport Layer Security

We give a high-level overview of the Transport Layer Security (TLS) protocol,
in particular version 1.3 [21]. Given that our focus in this work is on multipath
connection security without authentication we omit the mechanisms for server
and client authentication in the description here; our model and security proof
still takes this part into account. Instead in the description here we focus on
the main anonymous handshake, the record protocol, as well as the protocol to
update the record layer keys for an existing connection. More details, which are
especially relevant for the proof, appear in Appendix A.

The (EC)DHE handshake of TLS 1.3 runs a Diffie–Hellman-based key deriva-
tion. The client initiates the communication with its client hello message CH,
including a nonce, and a client key share CKS carrying a Diffie-Hellman value.
The server responds with its server hello SH message with its nonce, and its SKS
part with a Diffie-Hellman value. The server computes the finished message SF,
including a MAC under the derived key, and the client responds with its finished
message CF.

For us, the most relevant part is key derivation. With a convoluted key deriva-
tion schedule based on the HKDF functions HKDF.Extract and HKDF.Expand,
the parties compute (among others) a resumption master secret RMS, a client
application traffic secret client_application_traffic_secret, and a server applica-
tion traffic secret server_application_traffic_secret. The former key is used for
the session resumption step only, and the latter keys are used to protect the
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Client Server
CATS← HKDF.Expand(

CATS, “traffic upd”)

[KeyUpdateRequest]
CATS← HKDF.Expand(

CATS, “traffic upd”)
SATS← HKDF.Expand(

SATS, “traffic upd”)[KeyUpdateResponse]
SATS← HKDF.Expand(

SATS, “traffic upd”)

Fig. 2: The TLS 1.3 key update protocol. All messages are protected by the TLS record
protocol using the current CATS and SATS, this is indicated by the square brackets.

communication via the record layer protocol (with an individual key for each
sending party). We usually abbreviate the latter keys as CATS and SATS.

We omit the details about session resumption here and instead focus on the
key update step. Figure 2 depicts the sub protocol to update the application
traffic secrets, as well as the associated computations [21, Section 7.2]. In essence
the initiator sends a fixed message requesting a key update and updates their
sender secret which the responder is required to respond to with a fixed message,
repeating the key updates as well as updating their keys.

Finally, the record layer protocol for TLS 1.3 enforces the use of an authenti-
cated encryption with associated data (AEAD) scheme. It uses a secret IV as the
initial nonce, derived from CATS or SATS, depending on whether the sender is
the client or the server. The IV is derived as HKDF.Expand(CATS, “iv”) for the
client, and analogously for the server and its traffic secret. The keys are derived
similarly as HKDF.Expand(CATS, “key”) using a different label. The nonce is
incremented with each sent message.

3 Security Model

3.1 Overview

We follow the description in [5] to motivate the different attacker models, especially
A−P and A/A. We always assume there are two communication paths between
parties on which messages can be exchanged. The parties can choose the path
for each message. On each path we assume there is one adversarial instance
present, either active or passive. An active attacker may intercept and change
messages. A passive attacker can monitor the communication between the two
parties, but cannot modify it. Both types of adversaries can delay delivery of
network messages at will.

We next distinguish between the communication between the different path
attackers while a certain attacked execution is running. We let X1−X2 denote
two path instances which can communicate arbitrarily during the execution,
and X1/X2 to be two instances with restrictions. That is, let X1−X2 (resp.
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X1/X2) denote a pair of synchronized (resp. unsynchronized) attackers, which can
(resp. cannot) exchange information during the protocol execution. In both cases
the attackers may exchange information before or after the protocol execution.
The variable Xi can be either A for an active attacker (capable of altering
messages) or P for a passive attacker.

Observe that we can disregard the scenario of A−A where we have two
synchronized active attackers. This scenario degenerates to a single attacker on a
single path since the attackers can act as a single entity then. Also, according to
our model A−P and P−A describe the same set of admissible adversaries. As
pointed out by [5] it then suffices to consider types A−P and A/A, synchronized
adversaries with one passive party, and active but unsynchronized adversaries.

3.2 Security of Multi-Path Key Exchange

We next define security of multi-path key exchange by adopting the common
game-based security models, similar to [5]. We assume that we have n parties
P1, . . . , Pn all running the key exchange protocol. Each party may receive a pair of
public and secret keys. When executing the protocol both parties obtain a session
key which can be used to secure subsequent data flow. In TLS 1.3 these session
keys are actually pairs, consisting of the client_application_traffic_secret key (for
the communication from client to server) and server_application_traffic_secret
key (for the communication from server to client). It is usually assumed that in
a genuine execution both parties derive identical session keys.

Attack Model. Neglecting the restrictions due to synchronization, the adversary
against the key exchange protocol has full control over the network and can inject,
modify, or drop network messages. It can interact with each party by initiating
a session between parties Pi (as client) and Pj (as server) for administrative
identifier id, and then send protocol messages to either of the two parties, receiving
immediately the party’s response. In addition the adversary can ask to reveal
session keys, modeling leakage of session keys, e.g., if used in weak applications.
The adversary can also corrupt parties in which case it receives the long-term
secrets like the secret key or the PSK in TLS 1.3.

The goal of the adversary is to distinguish a genuine session key from a
random string, significantly better than with the guessing probability of 1/2. For
this the adversary can call a Test oracle which, initialized with a random bit
b $←− {0, 1}, returns either the session key (if b = 0) or an independently chosen
random key (if b = 1), but answering queries consistently. There are usually some
restrictions on testing a session, namely, that neither the session key of the tested
session nor of its partner have been revealed. Here, partnering is usually defined
by session identifiers sid.

To capture the different communication paths we distinguish between main
and sub connection of a session id. That is, id.main denotes the identity of the
initial connection and id.sub of the joined sub flow. We restrict ourselves to
a single sub flow here but the model can be easily extended to handle more
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sub flows. To deal with the different attack models we assume that we have
two adversarial instances, Amain and Asub, both initialized with independent
randomness. The main adversary Amain can initialize new sessions, test or reveal
session keys, and corrupt users, and can communicate (only) with the main part
of a session. In contrast, Asub can only interact with sessions with identifier sub
via Send queries. The two algorithms can interact via special Sync oracle, which
allows to pass arbitrary information between the two algorithms, and Relinquish
to go idle and hand over control to the other adversarial instance (but passing
no further information).

Formally, we assume that the adversary Amain can make the following queries
during the attack:

– NewSession(Pi, Pj , role) creates a new session for party Pi with role role ∈
{client, server}, supposedly communicating with Pj , picks a fresh adminis-
trative identifier id with two sub identifiers id.main and id.sub, and returns
id. One also creates entries id.user← Pi, id.partner← Pj , id.role← role, and
id.key← ⊥ for the session key. It notes its status as id.status← running and
holds two other entries id.main.sid and id.sub.sid for the session identifiers of
the two flows (where id.sid = (id.main.sid, id.sub.sid)).

– Send(m, id.main) sends the next protocol message to the session with identity
id.main (resp. drops the request and returns ⊥ if no session with identifier id
has been initialized). The message m may be of the special form init if the
party is supposed to start the communication. The session is invoked for this
protocol message and may return a protocol message (which is forwarded
to the adversary). In addition, the session may change its status id.status to
accepted or rejected. In the former case it also sets the session key id.key to
some bit string and the session identifier id.sid to be (parts of) the ordered
sequence of incoming and outgoing messages for each flow; details are provided
as part of the protocol description.
Analogously, adversary Asub may call Send(m, id.sub), which is processed as
above.

– Reveal(id) ignores the request if id.status ̸= accepted, else returns id.key and
sets the status to id.status← revealed.

– Corrupt(P ) returns the long-term signing key of the party P . We keep this
oracle here for sake of compatibility with ordinary models, but since we are
interested in trading authentication for multiple paths we will later assume
that the adversary immediately corrupts all parties anyway.

– Testb(id) ignores the request if id.status ̸= accepted, else returns id.key for
b = 0 resp. a random string from {0, 1}|id.key| if b = 1, and sets the status to
id.status← tested. We assume that Test is only called once during the attack
(by Amain) and denote the corresponding identity by idTest.

Both adversaries Amain and Asub have access to two additional oracles:

– Sync(x) can be called by either adversary and forwards x to the other
adversary. This is immediately followed by a Relinquish execution.
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– Relinquish() lets the other adversary become active (and the calling adversary
inactive). We assume that initially Amain is active and Asub inactive, and
that only the active adversary can make oracle calls.

At the end of the execution algorithm Amain outputs a guess a ∈ {0, 1} for the
hidden bit b. We declare the adversary to lose if it tests the session idTest (with
idTest.status = tested) and reveals the session key of an honest partner, that is, if
there is a session id′ ̸= idTest such that id′.sid = idTest.sid and id′.status = revealed.
If this happens we automatically set a Boolean variable lose ← true (which
initially is false).

In addition, we also declare the adversary to lose if it violates the A/A or A−P
properties for the test session. For the former we let the lifetime of the test session
idTest cover all the actions of the adversaries between the NewSession call which
returned idTest and the call which changes the status to idTest.status ≠ running.
Let I be the set of session identities id′ ̸= idTest which Amain either calls an oracle
about or has received from a NewSession call during the lifetime of idTest. Then
we set lose← true unless

– there is another session id′ ̸= idTest to the tested session idTest which is
partnered in one of the flows, i.e., such that id′.main.sid = idTest.main.sid or
id′.sub.sid = idTest.sub.sid (A−P property satisfied), or

– there is no Sync call and at most one Relinquish call during the lifetime
of idTest, and no Send call of Asub to some identity id′ ∈ I (A/A property
satisfied).

In the A/A case we forbid the adversary Asub to make any call to some “alive”
session id′ ∈ I. This prevents the adversary from communicating by, say, observing
the behavior of other sessions. An example could be Amain putting session id′
into a certain state which triggers a certain response when Asub calls id′ after
the handover. This could allow Amain to pass arbitrary bit strings to Asub while
the test session is still active, thus violating the A/A property.

Note also that we do not make any stipulations about corruptions of party.
The idea of the multipath extension of TLS is exactly to withstand attacks where
no authentication happens, or where the adversary controls the long-term signing
key used for authentications.

We have defined security with respect to a single-test setting, i.e., where
the adversary can only test a single session during the attack. This simplifies
the definition compared to a multi-test scenario where the same secret bit b is
used in multiple Test calls of the adversary. In the latter case one would need to
make the above stipulation for each test session, preventing the adversary from
communicating for any of the tested sessions. Depending on the scheme it may
then be possible to show via a hybrid argument that the multi-test case can be
reduced to the single-test case.

Security Definitions. We always assume that two accepting sessions with
the same session identifier also derive the same session key. This is always the
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case in TLS 1.3 and in the following we do not discuss this further. We also
note that, because of the freshly chosen nonces, the probability of three honest
parties deriving the same (sub) session identifiers is negligible. This is called
Match-security:

Definition 1 (Match-Security). For a multi-path key exchange protocol KE
and adversary pair A = (Amain,Asub) in the experiment above let AdvMatch

KE,A be
the probability that A manages to make three sessions have the same session
identifier, id, id′, id′′ with id.sid = id′.sid = id′′.sid, or that two sessions have the
same session identifier but different keys, id.sid = id′.sid but id.key ≠ id′.key. The
protocol is Match-secure if for any efficient adversary pair A = (Amain,Asub) the
advantage is negligible.

Next we define key secrecy for simultaneous A/A and A−P attacks:
Definition 2 (Key Secrecy). A multi-path key exchange protocol KE is si-
multaneously key-secret against A/A and A−P adversaries if for any efficient
adversary pair A = (Amain,Asub) in the experiment above

AdvA−P &A/A-secrecy
KE,A := Prob[ a = b ∧ ¬lose]− 1

2 ≤ negl.

In comparison to previous models we make the following changes:

– The work by Costea et al. [5] models A/A adversaries by splitting the
adversary when communicating with the test session. We split the adversary
from the beginning but allow for an explicit information transfer through
Sync queries (and disallow such queries when attacking the test session).

– Unlike [5] we do not enable session state reveals where the adversary receives
the ephemeral randomness of the protocol participant. The reason is that
TLS 1.3 does not account for such attacks.

– We account for security against A−P and A/A simultaneously. That is, the
adversary can decide during the attack on the type of attempt.

– Costea et al. [5] in the A−P case explicitly consider adversaries which are
passive on one of the two flows for the attacked session. Here we only demand
that there exists a sub flow with some honest session, not necessarily in the
same attacked session, where the adversary remains passive. Our model hence
also captures cross-over attacks for different sessions.

– We do not consider multi-stage security of the TLS 1.3 session keys [11]. This
notion is useful when one argues security of the intermediate keys derived
during the handshake protocol, but we aim to protect the actual session keys
client_application_traffic_secret and server_application_traffic_secret which
are only derived at the very end.

4 Multipath Extension for TLS 1.3

4.1 Protocol

We present the MPTCP extension of the TLS 1.3 protocol in Figure 3. The client
and server first execute a regular (EC)DHE handshake to derive application
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traffic secrets CATS, SATS. Then they run a key update on the added sub flow
to derive the new keys CATSku, SATSku. Note that the protocol messages in the
update step on the sub flow are still secured under the current keys, namely
client_write_iv ← HKDF.Expand(CATS, “iv”) for the initialization vector and
client_write_key ← HKDF.Expand(CATS, “key”) for the key for the client, and
analogously for the server.

We view the multipath protocol execution as consisting of both flows. The
protocol session accepts only after a successful key update, and only then status
changes from running to accepted. The session key pair, which is subsequently
used to protect communication, is the updated pair CATSku, SATSku. In particular,
this means that Reveal queries of the adversary in the attack only make sense
after completion of the sub flow. The adversary then receives the key pair
CATSku, SATSku but still does not have access to the intermediate key pair
CATS, SATS.

MPTCP TLS 1.3 with key update

Client Server

. . . . . . . . . . . . . . . . . . . . . . . TCP connect with MP_CAPABLE . . . . . . . . . . . . . . . . . . . . . . .

TLS 1.3 (EC)DHE handshake

CATS, SATS main.sid = (CH, CKS, . . . , SF) CATS, SATS

. . . . . . . . . . . . . . . . . . . . . . . . . TCP connect with MP_JOIN . . . . . . . . . . . . . . . . . . . . . . . . .

TLS 1.3 Update

CATSku, SATSku sub.sid = (CKeyUpd, SKeyUpd) CATSku, SATSku

Fig. 3: Protocol Overview over MPTCP-TLS 1.3 with key update. The final session
key(s) are the application-traffic-secrets CATSku, SATSku after the key update. CKeyUpd
and SKeyUpd denote the (secured) record-layer messages for the key update.

We note that the cryptographic part of TLS 1.3 remains unaltered. Only
the socket interface to MPTCP would need to be changed, possibly enabling
TLS 1.3 to demand a path change for the key update or resumption. Still, if for
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some reason MPTCP only runs plain TCP in backward compatibility mode, the
network communication of our protocol looks like a common TLS 1.3 execution.
Furthermore, even if the TLS application was not aware that the connection runs
plain TCP, we would still have the basic security guarantees of TLS 1.3.

4.2 Security Assumptions
To show security we need several assumptions about the cryptographic primitives.
We define them briefly below. Some assumptions like collision resistance of the
hash function H are standard and can be found also in text books like [15]. For
assumptions about the authenticated encryption with associated data (AEAD)
in the record layer see [22]. We also need some slightly non-standard assumptions
which nonetheless appear to be highly reasonable.

We let AdvDDH
G,D (λ) be the advantage of an algorithm D deciding Diffie-

Hellman values in the group G. That is, AdvDDH
G,D (λ) denotes the absolute

difference between the probabilities that D, on input a description of the group
G with generator g and three values gx, gy, gxy resp. gx, gy, gz for random x, y, z,
outputs 1. In our case we assume that G is the weakest of the elliptic curve
groups of TLS 1.3.

We assume that the hash function H for computing the transcript hash is
collision resistant. In other words, letting Advcoll

H,C be the probability that an
algorithm C outputs a collision x ̸= x′ with H(x) = H(x′) is small.

We also assume that HKDF.Extract and HKDF.Expand are pseudorandom
functions (for random inputs in the second input for Extract and in the first
input for Expand, distributed according to some distribution D). That is, let
Advprf

HKDF.Extract,D,D for an algorithm D be the absolute difference in outputting 1
when having oracle access to HKDF.Extract(key, ·) for key $←− D resp. to a random
function with the same input-output size. Define Advprf

HKDF.Expand,D,D analogously
for function HKDF.Expand(·, key).

For A/A attacks we sometimes even consider pseudorandomness of HKDF
for partially adversarial chosen distributions key← D(x; r) where an adversary
can choose the input x after learning the distribution’s randomness r. The
distinguisher D, however, does not get to learn x, r (such that the key still has
high entropy) but only gets oracle access to HKDF.Expand(·, key) or a random
function. In other words, we assume that HKDF.Expand is a good extractor for
the adaptively biased source D. This seems to be very plausbile given that HKDF
was designed to have this property [16,17].

Finally, for the record layer protocol we assume that the probability of sending
a protocol message through the record layer which is not rejected is infeasible.
That is, let Advint

AEAD,B be the probability that an algorithm B first outputs a
message m, then a key key is generated for the AEAD scheme, and an initial
random nonce N0 according to the record layer is picked. Then the adversary
receives C ← AEAD.Enc(key, N0, m) and is supposed to output C∗ ≠ C such that
AEAD.Dec(key, N0, C∗) ̸= ⊥. The fact that the adversary’s success probability is
small is implied by the common authentication or integrity assumption for AEAD
schemes [22].
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We also need a stronger but still reasonable assumption about the ability to
use a different key key′ and nonce N ′ to generate a valid record which can be
successfully decrypted under the original key key and nonce N . We define this
“correlation” property in combination with HKDF because the alternative key key′
cannot be chosen directly but needs to be generated by calling HKDF, making
attacks less likely. That is, for any adversary E define Advcorr

AEAD,HKDF,E to be the
probability that E outputs (MS, x) ̸= (MS′, x′), and m such that the following
holds: Let CATS ← HKDF.Expand(MS, x), key ← HKDF.Expand(CATS, “key”),
N ← HKDF.Expand(CATS, “iv”), as well as CATS′ ← HKDF.Expand(MS′, x′),
key′ ← HKDF.Expand(CATS′, “key”), N ′ ← HKDF.Expand(CATS′, “iv”), C ′ ←
AEAD.Enc(key′, N ′, m), and check that AEAD.Dec(key, N, C ′) ̸= ⊥.

The assumption appears to hold for common AEAD schemes. If we assume that
HKDF behaves like a random oracle then the different inputs (MS, x) ̸= (MS′, x′)
yield independently distributed outputs. But then the probability that two random
key-nonce combinations can be used to encrypt and successfully decrypt is unlikely.
Otherwise one could attack the AEAD scheme by trying to decrypt with a fresh
random key-nonce pair and succeed with high probability.

4.3 Security

We first show Match-security. Note that we count the number s of sessions via
the NewSession calls of the (main) adversary, and the (full) session identifiers
consist of both sub identifiers.

Proposition 1. The MPTCP TLS 1.3 extension, (EC)DHE handshake with
key update, is Match-secure. More precisely, for any adversary A initiating a
maximum number s of sessions and for nonce length |nonce| = 256 we have
AdvMatch

KE,A ≤ s2 · 2−|nonce|.

Proof. The property follows as for regular TLS 1.3 in [8,9]. The probability that
there are three sessions among the s sessions with the same sid is bounded
from above by s2 · 2−|nonce|, since the probability that an honest party picks
the same nonce as the (potentially partnered) other two sessions is given by
the birthday bound. The fact that the same sid yields the same key follows
straightforwardly, because the session identifier contains all information which
enters the key derivation for CATS and SATS and if this key is identical, then
then the same update messages CKeyUpd, SKeyUpd also cause the same update
step to CATSku and SATSku. ⊓⊔

Theorem 1. The MPTCP TLS 1.3 extension, (EC)DHE handshake with key
update, is simultaneously key-secret against A−P and A/A adversaries. More
precisely, for any adversary A = (Amain,Asub) initiating at most s sessions we
have that there are algorithms D,D1, . . . ,D16, D′, B, B′, C, E and distributions
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D1, . . . , D16, D′ with

AdvA−P &A/A-secrecy
KE,A

≤ s2 ·
(

AdvDDH
G,D +

16∑
i=1

Advprf
HKDF.Extract/Expand,Di,Di

+ 2 ·Advint
AEAD,B

+Advcoll
H,C + Advcorr

AEAD,HKDF,E

+Advprf
HKDF.Expand,D′,D′ + Advcorr

AEAD,HKDF,E

)
.

Here the other algorithms have roughly the same run time as A plus the time to
execute the attack on the key exchange protocol.

Proof. Consider an adversary A = (Amain,Asub) against the key secrecy of the
key exchange protocol. We discuss first the A−P case. That is, the adversary
may be active in one flow and passive in the other one. More formally, assume
that for the test session idTest there exists another session id′ with the same
session identifier in either the main or sub flow. We assume that we know the
right sessions idTest and id′ in advance; this can be accomplished by guessing the
sessions with probability at least 1/s2 among all s sessions.

Further note that we can make all Corrupt queries at the outset, such that
the adversary immediately knows the signing keys. This is valid since key secrecy
does not depend on authentication. Note that this in particular means that A
could simulate all other sessions different from idTest and id′ itself.

An important observation for the proof steps below is to note, once more,
that Reveal queries of the adversary only make sense after the successful update
step. Then the status changes to accepted and the Reveal queries returns the
updated key pair CATSku, SATSku (but not the keys CATS, SATS). We will take
advantage of this observation multiple times below.

We next make a case distinction, depending on whether the main or sub flow
of idTest and id′ match:

Case A: Passive in main flow, id′.main.sid = idTest.main.sid. In this case
we argue that the session key CATS, SATS in the two sessions is secure. To see
this we can perform a sequence of game hops, where we let GA.i denote the event
that A wins in the corresponding game.

Game GA.0. Is the original attack, with the simplifications about knowing idTest
and id′ at the beginning and corrupting all long-term keys at the outset.

Game GA.1. Modify the game and replace the internally used Diffie-Hellman
value gxy in the two main executions of idTest and id′ by a random value gz.
A simple reduction to the DDH problem shows that this cannot decrease the
adversary’s success probability in the key secrecy game GA.1 by more than the
advantage against the DDH problem:

Prob[ GA.0] ≤ Prob[ GA.1] + AdvDDH
G,D .
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The reduction D receives (gx, gy, gz) as input, runs the entire key exchange attack
with A, also picking the test bit b, and inserts gx and gy into the test session
idTest as well as the partner session id′ on the honest parties side. But when both
parties are supposed to compute gxy reduction D uses gz instead. Eventually,
D checks if A succeeds in predicting b and does not lose. Algorithm D outputs
1 if this is the case. Note that if gz = gxy we perfectly simulate GA.0 whereas
for a random gz we perfectly simulate GA.1. It follows that the difference in
probabilities is bounded by the advantage against the DDH problem (for the
admissible group G used in the execution).

Game GA.2. Replace all output values in the HKDF evaluations (after, and
including the computation of HS ← HKDF.Extract(xES, gz)) in the two main
executions of sessions idTest and id′ by random values. This includes the Expand
calls to derive SS, server_finished_key, CS, client_finished_key, xHS, RMS
and SATS as well as CATS, but also the Extract step to compute MS. Finally,
we also replace the derived data client_write_key, client_write_iv, and CATSku

from CATS, and server_write_key, server_write_iv, and SATSku from SATS by
random values. Note that we can already replace the keys CATSku and SATSku

as if they were computed, although we have not yet shown that they are actually
derived; this will be shown below.

The proof replaces all the key values step wise, starting with computation
of HS from the input source gz, such that we can argue that the derivation
of SS from the now random HS via Expand can be substituted by picking SS
randomly etc. In each of the in total 16 steps we have an input distribution Di

and a distinguisher Di such that we can show that the winning difference in each
step is bounded by Advprf

HKDF.Extract/Expand,Di
. Altogether we thus have

Prob[ GA.1] ≤ Prob[ GA.2] +
16∑

i=1
Advprf

HKDF.Extract/Expand,Di,Di
.

In particular, we now have that CATS and SATS and the channel key-iv values
derived from them, as well as CATSku and SATSku, are random keys which are
independent of the protocol messages between idTest and id′.

Game GA.3. Declare the adversary to lose if it successfully executes the key
update in the sub flow of session idTest or id′ with idTest.sub.sid ̸= id′.sub.sid.
Note that the adversary can only make any of the two sessions accept if it
sends a valid record layer message to the corresponding party, either under
the now random channel key-nonce pair client_write_key, client_write_iv or
server_write_key, server_write_iv. The adversary may first receive a message
under the other key from the honest client or server before producing a successful
forgery against the other party’s key. We can simulate this by a single query
before creating the forgery which is admissible in the integrity game. But then
we give a reduction B to the security of either of the two keys, such that

Prob[ GA.2] ≤ Prob[ GA.3] + 2 ·Advint
AEAD,B.
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Here we use that Reveal queries do not reveal the intermediate keys and only
give reasonable answers after completion of the entire execution.

We finally note that, in this game, sessions idTest and id′ can only complete
the sub flow execution if the adversary relays the communication between the
two sessions which update the keys to CATSku and SATSku. In particular, the
adversary cannot Reveal the session key in session id′ since it is partnered with
the test session in both flows.

In the final game the adversary has no advantage to predict the secret bit
b because this game does not depend on b anymore; the final session keys are
independent random values in both cases. It follows that Prob[ GA.3] ≤ 1

2 .

Case B: Passive in sub flow, id′.sub.sid = idTest.sub.sid. Note that this
stipulates that id′.main.sid ≠ idTest.sub.sid or else we are again in case A. But
then, since the session identifier in the main flow contain exactly the data entering
the transcript hash, we can conclude that key derivation uses different inputs, at
least if we assume collision resistance of the hash function:

GB.0. Is the simplified starting attack as above.

GB.1. As game GB.0 but declare the adversary to lose if H(idTest.main.sid) =
H(id′.main.sid). This would immediately contradict the collision-resistance, i.e.,
we can give a reduction C such that

Prob[ GB.0] ≤ Prob[ GB.1] + Advcoll
H,C .

GB.2. As game GB.1 but declare the adversary to lose if idTest or id′ accept. We
can again give a reduction E against the correlation intractability of the AEAD
scheme (in combination with HKDF). Adversary E can impersonate the client
resp. server in the sessions idTest and id′ such that it knows the keys MSTest
and MS′ on both sides. These keys may or may not match. But for sure the
transcript hashes do not match by the previous game hop, such that we obtain
key derivation inputs (MSTest, x) ̸= (MS′, x′) which the (relayed) sub flow would
make both sides accept. This, however, would contradict the correlation integrity
of the AEAD scheme:

Prob[ GB.1] ≤ Prob[ GB.2] + Advcorr
AEAD,HKDF,E .

In the final game it follows that neither party idTest nor id′ has accepted, such
that the adversary cannot do any better than guessing the bit b:

Prob[ GB.2] ≤ 1
2 .

Case C: Active in both flows but acting independently. Finally, we need
to argue that A/A attacker cannot predict the bit b significantly beyond guessing
it. For this consider the test session idTest as before. We assume that there is no

15



other flow with identical session identifier, neither in the main step nor in the
sub flow. Else we would be already in cases A or B.

First note that, once the test session idTest has been started by Amain, the
sub adversaries cannot exchange information through Sync calls, nor via any
other oracle calls during the lifetime of session idTest. It follows that the main
flow uses random inputs such as the party’s nonce to compute the transcript
hash H(CH||SH|| . . . ). We can therefore cast this input to HKDF.Expand via some
distribution D′(x; r) where the r part describes the honest party’s contribution
to the transcript, and x the contribution of Amain, possibly chosen adaptively.
Note that, while the transcript hash has no entropy from Amain’s point of view,
for Asub it is still unknown, because no information flows from Amain to Asub.

We next define the following game hops:

GC.0. Is the attack as above.

GC.1. As game GC.0 but declare A to lose if the sub flow in idTest accepts.
It follows from the pseudorandomness of HKDF.Expand for the transcript-hash

input distribution D′ above that we can replace CATS and SATS computed over
the transcript in the moment when Asub is active in idTest by random values.
We argue that the probability that Asub makes the sub flow accept cannot
change significantly, else we derive a contradiction to the pseudorandomness of
HKDF.Expand via some reduction D′. Note that for this we merely need to wait
for Asub to make the sub flow accept or to hand over to Amain again (or abort
the execution).

Once we have replaced the traffic application secrets by random values we
immediately get a reduction B′ to the integrity of AEAD, as in Case A. Hence,

Prob[ GC.0] ≤ Prob[ GC.1] + Advprf
HKDF.Expand,D′,D′ + Advcorr

AEAD,HKDF,B′ .

In the final game the adversary Asub does not make the sub flow accept. It follows
that A does not learn any information about b from the Test query (since the
session key is not set). It follows that the probability of predicting b is bounded
by 1

2 .
Summing over all possibilities yields the claimed bound. ⊓⊔

4.4 Sub Flow Resumption
Instead of using the simple key update procedure we may alternatively use
resumption to update the keys over the sub flow. The advantage is that all
TLS 1.3 keys are updated by this, not only the application traffic secrets. The
security argument would be very similar to the one above, only that we need to
take the key RMS into account.

A noteworthy point is that we can actually relax the correlation integrity
condition on the AEAD scheme if we run resumption in the mode with the
(EC)DHE step. In this case the sub flow would create a fresh Diffie-Hellman
share in the sub flow as well, and we can argue that in Case B with relayed sub
flow the adversary thus cannot distinguish the derived keys from random, just as
we argue along the DDH assumption for passive adversaries in the main flow.
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4.5 Practical Considerations

We discuss here some aspects when running the above multipath TLS 1.3 version.
The first thing to note is that, in order to take advantage of the stronger security
guarantees, the parties need to ensure that the communication of the update
step is routed through the second communication channel. Luckily, even if the
parties are not aware of this, or cannot ensure this, they can still rely on the
basic security of TLS 1.3. Hence, from a security viewpoint the failure of using
multiple communication lines does not make our protocol insecure.

Concerning efficiency observe that MPTCP in principle allows for parallel
communication through the different channels. Our protocol, on the other hand,
needs to complete the regular handshake execution before being able to run the
update via the other communication line.

Next suppose that the key update step fails—if the handshake already fails
then the protocol execution cannot be continued. At this point the two parties
have already established a joint key via the handshake part. It may thus be
tempting to still use that key. For security reasons and for compatibility it is
nevertheless recommend to cautiously follow the TLS 1.3 specification [21] that
the connection must be be closed.

5 Conclusions

We have shown that update steps in key exchange protocols can be used to provide
multipath security. We have discussed this specifically for the case of TLS 1.3,
assuming that one can reliably assign protocol messages to communication paths.
An interesting question is to analyze what kind of security can still be achieved
if some of the messages may be unexpectedly transmitted over the other path.
Also, we have not investigated the possibility of 0RTT modes and the security
of the intermediate session keys. Note that any cryptographic analysis of 0RTT
modes must take into account the possibility of replay attacks [12].

Our security analysis provides a non-tight security bound with respect to the
underlying cryptographic primitives, in the sense that the key secrecy bound
depends quadratically on the number s of sessions. Furthermore, we work in
the single-test setting, and a potential hybrid argument to extend this to the
multi-test setting would incur another factor s. Recent efforts for TLS 1.3 [6,7],
however, have shown that it is possible to derive tight security bounds. It would
be interesting to see if this isapplicable here in the split adversary model as well.

Another interesting question is how smoothly one can use multipath con-
nections. The work by Costea et al. [5] already provides a comprehensive set of
experiments, indicating that it is doable in practice. It remains to investigate if
this is also true for applications which rely on fast connection times of TLS 1.3,
inciting the development of 0RTT modes.
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A Transport Layer Security

Figure 4 depicts the basic TLS 1.3 anonymous (EC)DHE handshakes including
the essential steps of the Diffie–Hellman-based key derivation. The key update
step has already been explained in Section 2.2. A session resumption is similar
to the handshake but adds some additional steps. It requires the server to have
issued a ticket to the client containing a nonce and identifying information which
are used for the resumption handshake. The client uses an additional extension
ClientPreSharedKey in the first message to indicate potential identifiers. The
server acknowledges one in its ServerPreSharedKey extension with the second
message. The parties then use the resumption secret RMS from before to
compute a pre-shared key PSK, which this time enters the computation ES ←
HKDF.Extract(“”, PSK). They also derive a binder key BK which is used to
verify the key. From there on the steps are identical to the one of a handshake
execution. We note that resumption can be executed with and without the
Diffie-Hellman step.
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Client Server
rc

$←− {0, 1}256

X $←− g
x ClientHello : rc

ClientKeyShare : X
rs

$←− {0, 1}256

Y $←− g
y

ES ← HKDF.Extract(“”, “”)
xES ← HKDF.Expand(ES, “derived”)
HS ← HKDF.Extract(xES, X

y)
SS ← HKDF.Expand(HS,

“s hs traffic”∥H(CH∥ . . . ∥SKS))
server_finished_key← HKDF.Expand(SS,

“finished”)
SF← HMAC(server_finished_key,

H(CH∥ . . . ∥EE))ServerHello : rs

ServerKeyShare : Y

{EncryptedExtensions∗}
{ServerFinished}

ES ← HKDF.Extract(“”, “”)
xES ← HKDF.Expand(ES, “derived”)
HS ← HKDF.Extract(xES, Y

x)
compute SS, server_finished_key
check SF
CS ← HKDF.Expand(HS,

“c hs traffic”∥H(CH∥ . . . ∥SKS))
client_finished_key← HKDF.Expand(CS,

“finished”)
CF← HMAC(client_finished_key,

H(CH∥ . . . ∥SF))
{ClientFinished}

check CF

xHS ← HKDF.Expand(HS, “derived”)
MS ← HKDF.Extract(“”, xHS)

RMS ← HKDF.Expand(MS, “res master”∥H(CH∥ . . . ∥CF))
client_application_traffic_secret← HKDF.Expand(MS, “c ap traffic”∥H(CH∥ . . . ∥SF))
server_application_traffic_secret← HKDF.Expand(MS, “s ap traffic”∥H(CH∥ . . . ∥SF))

Fig. 4: The TLS 1.3 anonymous (EC)DHE handshake protocol. Starred messages are
situation-dependent and not always sent. Messages enclosed in curly brackets are
protected by the handshake traffic secrets CS resp. SS.
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