
History-Free Aggregate
Message Authentication Codes

Oliver Eikemeier1, Marc Fischlin1, Jens-Fabian Götzmann1, Anja Lehmann1,2,
Dominique Schröder1, Peter Schröder1, and Daniel Wagner1

1 Darmstadt University of Technology, Germany — www.minicrypt.de
2 IBM Research Zurich, Switzerland

Abstract. Aggregate message authentication codes, as introduced by Katz
and Lindell (CT-RSA 2008), combine several MACs into a single value, which
has roughly the same size as an ordinary MAC. These schemes reduce the
communication overhead significantly and are therefore a promising approach
to achieve authenticated communication in mobile ad-hoc networks, where
communication is prohibitively expensive. Here we revisit the unforgeability
notion for aggregate MACs and discuss that the definition does not prevent
“mix-and-match” attacks in which the adversary turns several aggregates into
a “fresh” combination, i.e., into a valid aggregate on a sequence of messages
which the attacker has not requested before. In particular, we show concrete
attacks on the previous scheme.
To capture the broader class of combination attacks, we provide a stronger
security notion of aggregation unforgeability. While we can provide stateful
transformations lifting (non-ordered) schemes to meet our stronger security
notion, for the statefree case we switch to the new notion of history-free se-
quential aggregation. This notion is somewhat between non-ordered and se-
quential schemes and basically says that the aggregation algorithm is carried
out in a sequential order but must not depend on the preceding messages in
the sequence, but only on the shorter input aggregate and the local message.
We finally show that we can build an aggregation-unforgeable, history-free
sequential MAC scheme based on general assumptions.

1 Introduction

Aggregate message authentication codes [5] allow the aggregation of multiple MACs,
generated by different senders for possibly different messages, such that the aggre-
gate has the same size as a single MAC. These MACs are especially suited for set-
tings involving resource-constrained devices like mobile ad-hoc networks (MANET).
Thereby, the communication is very power-consuming and asymmetric primitives like
signatures are prohibitively expensive due to the limited computational power of the
devices. In this case, verification of an aggregated tag can be carried out by any re-
ceiver that shares all secret keys with the participating senders, e.g., a base station
collecting data from the sensors.
Security Revisited. The unforgeability notions for aggregate MACs follow the known
principle for aggregate signature schemes [2]. Basically, it states that an adversary,
who controls all aggregating parties except for a single signer, cannot create a valid
aggregate for a “fresh” set of messages. Here a set is considered fresh if the desig-
nated signer is in this set but has not signed the message before. In other words, the

unforgeability of the aggregation scheme is tied to the unforgeability of individual
messages.

Aggregation, however, is about combining data, and protection of individual mes-
sages may not be sufficient in all settings: deleting parts, re-ordering entries, extending
or recombining aggregates to a new valid aggregate may be serious threats for appli-
cations. We illustrate our idea with a simple (sequential) network of nodes

N1 −→ N2 −→ N3 −→ N4.

The aggregation scheme should be used to authenticate routing paths, where Ni only
accepts input from Ni−1, augments the aggregate-so-far by a MAC of its own identity
before forwarding the new aggregate to Ni+1. Then, if one is able to delete for example
N2’s contribution from the aggregate, one obtains a valid authentication of an invalid
route N1 → N3 → N4. According to the definition of [5], however, the above attack
does not constitute a security breach, as no individual MAC has been forged. We
discuss similar, concrete attacks of this “mix-and-match” type on the aggregate MAC
scheme due to Katz and Lindell [5] in Appendix A.
Aggregation Unforgeability. To cover advanced attacks as discussed above, we intro-
duce our stronger security notion of aggregation unforgeability. The attacker’s mode
of operation is similar to the definitions of [5], i.e., it can make aggregation queries for
messages of its choice and should eventually produce a forgery. However, in order to
capture attacks on combinations, like the mix-and-match attacks above, our attacker
faces multiple honest signers, instead of only a single signer as in all previous works.3

Our main modification is the notion of “freshness” for the adversary’s forgery
attempt. More precisely, we define a “minimal” closure set of all trivial message
combinations for which the adversary can easily assemble a valid aggregate out of
the data in the attack. For example, the closure contains any message set from an
aggregation query but where the adversary trivially adds messages authenticated by
corrupt parties. Every message set not appearing in this closure is then declared
as fresh. Unlike previous definitions the forgery combination in the mix-and-match
attack above is still fresh according to this definition.
History-Free Sequential Aggregation. It is not known how and if our general security
models can be satisfied; even if we make the excessive assumption of some shared
and synchronized information between the nodes, like a counter, we show that we can
only achieve a slightly weaker version. Yet, the discussion still shows the limitations of
current schemes and we can transfer the main ideas to the important case of sequential
aggregation where, e.g., a sensor receives some data, performs some operation, and
forwards the new data to the next node. With the corresponding adaptations of our
security notion —and noting that the attacks above are in fact carried out in the
sequential setting— it follows that our security guarantees also go beyond the current
models for sequential schemes.

Yet, we even consider a stronger model than pure sequential aggregation. Recall
that the proposal of Katz and Lindell supports the aggregation of the data inde-
pendently of the order of the parties and the aggregating algorithm is key less. The
3 It is tempting to assume that playing against a single honest user would suffice by a

standard guessing strategy. However, the mix-and-match attack shows that we may not
exploit a weakness in the tagging algorithm, but rather take advantage of the aggregation
of tags by several honest parties or of the structure of the aggregate itself.

gist of known non-sequential schemes is that the aggregation algorithm computes the
new data without inspection of previous messages. To preserve as much of this idea
for sequential aggregate MACs we introduce the notion of history-free aggregation
where the aggregation only depends on the aggregate-so-far and the local message.
It is clear that the previous aggregate enters the computation and that this value
itself carries (more or less explicit) information about previous messages. Due to the
size restriction for aggregates, though, this information is limited. In this sense it is
understood that history-free schemes only deny explicit access to previous messages.
History-free sequential aggregation is a desirable goal from an efficiency point of view.
It allows for example incremental compression of the message sequence without local
decompression for each aggregation. This property is especially worthwhile for cases
of MANETs where each computation effects on the battery life of the nodes.

In the history-free sequential case we provide solutions meeting our high standards.
Our secure construction is based on any pseudorandom permutation (PRP) like AES.
The idea here is to carefully chain the tags. In each aggregation step one basically
computes a CBC-MAC of the current message concatenated with the previous tag
(where we need the properties of the PRP only in the last mixing step). Hence, each
aggregation step essentially requires the computation of a MAC plus one invocation
of a PRP.

Related Work. Most works about secure aggregation follow the security model of
Boneh et al. [2] and Lysyanskaya et al. [6]. The only exception is the recent work by
Boldyreva et al. [3] which sketches a possible stronger security notion covering attacks
on sequential schemes in which the adversary outputs a prefix of some aggregation
query (and then possibly appends further iterations of corrupt players). But their
model does not discuss more advanced attacks like “gluing” together aggregates, nor
do they provide provably secure solutions for their model, whereas we show how to
make schemes secure against very powerful attacks.

We note that the notion of sequential aggregate signed data, recently proposed
by Neven [7], also aims at efficiency gains, but focuses on communication complex-
ity instead of computational complexity. For such sequential aggregate signed data
only the aggregate (being of roughly the same size as the messages) is passed to the
next round. However, according to the definition this aggregate allows to recover the
previously signed messages and Neven’s solution indeed extracts all these messages
for each aggregation step. In this sense, his solution is therefore still not history-free,
unlike our construction for MACs.

Organization. In Section 2 we recall the notion of aggregate MACs. We introduce our
model for aggregation unforgeability in Section 3. For our constructions we switch to
the (history-free) sequential case in Section 4. There, we define history-free sequential
aggregate MACs, discuss aggregation unforgeability in this case and finally we present
our construction based on the general assumptions.

2 Non-Sequential Aggregation of MACs

Roughly speaking, an aggregate MAC is a single tag, called the aggregate, of q different
users on q different messages such that the aggregate has nearly the same size as an
ordinary tag. The well known definition of MACs and their security are given in
Appendix B.

2.1 Definition

Definition 1 (Aggregate MACs). An aggregate message authentication code
Agg = (KGen,Mac,Vf,Agg,AVf) is a tuple of efficient algorithms such that:

Key Generation. The algorithm KGen takes the security parameter 1n and returns
for a particular sender a pair (skid, id) where skid is a key and id is an identifier.

Authentication, Mac Verification. Mac and Vf are defined as in a standard mes-
sage authentication scheme.

Aggregation. Upon input of two sets of message/identifier pairs M1 = {(m1
1, id

1
1),

. . . , (m1
`1
, id1

`1)} and M2 = {(m2
1, id

2
1), . . . , (m2

`2
, id2

`2)} and associated tags σ1 and
σ2, algorithm Agg outputs a new tag σ.

Aggregate Verification. Algorithm AVf accepts as input a set of key/identifier
pairs sk = {(sk1, id1), . . . , (skt, idt)}, a set of message/identifier pairs M =
{(m1, id

′
1), . . . , (m`, id

′
`)} and a tag σ. This algorithm returns a bit.

An aggregate message authentication scheme is complete if the following conditions
hold:

– For any n ∈ N, any (skid, id) ← KGen(1n), any message m ∈ Mn, we have
Vf(skid,m,Mac(skid,m)) = 1.

– Let M1 and M2 be two sets of message/identifier pairs with M1 ∩ M2 =
∅, let sk1 as well as sk2 be a set of keys, and let M = M1 ∪ M2 and
sk = sk1 ∪ sk2. If AVf(sk1,M1, σ1) = 1 and AVf(sk2,M2, σ2) = 1 then
AVf(sk,M,Agg(M1,M2, σ1, σ2)) = 1.

2.2 Security Model and an Instantiation

The security model for aggregate MACs is closely related to the one for aggregate
signatures [2]. The only technical difference results from the shared-key setting. Here,
an adversary has access to two different oracles. The first oracle, the corruption oracle
Corrupt(sk, ·), returns on input id the corresponding secret key skid. The second oracle
OMac(sk, ·) allows the adversary to compute MACs for messages and keys of its choice.
This oracle is initialized with a set of keys sk = ((sk1, id1), . . . , (sk`, id`)) and takes as
input a message/identifier pair (m, id), it returns σ ← Mac(skid,m). The adversary is
successful if it outputs a set of message/identifier pairs M = {(m1, id1), . . . , (m`, id`)}
and valid tag σ such that there exists at least one pair (mi∗ , idi∗) ∈M where idi∗ has
not been corrupted, nor has A queried the MAC oracle on input (mi∗ , idi∗).

Definition 2 (Unforgeability). An aggregate message authentication code scheme
Agg = (KGen,Mac,Vf,Agg,AVf) is unforgeable if for any efficient algorithm A the
probability that the experiment AggForgeAgg

A evaluates to 1 is negligible (as a function
of n), where

Experiment AggForgeAgg
A (n)

(sk1, id1), . . . , (skt, idt)← KGen(1n)
sk← ((sk1, id1), . . . , (skt, idt))
(M,σ)← ACorrupt(sk,·),OMac(sk,·)(id1, . . . , idt)
Return 1 iff AVf(sk,M, σ) = 1 and there exists a pair (mi∗ , idi∗) ∈M such that
A never queried Corrupt about idi∗ and A never invoked OMac on input (mi∗ , idi∗).

Instantiation According to Katz-Lindell. The authors also proposed the following
provably secure construction, which we call XOR-AMAC. The aggregate message
authentication code scheme simply computes XOR of all tags.

Construction 1. Let MAC = (KGen,Mac,Vf) be a deterministic message authentica-
tion code and define Agg = (KGenKL,MacKL,VfKL,AggKL,AVfKL) through the following
algorithms:

Key Generation. Algorithm KGenKL(1n) executes for each user independently the
key generation algorithm of the underlying MAC scheme sk ← KGen(1n) and
picks an identifier id← {0, 1}n at random. It returns the pair (skid, id).

Authentication, Verification. Defined as in the underlying mac scheme.
Aggregation. Upon input two sets M1 and M2 of message/identifier pairs and two

tags σ1 and σ2 the algorithm outputs σ = σ1 ⊕ σ2.
Aggregate Verification. AVfKL takes as input a set of keys sk = ((sk1, id1), . . . ,

(sk`, id`)), a set M = {(m1, id
′
1), . . . , (m`, id

′
`)} of message/identifier pairs, and a

tag σ. This algorithm AVfKL computes σ′ =
⊕`

i=1 Mac(skidi ,mi) and outputs 1 if
and only if σ′ = σ.

3 Aggregation Unforgeability for Non-Sequential MACs

In this section we first address the non-ordered case of aggregation. As discussed in the
introduction, we introduce a security model that captures the broad class of mix-and-
match attacks. It is clear that simple countermeasures like prepending the identifier of
the user do not prevent theses attacks. Another approach might be to let the sender
choose a nonce and have each intermediate user sign this nonce together with the
message. The receiver only accepts aggregates for fresh nonces. This approach has
some disadvantages, though. First, if the party choosing the nonces is controlled by
the adversary, then a nonce may re-appear for several MAC generations.4 Secondly,
ad-hoc networks are highly dynamic. Thus, a node may receive an aggregate more
than once (due to undesired loops in the route). Another disadvantage is that the
receivers have to keep state. Similar arguments hold also for timing-based or counter-
based solution. Nevertheless, we show in Appendix C a counter-based solution.

3.1 Security Model

We propose a stronger definition of unforgeability which we call aggregation-unforge-
ability. It follows the idea that the adversary is considered successful if he manages to
find a valid aggregate for a message set which is not a straightforward combination
of previous queries (or aggregates augmented by contributions of corrupt parties).

Regarding aggregate MACs, the main difference to the previous model is mani-
fested in the fact that we grant the adversary in our model an additional aggregation
oracle returning aggregates for sets of messages. The aggregation oracle, denoted by
OAgg, is initialized with the key/identity pairs (ski, idi) of all parties, takes as input
a set of message/identifier pairs {(M1, id1), . . . , (Mk, idk)} and returns an aggregate

4 Note that letting each party choose a nonce and append it to the aggregate would lead
the idea behind aggregation ad absurdum.

MAC σ for these data. We remark that the aggregation oracle only aggregates for hon-
est parties, i.e., where the corresponding keys were not corrupted by the adversary;
for corrupted parties the adversary must later add the values himself.

To express that the final output of the adversary is not a trivial combination of
the results of the queries, we define a closure of the queries that contains all of these
trivial combinations. For this definition we need the following notations. By QMac we
denote the set of queries of the adversary to the OMac oracle, by QAgg the set of
queries to the aggregation oracle OAgg, and by QCor the set of corruption queries. As
a very basic example consider the classical unforgeability notion of MACs (one party
only). Then the sets QAgg and QCor are empty and QMac contains exactly the queries
to the MAC oracle. Here, trivial attacks are those where the adversary’s forgery is for
one of the previously queried messages from QMac, i.e., the closure consists exactly of
the queried messages.

In the case of aggregation the adversary can assemble more trivial message sets
from its data. For example, if the adversary has obtained the aggregated MAC for
a pair of messages and identities id1, id2, and knows the MAC for a third honest
party id3, then it can run the public aggregation algorithm to derive a valid MAC
for the three messages. Analogously, the adversary can add corrupt parties easily by
computing individual MACs for these parties and then aggregating them to a previous
result. Our definition follows this idea, basically saying that the closure of all trivial
combinations contains aggregation queries to which we add individual MAC queries
and corrupt parties as well as further aggregation queries.

Consider as an instructive example a sensor network monitoring temperature dif-
ferences, where deviations of 2◦F between adjacent sensors would trigger an alarm.
Suppose for simplicity that the network only consists of two nodes, one (called ’mas-
ter’) being closer to the base station and forwarding the data from the other node
(called ’slave’) to the station. When using an aggregation scheme the master sensor
receives an aggregate for a temperature from the slave, “inserts” its authentication
data for its temperature and forwards the temperatures and the new aggregate to the
base.

If the adversary sees the aggregated MACs to the innocuous measurements
(70◦F, 70◦F), (69◦F, 70◦F), and (70◦F, 71◦F), then

QAgg =
{
{(70, id1), (70, id2)}, {(69, id1), (70, id2)}, {(70, id1), (71, id2)}

}
for identities id1 = ’slave’ and id2 = ’master’. Assume that there is a third party
id3 which is honest and for which the adversary has obtained an individual MAC
QMac = {(65, id3)} and that there is no corrupt party, QCor = ∅. Then the closure
would be

Closure(QMac, QAgg, QCor)

=
{
{(65, id3)},

{(70, id1), (70, id2)}, {(69, id1), (70, id2)}, {(70, id1), (71, id2)},

{(69, id1), (70, id1), (70, id2)}, {(70, id1), (70, id2), (71, id2)},
{(70, id1), (70, id2), (65, id3)}, {(69, id1), (70, id2), (65, id3)}, {(70, id1), (71, id2), (65, id3)},

{(69, id1), (70, id1), (70, id2), (71, id2)}, . . .
}

Note that we do not treat sets where an identity appears multiple times in any spe-
cial way. However, such forgery attempts can be easily thwarted by having the verifier

check that all identities are distinct. We remark that the pair {(69, id1), (71, id2)} is
not a member of the closure (containing only the three originally queries as entries
with two elements), but for which the adversary can for example in the Katz-Lindell
scheme easily obtain a valid aggregate by adding the aggregates for the three mea-
surements. The aggregate for this pair, even though not forging an individual MAC,
would nonetheless trigger an alarm because of the temperature distance.

Definition 3 (Closure of A’s queries). The closure Closure of A’s queries QMac,
QAgg and QCor is defined as

Closure(QMac, QAgg, QCor) ={ ⋃
MA∈A

MA ∪ MM ∪ MC

∣∣∣∣ A ⊆ QAgg, MM ⊆ QMac, MC ⊆
⋃

id∈QCor

{(m, id) |m ∈Mn}

}

with Mn denoting the message space for the security parameter n.

With our definition of the closure we get the following definition for aggregation-
unforgeable MAC schemes.

Definition 4. An aggregate message authentication code scheme Agg = (KGen,Mac,
Vf,Agg,AVf) is aggregation-unforgeable if for any efficient algorithm A the probability
that the experiment AggForgeAgg

A evaluates to 1 is negligible (as a function of n), where

Experiment AggForgeAgg
A (n)

(sk1, id1), . . . , (skt, idt)← KGen(1n)
sk← ((sk1, id1), . . . , (skt, idt))
(M,σ)← ACorrupt(sk,·),OMac(sk,·),OAgg(sk,·)(id1, . . . , idt)
Return 1 iff AVf(sk,M, σ) = 1 and M 6∈ Closure(QMac, QAgg, QCor).

3.2 Relationship to the Model of Katz-Lindell

We first prove formally the fact that aggregation-unforgeability implies unforgeability.
Then we separate the notion by showing that the aggregate MAC scheme shown in
Construction 1 is aggregation-forgeable.

Proposition 1. Every aggregation-unforgeable message authentication code is also
unforgeable.

Proof. Let Agg = (KGen,Mac,Vf,Agg,AVf) be an aggregation-unforgeable message
authentication scheme. Suppose towards contradiction that there exists an adversary
A breaking security of Agg. Then we show how to build an algorithm B against
aggregation-unforgeability. This algorithm executes a black-box simulation of A and
answers each oracle query with its own oracles. Finally, A stops, outputting a pair
(M,σ) which B returns as its forgery.

Algorithm B performs a perfect simulation from A’s point of view, and since A is
efficient B is also efficient. To see that the forgery is valid, note that QAgg is empty
because A performs the aggregation queries locally. Recall that A only succeeds if
there exists at least one pair (midi∗ , idi∗) ∈ M such that A never queried Corrupt
about idi∗ and never invoked OMac on (midi∗ , idi∗). Thus, the forgery is not in the
closure and B succeeds whenever A returns a valid forgery. ut

In the following we separate the notions showing that Construction 1 is “aggregation-
forgeable”. The basic idea follows the example that we discussed in the previous
section and is that A successfully recombines real subsets of queries to the AMac
oracle. Thus, A’s answer M is a set which contains has never been sent to the oracle
OAgg.

Proposition 2. If there exists a deterministic message authentication code where the
message-spaceMn contains at least four distinct messages, then the aggregate message
authentication code defined in Construction 1 is not aggregation-unforgeable.

Proof. The adversary A forging the aggregate MAC (cf. Definition 4) gets as input
(id1, . . . , idt) and works as follows: It first picks two identifiers at random from the
list, (id1, id2), chooses randomly four messages m1,m2,m3,m4 ←Mn and sets M1 ←
((m1, id1)(m2, id2)), M2 ← ((m1, id1)(m3, id2)) and, M3 ← ((m4, id1)(m2, id2)). This
algorithm then invokes the aggregation oracle three times:

σ1 ← OAgg(sk,M1) and σ2 ← OAgg(sk,M2) and σ3 ← OAgg(sk,M3).

It returns (M,σ)← (((m4, id1), (m3, id2)), (σ1 ⊕ σ2 ⊕ σ3)).
For the analysis it is easy to see that A is efficient. The forgery is valid since

σ = σ1 ⊕ σ2 ⊕ σ3 = OAgg(sk,M1)⊕ OAgg(sk,M2)⊕ OAgg(sk,M3)
= Mac(skid1 ,m1)⊕Mac(skid2 ,m2)⊕Mac(skid1 ,m1)⊕Mac(skid2 ,m3)
⊕Mac(skid1 ,m4)⊕Mac(skid2 ,m2)

= Mac(skid1 ,m4)⊕Mac(skid2 ,m3)

holds. Furthermore A neither queried the corruption oracle, nor invoked OAgg(sk, ·)
on the tuple ((m4, id1), (m3, id2)). ut

4 History-Free Sequential Aggregate MACs

In this section we introduce the notion of history-free sequential aggregation and adapt
the desired security model of aggregation-unforgeability to the new scenario. We then
present our sequential aggregate MAC scheme based on an underlying deterministic
MAC.

4.1 Definition of Sequential Aggregate MACs

In an aggregate MAC scheme the tags are computed independently by each sender
and are then combined into a single aggregate tag. Therefore, the aggregation can be
performed even by an unrelated party since the process does not require knowledge of
the secret keys. In contrast, in a sequential aggregate MAC schemes the authentication
and aggregation is a combined operation. Each sender gets as additional input an
aggregate-so-far σ′ and transforms that tag into a new aggregate σ which includes
the authentication of a message of his choice. We write M ||(m, id) for the resulting
sequence of message-identifier pairs (where the pair (m, id) is appended to the previous
pairs).

Definition 5. A sequential aggregate message authentication code scheme is a tuple
of efficient algorithms SAGG = (SKGen,Mac,Vf,SMac,SVf) such that

Key generation. SKGen takes as input the security parameter 1n and returns a key
skid together with an identity id.

Authentication, Verification. Defined as in a standard MAC scheme.
Aggregate Tagging. Algorithm SMac accepts as input a key skid, a message m ∈
Mn, an aggregate-so-far tag σ′ and a sequence of message/id pairs M =
((m1, id1), . . . , (mt, idt)). It outputs a new aggregate MAC σ.

Verification algorithm. SVf takes as input a set of keys sk = {skid1 , . . . , skid`},
a tuple of messages/identifier pairs M = ((m1, id1), . . . , (mt, idt)) as well as an
alleged sequential aggregate tag σ and outputs a bit.

A sequential aggregate MAC scheme is complete if

– (Single-MAC Correctness) For any pair (skid, id)← SKGen(1n), any message m ∈
Mn and any σ ← Mac(skid,m), it holds that Vf(skid,m, σ) = 1.

– (Aggregation Correctness) For all pairs (skid, id) ← SKGen(1n), all messages
m ∈ Mn, for any set of message/identifier pairs M = {(m1, id1), . . . , (m`, id`)}
(where (mi, idi) ∈Mn×{0, 1}n for all i = 1, . . . , `), any set of keys sk and any tag
σ′ ∈ Rn with SVf(sk,M, σ′) = 1 we require that for all σ ← SMac(skid,m, σ

′,M) it
holds that
SVf((sk||skid),M ||(m, idid), σ) = 1.

A common approach to build sequential aggregate signature schemes is to verify the
validity of an received aggregate-so-far before computing the new aggregate. Often,
the aggregation algorithm even includes the previous messages in its computations. In
the private key setting, however, verification of the aggregate may not be possible as
nodes do not share all keys. Moreover, compared with non-sequential schemes, where
the aggregation process does not depend on the previous messages, this is a main
drawback of sequential schemes (especially from an efficiency point of view). The idea
of history-free sequential aggregation is to overcome that restriction by requiring that
the aggregation only depends on the aggregate-so-far and the local message.

Definition 6 (History Freeness). A sequential aggregate message authentication
scheme SAGG = (SKGen,Mac,Vf,SMac,SVf) is called history-free if there exists an
efficient algorithm SMachf such that SMachf(·, ·, ·) = SMac(·, ·, ·,M) for all M .

In the sequel we often identify SMachf with SMac and simply omit M from the input
of SMac.

4.2 Security Model

A sequential aggregate MAC is called aggregation-unforgeable, if any efficient adver-
sary A succeeds in the following two-phase experiment only with negligible probabil-
ity. In the first phase, the adversary has access to a corrupt oracle Corrupt, and can
obtain the secret keys of senders of his choice. As soon as A queries its sequential
aggregate MAC oracle SeqAgg, the corruption phase has ended and the adversary
A is not allowed to query the corrupt oracle again. The sequential aggregate MAC
oracle SeqAgg takes as input a set sk = (skid1 , . . . , skid`), an aggregate-so-far tag σ′,

an ordered set M = {(m1, id1), . . . , (mq, idq)} of message identifier pairs and returns
a (sequentially ordered) tag σ.

Before proposing the formal security model, we define the closure of all trivial
combinations. We denote by QSeq the set of all query/answer tuples ((M,σ′), σ) that
occur in A’s interaction with the SeqAgg oracle and by QCor we denote the set of all
identities’ that were queried to the Corrupt oracle.

We stress that in the context of sequential aggregate MACs given the adversary
access to a MAC oracle is redundant. Each query to a (single) MAC oracle can easily
simulated by calling the sequential aggregate oracle with the empty tag σ∅. Thus, the
definition of the closure does not need the set QMac of queries and responses from the
MAC oracle (since this set in contained in QSeq).

Definition 7 (Sequential Closure of A’s queries). Let M be a set of mes-
sage/identifier pairs, let QCor and QSeq be the sets corresponding to the different
oracle responses and let m∅ (σ∅) be the empty message (empty tag, respectively).
Let TrivialQSeq,QCor

be a recursive function of trivial combinations defined as

TrivialQSeq,QCor
(M,σ) := {M} ∪

⋃
((σ,M ′),σ′)∈QAgg

TrivialQSeq,QCor
(M ||M ′, σ′)

∪
⋃
∀m̄,σ̄

∧idi∈QCor

TrivialQSeq,QCor
(M ||(m̄, idi), σ̄) .

We can now define the closure Closure of A’s queries QAgg and QCor by recursively
generating the trivial combinations starting from the empty message m∅ and empty
tag σ∅ as described above:

Closure(QAgg, QCor) := {TrivialQSeq,QCor
(m∅, σ∅)}.

With the definition of the sequential closure, we propose the following security model
for sequential aggregate MACs.

Definition 8. A sequential aggregate message authentication code scheme SAGG =
(SKGen,Mac,Vf,SMac,SVf) is aggregation-unforgeable if for any efficient algorithm
A (working in mode cor, for) the probability that the experiment SeqForgeAgg

A eval-
uates to 1 is negligible (as a function of n), where

Experiment SeqForgeAgg
A (n)

(sk1, id1), . . . , (skt, idt)← SKGen(1n)
sk← ((sk1, id1), . . . , (skt, idt))
st← ACorrupt(sk,·)(cor, id1,idt) // it is understood that A keeps state st
(M,σ)← ASeqAgg(sk,·,·)(for, st, id1, . . . , idt)
Return 1 iff idi 6= idj for all i 6= j and SVf(sk,M, σ) = 1 and

M 6∈ Closure(QAgg, QCor).

Note that in the definition above the adversary A running in mode for has only
access to the sequential aggregate MAC oracle an not to a tagging oracle Mac. We
argue that this is redundant since the attacker is allowed to invoke SeqAgg on tags
of its choice. Thus, A can query SeqAgg on arbitrary messages m together with the
empty tag σ∅ and yields an ordinary tag for m.

5 Construction of History-Free Sequential MACs

The idea behind our construction is as follows. We again use a “chaining” approach in
which we let the next aggregating party (with identity id) compute the next tag over
its own messageM ∈ {0, 1}∗ and over the previous tag σ′. That is, τ ← Mac(sk,M‖σ′)
for the deterministic algorithm Mac(sk, ·) : {0, 1}∗ → {0, 1}n. To preserve the order of
the aggregating parties we let each party prepend its own identity id to the resulting
tag σ ← id‖τ . Thus, the next party essentially computes a MAC for its own message,
the identity of the previous party and the previous tagging result. Formally, prepend-
ing id enlarges the tag, yet in most applications the identity of the sending party is
known anyway and does not need to be included explicitly.

Proving the security of the above approach leads to some difficulties. Namely, the
adversary could potentially gain information from the final tag about an intermediate
value, and could thus easily “shorten” such aggregation chains. To prevent this we
assume that MAC itself is pseudorandom, ensuring that no such information is leaked.

We also need a special property of the MAC allowing us to “go backwards” in a
chain: assume that an adversary successfully outputs a forged sequence by predict-
ing one of the intermediate MACs correctly. Then, in order to break the security of
the underlying MAC, we need to be able to undo the MAC computations afterwards
and to access the intermediate MAC values. We add this partial inversion property
as an requirement to the (pseudorandom) MAC and show that standard construc-
tions like CMAC have this property and that one can easily build such MACs from
pseudorandom permutations.

5.1 Properties of the MAC

Recall that we need two properties of the underlying MAC in order to make our
construction work: pseudorandomness and partial inversion:

Definition 9 (Pseudorandom MAC). A det. message authentication code MAC =
(KGen,Mac,Vf) is pseudorandom (or a pseudorandom function) if for any efficient
algorithm D the value∣∣∣Prob

[
DMac(sk,·)(1n) = 1

]
− Prob

[
Df(·)(1n) = 1

]∣∣∣
is negligible, where the probability in the first case is over D’s coin tosses and the
choice of sk ← KGen(1n), and in the second case over D’s coin tosses and the choice
of the random function f : {0, 1}∗ → {0, 1}n.

A pseudorandom function is called a pseudorandom permutation if it is also a per-
mutation. Note that pseudorandom MACs are unforgeable, too.

Definition 10 (Partial Inversion). A deterministic message authentication code
MAC = (KGen,Mac,Vf) is partially invertible if there exists an efficient algorithm
PartInv which, for any security parameter n ∈ N, any key sk ← KGen(1n), any M =
M ′||m for some m ∈ {0, 1}n, and any σ ∈ {0, 1}n, on input (sk,M ′, σ) returns a
string m ∈ {0, 1}n such that Mac(sk,M ′‖m) = σ.

In the following we present two efficient constructions satisfying the definition of
partial inversion. The first construction is CMAC (a security proof is given by Iwata

and Kurosawa under the name OMAC in [4]) which can be used for messages of fixed
block length. The reason for not using CMAC for arbitrary input-lengths is that the
desired block may not be aligned to the final n bits. The second construction uses a
pseudorandom permutation and is applicable for messages of variable length.

A Solution Based on CMAC. If the length of the message/identifier pair is a positive
multiple of the block size, then CMAC can be used as the underlying (pseudoran-
dom) message authentication code (when a pseudorandom permutation PRP lies un-
derneath). We first review CMAC briefly and show then that CMAC supports partial
inversion.

The key generation algorithm of CMAC generates a pair of keys sk, sk1 where sk1

is derived from sk.5 In order to compute a tag, the tagging algorithm takes as input
a message M = m1|| . . . ||mk ∈ {0, 1}k·n and two keys sk, sk1. It computes

ci ← PRP(sk,mi ⊕ ci−1) for i = 1, . . . , k − 1 (where c0 = 0n) ,

and outputs the final tag as σ ← PRP(sk, ck−1 ⊕ sk1 ⊕ mk). Unforgeability and
pseudorandomness follow from the security of CMAC for aligned inputs.

Lemma 1. CMAC is partially invertible.

Proof. In the following we describe the algorithm PartInv which takes as input a
message M ′ = m1, . . . ,mk−1 (consisting of k− 1 blocks m1, . . . ,mk−1 of n bits each)
a pair of keys (sk, sk1), and a tag σ. In the first step, this algorithm emulates the
iteration of CMAC but omitting the last step, ci ← PRP(sk,mi ⊕ ci−1) for i =
1, . . . , k− 1. Algorithm PartInv then decrypts the received tag τ ← PRP−1(sk, σ) and
returns m← ck−1 ⊕ sk1 ⊕ τ . It is clear that this recovers an appropriate value m. ut

A General Solution. In the following let M = M ′‖m ∈Mn be a message whose block
length is not a positive multiple of the block size. We then present a suitable MAC
scheme based on general assumptions. The main idea of the construction is to execute
(the underlying deterministic) tagging algorithm τ ← Mac(sk,M ′) on the first part
M ′ of the message M and to compute a pseudorandom permutation on the value
τ ⊕m.

Construction 2. Let MAC = (KGen,Mac,Vf) be a deterministic message authen-
tication code and PRP(·, ·) be a pseudorandom permutation (where Mac for security
parameter n produces n-bit outputs and PRP is also over n-bits for security parameter
n). We define the procedures CKg,CTag and CVf as follows:

KeyGen. The key generation algorithm CKg(1n) generates a key sk ← KGen(1n),
chooses a key kPRP ∈ {0, 1}n at random and returns (sk, kPRP).

Tagging. CTag((sk, kPRP),M) takes a message M = M ′‖m with M ′ ∈ {0, 1}∗ and
m ∈ {0, 1}n as well as a key pair sk, kPRP. It computes τ ← Mac(sk,M ′) and
returns the value PRP(kPRP, τ ⊕m).

Verification. The algorithm CVf((sk, kPRP),M, σ) returns to 1 iff
CTag((sk, kPRP),M) = σ, otherwise 0.

5 Note that CMAC deduces two keys sk1 and sk2 from sk. As in this construction the second
key sk2 is not required, we omit it here.

Note that we do not claim to be able to recover the full message M‖σ′ from a MAC
τ ← Mac(sk,M‖σ′), but it suffices that we recover σ′ given sk,M and σ. The fol-
lowing theorem proves formally the security and the partial inversion property of the
construction.

Theorem 3. If MAC = (KGen,Mac,Vf) is an unforgeable message authentication
code and PRP is a pseudorandom permutation, then Construction 2 is a pseudoran-
dom, partially invertible message authentication code.

We proof this theorem through the following two proposition, first showing that the
resulting MAC scheme is secure and second its partial inversion.

Proposition 3. If MAC = (KGen,Mac,Vf) is an unforgeable message authentication
code and PRP is a pseudorandom permutation, then Construction 2 is pseudorandom.

The proof idea is to apply the well-known result that the composition of a (com-
putational) almost universal function and a pseudorandom function remains pseu-
dorandom (see, for example, [1]). This clearly yields a secure MAC. Hence, for our
construction it suffices to show that the “inner” part of our MAC algorithm is com-
putational almost universal. Before stating this result, we give a formal definition of
computational almost universal MACs.

Definition 11. A message authentication code MAC is called computational almost
universal (cAU) if for any efficient algorithm A the probability that experiment cAU
evaluates to 1 is negligible (as a function of n), where

Experiment cAUMAC
A (n)

sk ← KGen(1n)
(M1,M2)← A(1n)
Return 1 iff M1 6= M2 and Mac(sk,M1) = Mac(sk,M2).

Lemma 2. For an unforgeable deterministic message authentication codes MAC′ =
(KGen′,Mac′,Vf ′) the algorithm Mac′(sk,M ′) ⊕m for M = M ′||m is computational
almost universal (for key generation sk ← KGen′(1n)).

Proof. To prove this lemma first consider the case that we have M ′1 = M ′2 for a
successful adversarial output M1 = M ′1||m1, M2 = M ′2||m2. Then it must hold that
m1 6= m2, implying that Mac′(sk,M ′1)⊕m1 6= Mac′(sk,M ′2)⊕m2 for the deterministic
algorithm Mac′. Hence assume from now on that there exists an algorithm A breaking
the almost universal property of the MAC scheme proposed in Construction 2 with
noticeable probability for M ′1 6= M ′2. We then build an algorithm B, against the
underlying MAC scheme MAC′, which executes A in a black-box way and works as
follows. B gets as input the security parameter 1n, has access to an tagging oracle
Mac(sk, ·) and initiates A on input 1n. At the end of the simulation A outputs two
messages M1 = M ′1||m1, M2 = M ′2||m2. B invokes its MAC oracle Mac(sk, ·) on M ′1
and gets σ′1 and outputs (M ′2, σ

′
1 ⊕m1 ⊕m2).

For the analysis note that B is efficient since A is efficient. Furthermore, given that
A produces a collision M1,M2 with M ′1 6= M ′2, adversary B succeeds in producing a
forgery for a new message since it queries its oracle only once about M ′1 6= M ′2 and
the derived tag is obviously valid. ut

Concerning partial inversion, we have:

Proposition 4. The message authentication code defined in Construction 2 is par-
tially invertible.

Proof. The construction supports partial inversion: The algorithm PartInv takes as
input a pair of keys (sk, kPRP), a string M ′ and a tag σ. It computes τ ← Mac(sk,M ′),
c← PRP−1(kPRP, σ) and returns m← τ ⊕ c. It is now easy to see that this output is
valid. ut

5.2 Construction

Construction 4. Let MAC = (KGen,Mac,Vf) be a deterministic MAC. Let SAM =
(SeqKg,SeqAgg,SeqAggVf) be as follows:

Key Generation. The key generation algorithm SeqKg takes as input the security
parameter 1n, picks an identifier at random id ∈ {0, 1}n, executes the key gener-
ation algorithm of the underlying MAC scheme sk ← KGen(1n) and returns the
pair (sk, id).

Sequential Aggregation. The algorithm SeqAgg(sk,M, id, σ′) takes as input a pri-
vate key sk, a message M ∈ {0, 1}∗, and a (sequentially aggregated) tag σ′. It exe-
cutes the underlying tagging algorithm τ ← Mac(sk,M‖σ′) and outputs σ ← id‖τ .
(For σ0 = ∅ simply run the MAC algorithm on M only.)

Aggregate Verification. The input of algorithm SeqAggVf is a sequence of keys
sk = (sk1, . . . , sk`), a tag σ and sequences M = (M1, . . . ,M`) and id =
(id1, . . . , id`) of messages and identifiers. If any key in sk appears twice then re-
turn 0. Otherwise compute for i = 1, . . . , `, σi ← idi‖Mac(ski,Mi||σi−1) , with
σ0 ← ∅. Return 1 iff σ` = σ, otherwise 0.

The following theorem captures the security of our construction:

Theorem 5. If MAC = (KGen,Mac,Vf) is a pseudorandom, partially invertible mes-
sage authentication code then Construction 4 is a history-free, aggregation-unforgeable
sequential aggregate message authentication code scheme.

More precisely, we show that, letting t be the number of parties and Q denote
the number of aggregation queries, each of L message-identity pairs at most, the
probability that an adversary breaks the aggregate MAC scheme is bounded from
above by 3t(Q + 1)2L2 times the probability of breaking the underlying MAC, plus
the advantage of breaking the pseudorandomness of the MAC (in both cases with
comparable running time).

The idea of our proof is as follows. When the adversary eventually outputs a
forgery attempt there must be a subsequence which is not assembled out of seen
values or values of corrupt parties. In particular, this target sequence contains only
values of honest parties (see Figure 1). We first show that there are no collisions
among aggregates output by honest parties (else one could use this collision to forge
MACs). It follows that this target sequence cannot be a suffix of an aggregation
query because the identity in the forgery attempt must be different from the identity
in the corresponding aggregation query (else we would have found a collision when
entering the target sequence). The target sequence cannot be a prefix of a previous
aggregation query because the pseudorandomness of the MAC hides all information

target sequence

Fig. 1: Example of a target sequence. Shaded circles denote corrupt parties and boxes corre-
spond to aggregation queries such that the input/output aggregates (small filled circles) are
known by the adversary.

about aggregates in a chain. Hence, the target sequence must be “fresh”, implying
that one must be able to forge the underlying MAC.

The formal proof that the construction is indeed secure is given in the full version.
Acknowledgments. We thank all the anonymous reviewers for their comments. This
work was supported by the Emmy Noether Program Fi 940/2-1 of the German Re-
search Foundation (DFG).

References

1. Mihir Bellare. New Proofs for NMAC and HMAC: Security without Collision Resistance.
Advances in Cryptology — Crypto’06, Lecture Notes in Computer Science, pages 602–
619. Springer-Verlag, 2006.

2. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and Verifiably
Encrypted Signatures from Bilinear Maps. Advances in Cryptology — Eurocrypt’03,
Lecture Notes in Computer Science, pages 416–432. Springer-Verlag, 2003.

3. Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered mul-
tisignatures and identity-based sequential aggregate signatures, with applications to secure
routing. ACM Conference on Computer and Communications Security, pages 276–285.
ACM Press, 2007.

4. Tetsu Iwata and Kaoru Kurosawa. OMAC: One-Key CBC MAC. Fast Software Encryp-
tion (FSE)2003, Lecture Notes in Computer Science, pages 129–153. Springer-Verlag,
2003.

5. Jonathan Katz and Andrew Y. Lindell. Aggregate Message Authentication Codes. Topics
in Cryptology — Cryptographer’s Track, RSA Conference (CT-RSA)’08, Lecture Notes
in Computer Science, pages 155–169. Springer-Verlag, 2008.

6. Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential Aggre-
gate Signatures from Trapdoor Permutations. Advances in Cryptology — Eurocrypt’04,
Lecture Notes in Computer Science, pages 74–90. Springer-Verlag, 2004.

7. Gregory Neven. Efficient Sequential Aggregate Signed Data. Advances in Cryptology —
Eurocrypt’08, Lecture Notes in Computer Science, pages 52–69. Springer-Verlag, 2008.

A Mix-and-Match Attacks on the Katz-Lindell Scheme

In this section we discuss several attack strategies against the Katz-Lindell [5] aggre-
gate MAC scheme. Note that our attacks do not contradict the security results in [5],
because the scheme has only been designed to meet the relaxed unforgeability notion.

The aggregation step in the Katz-Lindell scheme is rather simple: the aggregation
algorithm computes the exclusive-or over all (deterministically computed) tags resp. in
our routing example of four nodes N1 → N2 → N3 → N4, node Ni adds its MAC for
message Mi to the current aggregate value.

Deletion Attack. Given the replies

σ1 = Mac(sk1,M1)⊕Mac(sk2,M2)⊕Mac(sk3,M3), σ2 = Mac(sk2,M2)

to two aggregation queries for message sets {M1,M2,M3}, and {M2}, where each
message Mi is given to node Ni, the adversary is able to delete the element σ2 =
Mac(sk2,M2) from the aggregate:

σ∗1 = σ1 ⊕ σ2 = Mac(sk1,M1)⊕Mac(sk3,M3)

and obtains a valid “fresh” aggregate on the set (on the invalid route N1 → N3)
{M1,M3}.
Re-Ordering Attack. Given the replies

σ1 = Mac(sk1,M1)⊕Mac(sk2,M2), σ2 = Mac(sk1,M3)⊕Mac(sk2,M2),
σ3 = Mac(sk1,M1)⊕Mac(sk2,M4)

to three aggregation queries for message sets {M1,M2}, {M2,M3} and {M1,M4}, the
adversary is able to compute a valid aggregate

σ∗ = σ1 ⊕ σ2 ⊕ σ3 = Mac(sk1,M3)⊕Mac(sk2,M4)

for the set {M3,M4}.
Extension Attack. Given the replies

σ1 = Mac(sk1,M1)⊕Mac(sk2,M2)⊕Mac(sk3,M3) σ2 = Mac(skA,MA)⊕Mac(skB ,MB)

to the aggregation queries for message sets {M1,M2,M3} and {MA,MB}, the adver-
sary is able to extend the aggregate:

σ∗3 = σ1⊕σ2 = Mac(sk1,M1)⊕Mac(skA,MA)⊕Mac(sk3,M3)⊕Mac(skB ,MB)⊕Mac(sk2,M2)

and obtains a valid “fresh” aggregate on the set (on the route) {M1,MA,M3,MB ,M2}
(for arbitrary MA,MB).
Recombination Attack. Given the replies

σ1 = Mac(sk1,M1)⊕Mac(sk2,M2)⊕Mac(sk3,M3),
σ2 = Mac(sk2,M2)⊕Mac(sk3,M3)⊕Mac(sk4,M4),

and
σ3 = Mac(sk3,M3)⊕Mac(sk4,M4)⊕Mac(sk5,M5),

to the aggregation queries for message sets {M1,M2,M3}, {M2,M3,M4}, and
{M3,M4,M5}, the adversary is able to recombine the aggregate,

σ∗ = σ1 ⊕ σ2 ⊕ σ3 = Mac(sk1,M1)⊕Mac(sk5,M5)⊕Mac(sk3,M3),

and obtains a valid “fresh” aggregate on the set (on the route) {M1,M5,M3}.
Note also that, if we assume Ni only accepts input from Ni−1 then replay attacks

do not necessarily help, because the adversary can never send a previously obtained
tuple {M1,M2} to the node N4.

B Preliminaries: MACs and Their Security

Definition 12 (Message Authentication Codes). A message authentication code
scheme MAC = (KGen,Mac,Vf) is a triple of efficient algorithms where

Key Generation. KGen(1n) gets as input the security parameter 1n and returns a
key sk.

Authentication. The authentication algorithm σ ← Mac(sk,m) takes as input the
key sk, a message m from a message space Mn and returns a tag σ in a range
Rn.

Verification. Vf(sk,m, σ) returns a bit.

It is assumed that the scheme is complete, i.e., for all sk ← KGen(1n), any m ∈Mn,
and any σ ← Mac(sk,m) we have Vf(sk,m, σ) = 1.

A message authentication code is called deterministic if the tagging algorithm is
deterministic. A deterministic MAC is called canonical if the verification algorithm
recomputes the tag for a given message and checks that it matches the given one.
Unforgeability demands that it is infeasible to produce a valid tag for a new message:

Definition 13 (Unforgeability). A message authentication code MAC = (KGen,
Mac,Vf) is (t, qt, qv, ε)-unforgeable under chosen message attacks (EU-CMA) if for
any algorithm A running in time t the probability that the experiment ForgeMAC

A eval-
uates to 1 is at most ε(n), where

Experiment ForgeMAC
A (n)

sk ← KGen(1n)
(m∗, σ∗)← AMac(sk,·),Vf(sk,·,·)(1n)
Return 1 if, at some point, A makes a query m∗, σ∗ to Vf such that

Vf(sk,m∗, σ∗) = 1 and A has never queried Mac(sk, ·) about m∗ before.

and A makes at most qt queries to oracle Mac and at most qv queries to oracle Vf.
The probability is taken over all coin tosses of KGen,Mac,Vf and A.

C Counter-Based Aggregation-Unforgeable Schemes

In this section we show that, assuming the existence of a shared counter, we can lift
non-ordered aggregate schemes that are unforgeable in the classical sense to achieve
a stronger security requirement. However, even such an assumption only allows to
prevent some of the mix-and-matching attacks discussed in the introduction, but not
attacks aiming to erase subsets of previously queried aggregates. Thus, we introduce
a slightly weaker definition of aggregation-unforgeability by considering forgeries that
consist of those subsets as trivial. This corresponds to the case that the adversary can
remove contributions of honest parties from valid aggregates. Recall that the adversary
can query an aggregation oracle, denoted by OAgg, which takes the key/identity pairs
(ski, idi) of all honest parties (provided by the system) and a set of message/identity
pairs M = {(m1, id1), . . . , (mk, idk)} (chosen by the adversary). The oracle returns an
aggregate MAC σ for these data.

To mark subsets of aggregation queries as trivial, we include all message sets that
are subsets of queried aggregates into the closure:

Closure∗(QAgg, QCor) ={ ⋃
MA∈A

MA ∪
⋃

M∗A⊆A∗
M∗A ∪ MC

∣∣∣∣
A∗ ∈ QAgg, A ⊆ QAgg, MC ⊆

⋃
id∗∈QCor

{(m, id∗) |m ∈Mn}

}
.

We now show how to construct an aggregate tag scheme that is aggregation-
unforgeable with respect to the weaker definition.

Given an aggregate MAC scheme Agg = (KGen,Mac,Vf,Agg,AVf) that is unforge-
able according to the definition of Katz and Lindell [5] we can derive a counter-based
aggregate tag scheme that achieves our stronger security requirement of aggregation-
unforgeability. To this end, we augment the aggregate tag scheme as follows:

– KGen and AVf remain unchanged
– Mac∗(sk,m) queries Mac on the string m∗ = (count,m) where count is a synchro-

nized counter shared between all signing parties. It outputs σ∗ = (count, σ) with
σ ← Mac(sk, (count,m)) and updates the counter.

– Agg∗(M,σ) parses σ as {(count1, σ1), . . . , (count`, σ`)} and stops with output ⊥
if the counter values differ. Else, it computes σ ← Agg(M∗, {σ1, . . . , σ`}) for
m∗i = (count,mi) and outputs σ∗ = (count, σ).

– AggVf∗(sk,M, (count, σ)) sets M∗ = {(count,m1), . . . , (count,m`)} for M = {m1,
. . . ,m`} and outputs AggVf(sk,M∗, σ).

Prepending a unique counter value to the messages in each signing request prevents
the adversary from recombining several aggregates into a new one, as the verification
algorithm first checks that all messages carry the same counter value. Recall that the
strength of the adversary in our security model stems from granting an aggregation
oracle and considering non-trivial recombinations of aggregates as valid forgeries.
However, if the adversary tries to exploit the potential of recombining aggregates into
fresh ones, he has to ensure that all counter values are equal. Hence, the adversary
can at most delete messages from aggregates or add values by corrupt parties.

More formally, assume that the adversary eventually outputs a valid forgery for
message set M and tag (count, σ). Suppose that there is at least one honest party
in the corresponding set (else the attempt is trivially in the closure). If the set of
augmented messages (count,mi) contains a value previously not tagged by an honest
party, then the security follows from the (basic) unforgeability notion of the underlying
scheme.

Hence, suppose all pairs (count,mi) for honest parties have been tagged before.
Since each counter value is used only once, there is a unique aggregation query where
tags for these pairs have been computed. It follows that the forgery attempt only
contains a subset of this query (and possibly additional contributions by corrupt
players). But then the attempt is in the closure.

