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Abstract. Dittmann, Katzenbeisser, Schallhart and Veith (IACR ePrint 2004) intro-
duced the notion of invertible media authentication schemes, embedding authentication
data in media objects via invertible watermarks. These invertible watermarks allow to
recover the original media object (given a secret encryption key), as required for example
in some medical applications where the distortion must be removable.

Here we revisit the approach of Dittmann et al. from a cryptographic viewpoint, clari-
fying some important aspects of their security definitions. Namely, we first discuss that
their notion of unforgeability may not suffice in all settings, and we therefore propose
a strictly stronger notion. We then show that the basic scheme suggested by Dittmann
et al. achieves our notion if instantiated with the right cryptographic primitives. Our
proof also repairs a flaw in the original scheme, pointed out by Hopper, Molnar and
Wagner (TCC 2007).

We finally address the issue of secrecy of media authentication schemes, basically pre-

venting unauthorized recovering of the original media object without the encryption

key. We give a rigorous security statement (that is, the best security guarantee we can

achieve) and prove again that the scheme by Dittmann et al. meets this security level

if the right cryptographic building blocks are deployed. Together our notions of un-

forgeability and of secrecy therefore give very strong security guarantees for such media

authentication schemes.

1 Introduction

The transition from analog to digital media facilitates many tasks but also comes along
with continually improved manipulation tools, which allow various modifications of media
objects. Thus, it becomes increasingly difficult to distinguish authentic from altered objects.
To enable a better distinction it is therefore necessary to apply techniques that guarantee
authenticity, integrity and possibly secrecy of data.

The straightforward use of digital signatures is not always a satisfying solution to provide
authenticity and integrity, because an object and its signature have to be stored separately.
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This, however, may not be convenient in the area of multimedia data. To counter this prob-
lem fragile watermarks were proposed, which can be used to embed a signature directly into
an object, such that any (significant) modification will destroy the watermark and thereby
invalidates the signature. Unfortunately, this approach comes with the disadvantage that it
always leads to irrevocable distortions in the authenticated object, which may not be accept-
able in all applications, e.g., X-ray imaging objects are extremely sensitive to modifications.
One solution is to use invertible watermarking schemes, which are special fragile watermarks
addressing the need to re-obtain the original media object by allowing a complete removal of
the embedded data.

Media Authentication Schemes. Using invertible watermarking schemes in combina-
tion with encryption and digital signatures, Dittmann, Katzenbeisser, Schallhart and Veith
(DKSV) [DKSV04] introduced the notion of an invertible media authentication scheme that
allows reconstruction of the original object. They also propose a framework to build such
authentication schemes: To protect a media object O theMASDKSV scheme first applies an
invertible watermarking scheme as proposed by Fridrich et al. [FGD02], dividing O into two
parts AO, BO by running the watermarking algorithm Separate. See Figure 1. The part
BO next gets compressed and encrypted to a ciphertext X that is stored as the first part of
the watermark. To achieve an appropriate compressibility level, BO has to be chosen accord-
ingly. The second part of the watermark contains the digital signature s of the encrypted
part X and AO, the public part of the object. Finally, the watermark (X, s) is joined with
AO to a single protected object O by using the watermarking algorithm Join.

Reconstruction of the original object from O is done by decrypting to recover the part
Compress(BO) and uncompressing this value to get the part BO. A simple join operation
with AO merges the parts together again. As for integrity and secrecy, as long as the object
is not altered the signature can be verified by using the public verification key, while the
reconstruction of the original object is protected by the secret reconstruction key.

O OX = Enc(Compress(BO))

s = Sign(AO||X)

AO AO

BO B
O

= (X, s)
Separate Join

Figure 1: Protection of media objects in the MASDKSV Scheme

In contrast to most known watermarking schemes where the security is only analyzed by
ad-hoc methods, the media authentication scheme of Dittmann et al. comes with a formal
model against malicious modification attempts, following well-known approaches for signa-
ture schemes. In [DKSV04] a media authentication scheme is called secure against forgeability
if for every adversary it is infeasible to produce an object O and its protected version O for a
given verification key. This should even hold if the adversary may ask for protected versions
of other objects before.

Our Results (Integrity). Demanding from the adversary to output a pair (O, O) seems
to be overly restrictive, since the authentication system should be already considered bro-
ken if an adversary merely creates an arbitrary authenticated object O (without knowing a
corresponding original object O). Consider for example a governmental organization pub-
lishing satellite data O of which parts may be classified as confidential for issues of national
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security (contained in the encrypted BO part), but which should still allow public verifica-
tion of authenticity. In this case, the adversary’s goal could be to produce other partially
protected satellite data bearing a correct signature of the governmental authority, but with-
out any need of being able to generate a matching unprotected object. In this case, the
unforgeability definition of Dittmann et al. would provide no security guarantee.

Therefore we propose a stronger definition of unforgeability, which we call strong unforge-
ability and which prevents attacks like the one above. To show that our definition is indeed
strictly stronger than the definition of Dittmann et al., we first give a proof that strong
unforgeability implies (basic) unforgeability. After that, we present two examples of media
authentication schemes which are secure according to the basic notion, but not according to
our enhanced definition.

Before proving that the original scheme of Dittmann et al. [DKSV04] can be lifted to
satisfy the notion of strong unforgeability, we need to tweak the signing process. Hopper et
al. revealed in [HMW07] that, in the original scheme, an adversary can easily find different
objects that generate the same input AO||X to the signing resp. verification process and
thus straightforwardly constitute a forgery. We show that those attacks can be prevented by
using an appropriate encoding for computing the signature, where AO and X are clearly sep-
arated. Together with a strongly unforgeable signature scheme, this also provides a sufficient
condition for a strongly unforgeable media authentication scheme.

Our Results (Secrecy). Another security aspect considered in our paper is secrecy of
the original data contained in the protected object. In order to achieve a secure protection
of the BO part, Dittmann et al. [DKSV04] propose to use a symmetric encryption scheme.
Unfortunately, they neither provide any rigorous security model, nor make any conclusions
about the secrecy of their scheme.

In a companion paper, Katzenbeisser and Dittmann [KD04] discuss a desirable secrecy
requirement, resembling semantic security of encryption schemes [GM84] where a ciphertext
should not reveal anything about the original message. In [KD04] the authors conclude
that a similar notion for media authentication schemes “might not be possible to satisfy”
because, due to the requirement of good compressibility, the protected part BO is typically
not completely random and may statistically depend on the public part AO. Therefore, an
adversary may be able to derive some information about the encrypted part from the public
part AO. In [KD04] the authors thus outline an alternative (and somewhat non-standard)
security definition, but remain rather informal and do not prove that theMASDKSV scheme
achieves the desired level of secrecy.

Our starting point is to note that the fact that AO may reveal some information about BO

does not obviate similar claims about the secrecy for the media authentication scheme. The
reason, originating in the context of encryption, is that the precise idea of semantic security
is that one should not be able to learn anything about a message m from a ciphertext X than
what is known about m anyway. For instance, if m is a credit card number sent encrypted,
but the card type is transmitted in clear, then the first digit is usually deducible from the
type. Secrecy with respect to such side information is therefore the highest security level we
can achieve and should aim for.

Adapting the notion of semantic security with side information we give a formal definition
of secrecy for media authentication schemes. Our definition basically says that an authen-
tication scheme is considered secure if whatever can be computed from a protected object
O = (AO, BO) could also be derived from the public part AO alone. We can even strengthen
our notion to a more realistic scenario where the adversary is able to obtain protected and
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reconstructed objects of his choice. Based on the formal definition we then consider the se-
crecy of the media authentication scheme by Dittmann et al. and show that semantic security
of the used encryption function is a sufficient condition for the authentication scheme to be
semantically secure as well.

Summary. Overall, this paper here complements the work of Dittmann et al. by giving
precise security models that describe the guarantees in terms of integrity and secrecy. We
introduce the notion of strong unforgeability to strengthen the security against malicious
modification attempts and provide the sufficient requirements for an authentication scheme
to achieve this security goal. Furthermore we show that secrecy in the sense of semantic
security for media authentication schemes can be defined, which is completed by proving
secrecy for the construction of Dittmann et al. under reasonable assumptions about the
encryption scheme.

Organization. In Section 2 we recall the definition of an invertible media authentication
scheme by Dittmann et al. [DKSV04]. In Section 3 we introduce the scheme (or, to be precise,
the framework) by Dittmann et al. and the underlying tools (watermarking, encryption and
signatures). Section 4 deals with our refinement of integrity of media authentication schemes
and relates the notions, whereas Section 5 covers the secrecy aspects of such schemes. We
note that, following the terminology of [DKSV04], in this paper here we deal with offline
media authentication only. It is easy to adapt our notions and proofs to the case of online
media authentication; we refer to Appendix A for details.

2 Media Authentication Schemes

An invertible media authentication scheme (MAS), defined by Dittmann et al. [DKSV04],
consists of a set of algorithms allowing to protect a media object. More precisely, an in-
vertible MAS is able to produce a protected media object using the algorithm Protect

while retaining the ability to losslessly reconstruct the original media object using algo-
rithm Reconstruct. The ability for lossless reconstruction of protected media objects is
typically achieved by using invertible watermarking schemes as introduced by Honsinger et
al. [HJRS99]. If a media object has been previously protected, its integrity can be unam-
biguously verified using algorithm Verify.

Usage of the above algorithms necessitates cryptographic keys for protection as well as
reconstruction of media objects, which have to be kept private. However, verification of
the integrity of a protected media object assumes a public verification key, thus enabling
integrity checks by third parties. The generation of all necessary keys is summarized in a
single algorithm GenKey, which takes as input a security parameter and selects keys of the
corresponding strength.

Definition 2.1 An invertible media authentication scheme is a tuple of probabilistic poly-
nomial-time algorithms

MAS = (GenKey,Protect,Verify,Reconstruct)

with the following properties:
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• GenKey takes as input a security parameter n (in unary, as 1n) and outputs a triple of
keys (KP , KV , KR), where KP is the secret protection key, KV is the public verification
key and KR is the secret reconstruction key.

• Protect takes as input a media object O and a protection key KP , and outputs a
protected media object O or FAIL, if protection is not possible.

• Verify accepts as input a protected media object O and a verification key KV , and
outputs either TRUE or FALSE.

• Reconstruct takes a protected media object O and a reconstruction key KR, and
outputs a media object O or FAIL.

Furthermore, we require that verification and reconstruction for valid protected objects always
succeeds, i.e., for any media object O, for all keys (KP , KV , KR) ← GenKey(1n) and any
O← Protect(O, KP ), we have

Prob
[

Verify(O, KV ) = TRUE
∣

∣O 6= FAIL
]

= 1,

Prob
[

Reconstruct(O, KR) = O
∣

∣O 6= FAIL
]

= 1.

3 The DKSV Media Authentication Scheme

In this section we first recall the basic ingredients of the media authentication scheme by
Dittmann et al. [DKSV04], before presenting the actualMASDKSV scheme.

3.1 Tools

Recall that the basic idea of the MASDKSV scheme is to divide the object O into a public
part AO and a part BO which should be protected. This splitting (and its inverse process)
are performed via an invertible watermarking scheme, as described in Section 3.1.1. The
BO part is then compressed, encrypted and signed. Encryption and Signatures are therefore
described formally in Sections 3.1.2 and 3.1.3.

3.1.1 Watermarking

Watermarking schemes are an alternative to the concept of cryptographic signatures, designed
specifically to embed authentication and integrity data within media objects, thus eliminating
the need for separate storage. They occur in different security scenarios:

• Fragile watermarking schemes [YM98] may be employed if the integrity of a media
object needs to be proven to deem its contents authentic. They are designed to be
instantly destroyed when the media object is tampered with.

• Robust watermarking schemes [SBT96] may be employed if for instance the origin of a
media object needs to be determined to trace illicit reproduction. Robust watermarks
withstand most digital processing operations in video clips and digital images and
can be recognized even after several alterations. However, in order to provide such a
tamper-resistant method, straightforward usage of cryptographic signatures is all but
impossible.
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Since robust watermarking schemes are inherently unable to retain cryptographic signa-
tures in a coherent manner, their usuage is infeasible in our scenario of media authentication
schemes providing secrecy and integrity in a provable way. On the other hand, when employ-
ing fragile watermarking schemes, the embedding process induces distortions into the original
media object, thus inevitably altering the original. Although sophisticated embedding algo-
rithms induce a barely visible distortion into the media object, a lossless reconstruction may
be desirable.

Invertible watermarking schemes are often a special case of fragile watermarks and have
been introduced by Honsinger et al. [HJRS99] to address the need to re-obtain the original
media object. Fridrich et al. [FGD02] later proposed a general framework for invertible
watermarking schemes that uses lossless compression to allow the reversion of the embedding
process. Thereby, the ability to embed data into a media object O is accomplished by two
polynomial-time algorithms Join and Separate:1

• Separate takes a media object O as input and produces a tuple (AO, BO) (or the
output FAIL),

• Join takes a pair (A′
O, B′

O) as input and returns a media object O′ (or the output
FAIL).

If the following equalities hold, Join(Separate(O)) = O (given Separate(O) 6= FAIL) for
any object O, and Separate(Join(AO, BO)) = (AO, BO) (given that Join(AO, BO) 6= FAIL)
for all AO, BO, then we call the pair (Join,Separate) an invertible watermarking scheme.

Note that the completeness condition above also provides some sort of collision-resistance
for the Separate algorithm. Namely, for any objects O 6= O′ with Separate(O) 6=
FAIL, Separate(O′) 6= FAIL we must have Separate(O) 6= Separate(O′). Otherwise,
if Separate returned the same output for some O 6= O′, then Join would sometimes fail to
recover the right object O or O′ from these identical outputs. The analogous argument ap-
plies to Join. We note that we could also use a relaxed version in which “bad” objects O 6= O′

may exist, but then they are hard to find in reasonable time (similar to collision-resistance
of hash functions). Our results remain valid under this relaxed version.

When using Separate in invertible watermarking schemes, visually insignificant data is
usually assigned to the second part BO, which will afterwards be losslessly compressed. The
newly gained free space is then used to embed secrecy and integrity data. This enhanced
part of a media object will be denoted with BO. After the embedding process, AO and BO

are reassembled using Join to form the protected media object O.
However, since a compression algorithm is necessary during protection, we have to keep

in mind that the media object is expected to contain a certain amount of redundancy to be
compressed densely enough since a minimum set of secrecy and integrity data needs to be
embedded within the freed space. With negligible possibility, a media object O may fail to
meet the minimum requirement. In such a case, the invertible watermarking scheme fails.

3.1.2 Encryption

A symmetric encryption scheme E = (GenEnc,Enc,Dec) consists of three probabilistic
polynomial-time algorithms, where algorithm GenEnc on input 1n generates a key KE,

1These algorithms are often defined to be initialized with a watermarking key KW . Here we presume for
simplicity that this key is “hardwired” into the description of the algorithms, or that the key is available to all
parties as a system parameter. The key KW may also contain randomness for both algorithms (if required).
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algorithm Enc on input KE and message m ∈ {0, 1}∗ outputs a ciphertext X , and algorithm
Dec also takes KE and a ciphertext X and returns m ∈ {0, 1}∗ or FAIL. Furthermore,
for all keys KE produced by GenEnc(1n), all messages m ∈ {0, 1}∗ and ciphertexts X ←
Enc(KE , m), we have m = Dec(KE , X).

As for security of encryption schemes we follow the idea of semantic security, as defined
by Goldwasser and Micali [GM84]. Informally, the idea of semantic security for encryption
schemes is that any information fenc(m) an efficient adversary could learn about a message
m from a ciphertext X could also be computed efficiently without X . All this holds of
course relative to any side information about m. This extra knowledge about m is typically
formalized by having some side information histm about the message m.

For notational convenience we denote by (m, histm)← (M, histenc)(1
n) the joint sampling

process in which the message m is picked according to distributionM(1n) and, at the same
time, side information histm is generated according to algorithm histenc(1

n). Note that in
this process both algorithmsM and histenc may share state.

Definition 3.1 A symmetric encryption scheme E = (GenEnc,Enc,Dec) is called seman-
tically secure (with respect to side information histenc) if for every probabilistic polynomial-
time algorithm Aenc there is a probabilistic polynomial-time algorithms Senc, the simulator,
such that for every polynomial-time distribution M and any function fenc the difference

Prob
[

Exp
sem,M,fenc,histenc

E,Aenc
(n) = 1

]

− Prob
[

Exp
sem,M,fenc,histenc

E,Senc
(n) = 1

]

is negligible, where

Experiment Exp
sem,M,fenc,histenc

E,Aenc
(n)

KE ← GenEnc(1n)
(m, histm)← (M, histenc)(1

n)
X ← Enc(KE , m)
a← Aenc(1

n, X, histm)
output 1 if and only if

a = fenc(m, histm)

Experiment Exp
sem,M,fenc,histenc

E,Senc
(n)

KE ← GenEnc(1n)
(m, histm)← (M, histenc)(1

n)

a← Senc(1
n, histm)

output 1 if and only if
a = fenc(m, histm)

We note that Dittmann et al. [DKSV04] do not make any security claim about the un-
derlying encryption scheme in their MAS. See also the discussion in Section 5. Finally,
we remark that semantic security (with respect to any side information) is a very common
property of modern encryption schemes, and is usually met by all practical and theoretical
solutions (cf. [Gol04]).

3.1.3 Signature Schemes

A signature scheme S = (GenSign,Sign,SigVerify) consists of probabilistic polynomial-
time algorithms such that algorithm GenSign on input 1n generates a key pair (KV S , KSS)←
GenSign(1n), algorithm Sign for input KSS and a message m ∈ {0, 1}∗ outputs a signature
s ← Sign(KSS , m), and algorithm SigVerify for input KV S , m and s returns a decision
d ← SigVerify(KV S , m, s) which is either TRUE or FALSE. Additionally, for all secu-
rity parameters n, all keys (KV S , KSS) ← GenSign(1n), all messages m ∈ {0, 1}∗ and all
signatures s← Sign(KSS , m) it holds SigVerify(KV S , m, s) = TRUE.

Below we define a strong notion of security for signature schemes, called strong unforge-
ability, which supersedes the common notion of unforgeability for signatures (cf. [Gol04]).
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Roughly, strong unforgeability also prevents the adversary from producing new signatures
for previously signed messages (even if the adversary can see other signatures for chosen
message through a signature oracle Sign(KSS , ·)):

Definition 3.2 A signature scheme S = (GenSign,Sign,SigVerify) is called strongly
unforgeable if for any probabilistic polynomial-time algorithm Asig,

Prob
[

Exp
StUnf
S,Asig

(n) = 1
]

is negligible, where

Experiment Exp
StUnf
S,Asig

(n)

(KV S , KSS)← GenSign(1n)

(m∗, s∗)← A
Sign(KSS,·)
sig (KV S),

where we let mi denote the i-th query to oracle Sign(KSS , ·)
and si the oracle’s answer to this query

output 1 if and only if
SigVerify(KV S , m∗, s∗) = TRUE and
(m∗, s∗) 6= (mi, si) for all i.

Note that in the regular notion of unforgeability we strengthen the requirement on (m∗, s∗)
in the experiment above, and demand that m∗ 6= mi for all i (such that finding another
signature s∗ to a given pair mi, si is no longer considered a successful attack). In particular,
if a scheme is strongly unforgeable, then it is also unforgeable in the basic sense. Yet, it is
also easy to construct an unforgeable signature scheme which does not achieve the stronger
notion, e.g., if for each signature the signing algorithm appends a redundant bit which the
verification algorithm simply ignores.

Efficient strongly unforgeable signature schemes exist both in the random oracle model
[BR96, BLS04] and in the standard model [CS00, Fis03, BSW06]. Existentially they can be
derived from any one-way function [NY89, Rom90, Gol04] and are thus based on the same
complexity assumption as signature schemes which are unforgeable in the ordinary sense.

3.2 The MASDKSV Scheme

With the tools of the previous sections we can now recapture the MASDKSV scheme. To
protect a media object O the MASDKSV scheme first uses the watermarking scheme to
determine the parts AO and BO. Then the BO part is first compressed to CO and, together
with a hash value H(O) of the object, encrypted to a ciphertext X .2 The resulting ciphertext
and the public part AO of the original media object O are signed together with the signature
algorithm, s ← Sign(KSS , (AO, X)). The values X and s are finally joined with AO into a
single media object O.

The integrity of a protected object O can be verified by anyone by recovering AO, X, s

from the protected object and verifying the signature s for (AO, X). This can be done
without decrypting X and recovering BO. Reconstruction then can easily be achieved by
first verifying O and then decrypting with KE . After uncompressing CO to B′

O algorithm

2The role of H(O) concerning the security of the scheme remains somewhat unclear, i.e., Dittmann et
al. [DKSV04] never specify any security requirements on H. It appears that security-wise H does not serve
any purpose. We include H here only for sake of completentess; the reader may simply think of H as the
function with empty output.
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Join can be applied to (AO, B′
O). The resulting object O′ is hashed to H(O′) which is

compared to the embedded hash. If this is successful the restored object is returned as O,
otherwise the reconstruction algorithm fails.

We note that, in the original scheme, Dittmann et al. use the signature algorithm to
sign the concatenation AO||X of the values AO and X . But this introduces a weaknesses
which the attack by Hopper et al. [HMW07] exploits. Here we therefore tweak the signature
process by signing (AO, X) instead, with the usual meaning that this string (AO, X) contains
a separator between the two values. For instance, we can encode the bit length of AO into
a starting block of fixed length (say, into the first n bits for security parameter n) and then
append AO||X . Other choices are possible, of course.

Construction 3.3 (DKSV-MAS) Let (Join,Separate) be an invertible watermarking
scheme, E be a symmetric encryption scheme and S be a signature scheme. Furthermore, let
(Compress,Uncompress) be a lossless compression scheme and H be some function (with
fixed output length). Then the DKSV media authentication scheme MASDKSV is defined by
the following algorithms:

• Algorithm GenKey on input 1n runs the key generation algorithms of the signa-
ture scheme and the encryption scheme, (KSS , KV S) ← GenSign(1n) and KE ←
GenEnc(1n), and outputs KV = KV S, KR = (KV S , KE) and KP = (KSS, KE).

• Algorithm Protect on input KP and object O first splits the object by computing
(AO, BO) ← Separate(O), then compresses CO ← Compress(BO) and computes a
ciphertext X ← Enc(KE , CO||H(O)). It computes a signature s← Sign(KSS , (AO, X))
and joins it together with AO and X into the protected object O ← Join(AO, (X, s)).
It outputs O (or FAIL if any of the deployed algorithms returns FAIL).

• Algorithm Verify on input KV and a protected object O splits the protected object
into (AO, (X, s)) ← Separate(O) and returns the output of the signature verification
algorithm for these data, SigVerify(KV S , (AO, X), s) (which equals FAIL in the special
case that Separate returned FAIL before).

• Algorithm Reconstruct takes as input KR and a protected object O, and only con-
tinues reconstruction if verification of O works. If so, then it recovers (AO, (X, s)) ←
Separate(O) and decrypts X to CO||h and re-computes BO = Uncompress(CO) and
O ← Join(AO, BO). If H(O) = h then it outputs O; in any other case the algorithm
returns FAIL.

4 Integrity of Media Authentication Schemes

In this section we address integrity protection of media authentication schemes. We first
review the definition of Dittmann et al. [DKSV04] about unforgeability ofMAS3 and then
present our improved security guarantee, denoted by strong unforgeability. We show that
strong unforgeability is strictly stronger than the notion of Dittmann et al., and finally
prove that theMASDKSV scheme achieves the stronger notion if instantiated with the right
primitives.

3Dittmann et al. call the property in their paper “security against existential unforgeability” but, for sake of
better distinction with other security notions such as secrecy, we rename the property here to “unforgeability”.
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4.1 Definitions

The original unforgeability requirement of Dittmann et al. [DKSV04] demands that, without
the protection key, it is infeasible to find an object O and its protected version O, even after
having seen other protected objects:

Definition 4.1 Let MAS = (GenKey,Protect,Verify,Reconstruct) be an invert-
ible media authentication scheme. It is called unforgeable if for every probabilistic polynomial-
time algorithm ADKSV the value

Prob
[

Exp
mas-unf
MAS,ADKSV

(n) = 1
]

is negligible, where

Experiment Exp
mas-unf
MAS,ADKSV

(n)

(KP , KV , KR)← GenKey(1n)

(O, O)← A
Protect(·,KP )
DKSV (1n, KV )

where Oi denotes the i-th query to oracle Protect(·, KP )

and Oi the oracle’s answer to this query
output 1 if and only if

Verify(O, KV ) = TRUE and

O ∈ [Protect(O, KP )] and
O 6= Oi for all i.

We note that Dittmann et al. [DKSV04] claim their scheme to be secure under this
definition. However, as mentioned before, Hopper et al. [HMW07] point out a gap in this
proof, exploiting a weak encoding for the signing algorithm. Patching the signature and
verification process as described in Construction 3.3 gives a version which is indeed secure
according to this definition here (if the signature scheme achieves basic unforgeability). This
can be easily inferred from the security proof for our stronger notion in the next section, and
we therefore omit a formal proof for this simpler fact.

Our first definitional strengthening concerns the adversary’s task to find a protected
object O together with its original counter part O. Recall the satellite data example from
the introduction, where the adversary’s goal is only to produce another valid protected object
without knowing a matching object in clear. Then the previous definition would provide no
security guarantee in this case. In fact, as we will discuss later, there are even schemes
satisfying the unforgeability notion above but which fail to meet the stronger requirement in
the example. In our refinement below we therefore reduce the requirement on the adversary’s
output and merely demand that the attacker outputs a new protected object O.

The other strengthening refers to availability of other components of a system. Since the
algorithms may operate in a highly interactive setting, we follow the conservative approach
in cryptography and allow our algorithm Astrong to also communicate with a Reconstruct

oracle, enabling him to reconstruct objects of his choice. Note that verification can be
carried out locally by the adversary with the help of the public key anyway. With these two
refinements we obtain the following definition:

Definition 4.2 Let MAS = (GenKey,Protect,Verify,Reconstruct) be an invert-
ible media authentication scheme. It is called strongly unforgeable if for every probabilistic
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polynomial-time algorithm Astrong the value

Prob
[

Exp
mas-stunf
MAS,Astrong

(n) = 1
]

is negligible, where

Experiment Exp
mas-stunf
MAS,Astrong

(n)

(KP , KV , KR)← GenKey(1n)

O ← A
Protect(·,KP ),Reconstruct(·,KR)
strong (1n, KV )

where Oi denotes the i-th query to oracle Protect(·, KP )
and Oi the oracle’s answer to this query

output 1 if and only if
Verify(O, KV ) = TRUE and
O 6= Oi for all i.

4.2 On the Relationship of the Notions

In this section we show that security according to our definition of strong unforgeability is
strictly stronger than the one for the definition by Dittmann et al. This is done in two steps.
First we will show that our definition implies the definition of Dittmann et al. After that, we
provide two examples of schemes which are secure according to the basic notion but not to
the enhanced definition. We remark that the separating examples even hold if we augment
the DKSV definition by giving ADKSV access to a Reconstruct oracle. This difference
merely stems from the fact that ADKSV has to output a pair (O, O), compared to O as in
our definition.

4.2.1 Strong Unforgeability Implies Unforgeability

Proposition 4.3 If an invertible MAS scheme is strongly unforgeable then it is also un-
forgeable.

Proof. An attack according to the definition by Dittmann et al. can be easily transferred to
an attack according to our definition of strong unforgeability. Note that from the adversary’s
viewpoint in our definition the attacker Astrong only has to output the protected object O,
whereas in the model of Dittmann et al. he also needs to output the original object O. We
can therefore transfer an attacker ADKSV according to the definition of Dittmann et al. to an
attacker Astrong according to our definition by just omitting O from ADKSV’s output (O, O).

Suppose an attackerADKSV is successful regarding the definition by Dittmann et al. Then,
according to the requirements of a successful attack, the adversary’s object must be distinct
from all previous objects, O 6= Oi for all i, and it must be valid, Verify(O, KV ) = TRUE.
Assume towards contradiction that O = Oi for some i (in particular, O = Oi 6= FAIL). But
since Oi was the reply of Protect(Oi, KP ) and we have Oi = Reconstruct(Oi, KR) =
Reconstruct(O, KR) = O by the completeness property of media authentication schemes,
this would contradict the assumption O 6= Oi. This means that none of the Oi’s received
from Protect can be used for a successful forgery by the attacker ADKSV. Since the main
difference between the two definitions lies in the condition on the adversary’s output, the
attacker ADKSV is also successful according to our definition when dropping O from the
output. �
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4.2.2 Separating Example #1

In this example we show that for specific instantiation of the MASDKSV there exists a
successful adversary Astrong against the strong unforgeability, while any attacker ADKSV

against the basic notion of unforgeability fails. This shows that strong unforgeability is a
strictly stronger notion.

Recall that in the (patched)MASDKSV scheme the Protect algorithm computes

X ← Enc(KE ,Compress(BO)||H(O)) and s← Sign(KSS , (AO, X))

and outputs the protected object

O = Join(AO, (X, s)).

Now suppose that we use a trivial signature scheme where verification succeeds all the time,
independently of the input, that is SigVerify(KV S , m, s) = TRUE for all inputs m, s. Then
we also have

Verify(KV S , O) = TRUE for all protected objects O.

Now an attacker Astrong against strong unforgeability can output any protected object O,
without having queried the Protect oracle (but such that Separate(O) 6= FAIL). With our
assumption about the signature scheme, the attacker succeeds with probability 1, because
verification Verify(KV S , O) always returns TRUE.

Note that the adversary Astrong wins for any choice for the symmetric encryption scheme
and the function H . We can therefore use an encryption scheme which satisfies a security
notion called INT-CTXT [BN00], i.e., if one sees ciphertexts for adaptively chosen messages
and decryptions for chosen ciphertexts, then without the secret encryption key it is still
infeasible to create a valid ciphertext for a new message. We also select H to be collision-
resistant. With these choices we can next prove that there is no adversary against basic
unforgeability of this instantiation of theMASDKSV scheme.

Consider any attacker ADKSV against basic unforgeability for our instantiation, i.e., with
the trivial signature verification algorithms, the INT-CTXT encryption scheme and the
collision-resistant hash function. Adversary ADKSV may ask the Protect oracle several
times (as well as the Reconstruct oracle if we augment the DKSV definition accordingly),
before outputting a pair (O, O). Note that in contrast to strong unforgeability, here O addi-
tionally has to be from the set of protected objects of O:

O ∈ [Protect(O, KP )].

In particular, O must contain a valid ciphertext X of Compress(BO)||H(O). Then, because
the final output of ADKSV satisfies O 6= Oi and H is collision-resistant, we may assume that
Compress(BO)||H(O) 6= Compress(BOi

)||H(Oi) for all i. In this case, a success of ADKSV

implies that he has produced a new valid ciphertext for a new message, contradicting the
INT-CTXT property. Hence, ADKSV fails unless he breaks the INT-CTXT property of the
encryption scheme or the collision-resistance of H .

4.2.3 Separating Example #2

We give another separating example for the patchedMASDKSV framework where, in contrast
to the previous example, we make no further assumptions about the encryption scheme
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and the hash function. Here, we merely assume that the signature scheme is not strongly
unforgeable, i.e., where one can easily transform a signature s to a message m into another
valid signature s∗ 6= s. With this instantiation choice there exists a successful attack against
the strong unforgeability, but which does not constitute a break against basic unforgeability.

The adversary against the strong unforgeability calls the Protect oracle only once about
an object O to derive a protected object O = Join(AO, (X, s)). The attacker next runs
Separate(O) to obtain AO = AO and (X, s). Since the signature scheme is not strongly
unforgeable the attacker can now compute another valid signature s∗ 6= s for (AO, X). He

finally outputs O
∗

= Join(AO, (X, s∗)) as the forgery attempt.

The attack succeeds according to the strong unforgeability, because s∗ 6= s and thus O
∗

was never received from the Protect oracle before, and Verify evaluates to TRUE. In
the DKSV definition of an attack, however, an attacker must output (O, O). So in our case,

prepending O to O
∗

would not constitute a successful attack as O has been sent to the
Protect oracle before. In fact, it is easy to see from our proof in the next section that any
attacker fails according to the DKSV definition if the underlying signature scheme achieves
basic unforgeability.

4.3 Strong Unforgeability of the MASDKSV-Scheme

We next prove that the MASDKSV scheme achieves strong unforgeability if the underlying
signature scheme is strong enough. Note again that this statement necessitates the patch of
the signature and verification algorithm; else the attack by Hopper er al. would still apply.

Theorem 4.4 (Strong Unforgeability) If the signature scheme S is strongly unforgeable
then theMASDKSV media authentication scheme in Construction 3.3 is strongly unforgeable.

Proof. If there would be a successful attacker Astrong on the MASDKSV according to our
strong definition, then by using the prerequisites we could use this attacker to construct a
successful attacker Asig against the strong unforgeability of the deployed signature scheme.
In the following we will show the construction of such an attacker Asig.

The attacker Asig on the signature scheme gets the signature public key KV S as input.
He chooses an encryption key KE and passes the key KV = KV S to Astrong to start a
black-box simulation. In this simulation of Astrong, adversary Asig can easily answer queries
of Astrong to oracle Reconstruct with the help of the key KR = (KE , KV S). For any
query Oi of Astrong to the Protect oracle, Asig calculates (AOi

, BOi
) = Separate(Oi),

COi
= Compress(BOi

) and Xi ← Enc(KE , COi
||H(Oi)). If any of the algorithms returns

FAIL then Asig immediately returns FAIL to Astrong, else Asig passes mi = (AOi
, Xi) to his

Sign-oracle to get a signature si. Thereafter he returns Oi = Join(AOi
, (Xi, si)) to attacker

Astrong. Once Astrong outputs a protected object O and stops, adversaryAsig runs Separate

on O to obtain AO and (X, s). Now Asig outputs m∗ = (AO, X) and s∗ = s.
It is obvious that Asig perfectly mimics the Protect oracle as well as the Reconstruct

oracle in Astrong’s emulation. It remains to show that Asig succeeds in his attack when-
ever Astrong wins. If Astrong’s output O satisfies Verify(O, KV ) = TRUE then in par-
ticular SigVerify(KV S , m∗, s∗) for Asig’s output will also be TRUE and Separate(O) =
(AO, (X, s)) 6= FAIL. Furthermore O 6= Oi for all i.

We have to show that the pair (m∗, s∗) = ((AO, X), s) has not appeared in Asig’s interac-
tions with the signature oracle. This is clearly true if, in the i-th request, Asig returned si =
FAIL before even querying the signature oracle, namely, if separation, compression or encryp-
tion failed. If, on the other hand, Oi = FAIL for the i-th interaction, because the final Join in
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the simulation of the protection query returned FAIL, but a message mi = (AOi
, Xi) was still

signed with si, then we must have (m∗, s∗) 6= (mi, si). Else, for equality (m∗, s∗) = (mi, si)
we would have FAIL = Join(AOi

, (Xi, si)) = Join(AO, (X, s)) = Join(Separate(O)) for
Separate(O) 6= FAIL, contradicting the completeness of the watermarking scheme. Finally,
if Oi 6= FAIL, then because O 6= Oi and the Separate-function is collision-resistant (see
Section 3.1.1) we have (AO, (X, s)) 6= (AOi

, (Xi, si)).
Hence, if attacker Astrong on the media authentication scheme is successful, attacker ASig

will also succeed with the same probability, because (m∗, s∗) was never received from the
Sign-oracle and SigVerify(KV S , m∗, s∗) = TRUE. �

5 Secrecy of Media Authentication Schemes

Recall that the scheme by Dittmann et al. [DKSV04] introduces an encryption scheme in
order to protect the BO-part of an object O. However, in their paper they do not provide
any claim about the secrecy under reasonable conditions about the encryption scheme, not
to mention a rigorous security model. In a companion paper, though, Katzenbeisser and
Dittmann [KD04] discuss a desirable secrecy requirement, resembling semantic security of
encryption schemes (as defined in Section 3.1.2). Yet, their proposal advocates a somewhat
elliptical mixture between semantic security and indistinguishability of encryption schemes
(cf. [Gol04]), and remains rather sketchy. It also remains unclear if, or under which conditions,
theMASDKSV scheme meets this goal.

Recall that the idea behind semantic security of an encryption scheme was that anything
an efficient adversary could learn about a message m from a ciphertext X could also be
computed efficiently without X . Here we discuss that, by using appropriate notions of secrecy
with side information, we can indeed define secrecy for media authentication schemes in the
sense of semantic security. Our definition basically says that an MAS provides secrecy
if whatever one can compute from a protected object O (including the public part AO)
could also be derived from AO alone. We then continue to show that semantic security of
the encryption function (with respect to side information) also guarantees secrecy of the
MASDKSV scheme.

5.1 Definition

The definition below follows the one for semantic security of encryption (with respect to
side information) closely. Namely, we again compare the success probability of an adversary
predicting some information fMAS(O) of an object O from the protected version O (and
histO) with the prediction success of a simulator given only histO. For a secureMAS these
probabilities should be close.

We write O for the distribution of the objects and histMAS for the algorithm comput-
ing the side information. For notational convenience we again denote by (O, histO) ←
(O, histMAS)(1n) the joint sampling process, possibly sharing state between the two algo-
rithms.

Definition 5.1 An invertible media authentication scheme MAS is called semantically se-
cure with respect to side information histMAS if for every probabilistic polynomial-time al-
gorithm AMAS, there is a probabilistic polynomial-time algorithm SMAS, the simulator, such
that for every polynomial-time distribution O of objects and for every function fMAS, the
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difference

Prob
[

Exp
mas-sem,O,fMAS,histMAS

MAS,AMAS
(n) = 1

]

− Prob
[

Exp
mas-sem,O,fMAS,histMAS

MAS,SMAS
(n) = 1

]

is negligible, where

Experiment Exp
mas-sem,O,fMAS,histMAS

MAS,AMAS
(n)

(KP , KV , KR)← GenKey(1n)
(O, histO)← (O, histMAS)(1n)
O ← Protect(KP , O)
a← AMAS(KV , O, histO)
output 1 if and only if

a = fMAS(O, histO)

Experiment Exp
mas-sem,O,fMAS,histMAS

MAS,SMAS
(n)

(KP , KV , KR)← GenKey(1n)
(O, histO)← (O, histMAS)(1n)

a← SMAS(KV , histO)
output 1 if and only if

a = fMAS(O, histO)

We remark that we can even strengthen the notion above by granting AMAS access to
oracles Protect(·, KP ) and Reconstruct(·, KR) (with the restriction that the adversary
never queries the reconstruct oracle about the challenge O, enabling a trivial attack other-
wise). Assuming chosen-plaintext security of the underlying encryption scheme (where the
adversary is also allowed to see ciphertexts of arbitrary messages via an oracle Enc(KE , ·)),
our result also holds under this more advanced attack model, as we will discuss after the
proof for the basic case. Interestingly, the proof for this extension also takes advantage of
our notion of strong unforgeability.

5.2 Secrecy of the MASDKSV-Scheme

The following theorem shows that semantic security of the encryption scheme carries over to
the secrecy of the MASDKSV scheme:

Theorem 5.2 Let histMAS(1n) be the function which takes an object O and outputs AO

where (AO, BO) ← Separate(O). Let E be a semantically secure encryption scheme (with
respect to side information histenc = histMAS). Then the invertible media authentication
scheme MASDKSV in Construction 3.3 is semantically secure with respect to side informa-
tion histMAS.

Proof. The proof is by contradiction. Assume that MASDKSV is not semantically secure
(with respect to the given side information histMAS). We will show that this allows to
construct a successful attacker Aenc on the semantic security encryption function (for side
information histenc), which will contradict the initial assumption about the security of the
encryption scheme.

Recall that a successful attacker AMAS is able to compute information fMAS(O, histO)
for an object O distributed according to O from O, such that no simulator can approximate
this success probability close enough (here fMAS and O may depend on the simulator).
We now construct our adversary Aenc against the encryption scheme, having a non-negligible
advantage over any simulator on predicting the results of some function fenc and some message
distributionM.

The specific information and distribution for adversary Aenc are defined in terms of O
and fMAS used by AMAS:
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distribution (MO, histenc)(1
n):

sample O← O(1n)
compute (AO, BO)← Separate(O)
let m = Compress(BO)||H(O)
let histm = AO

function fenc(m, histm):
let m = CO||H(O)
compute BO = Uncompress(CO)
let O← Join(histm, BO)
return fMAS(O, histm)

Next we define our attacker Aenc against the encryption scheme. This attacker gets a
ciphertext X ← Enc(KE, m) together with side information histm = AO as input (where
the values m and histm are sampled according to MO and histenc). Adversary Aenc next
“wraps” the ciphertext X into a protected object and then uses AMAS to derive some in-
formation about the original message m. More precisely, Aenc first generates signature keys
(KSS, KV S)← GenSign(1n) and then uses these keys to compute a protected object O:

compute s← Sign(KSS , (AO, X)) and set O ← Join(AO, (X, s)).

Then Aenc invokes algorithm AMAS on inputs KV = KV S and O as created above, and on
histO = AO. It waits to receive some answer a and stops with output a, too.

Note that the input to AMAS in the simulation above is identically distributed to genuine
data in experiment Expmas-sem,O,fMAS,histMAS

MAS,AMAS
(n). Therefore, if the output a of the adversary

AMAS(KV , O, histO) satisfies fMAS(O, AO), then it also matches the value fenc(m, histm) by
construction. Hence, Aenc succeeds with the same probability in the attack on the encryption
scheme, as AMAS does in the attack on the media authentication scheme.

It remains to show that attacker Aenc has a non-negligible advantage over any simula-
tor in predicting the function value fenc. That is, we still need to prove that there is no
simulator Senc being as successful as the attacker Aenc. This will follow because, if there
was an almost equally successful simulator Senc, then we can construct a simulator SMAS

approximating AMAS close enough, contradicting the assumption about the insecurity of the
media authentication scheme.

Suppose that there was an appropriate simulator Senc for the encryption case (for all
message distributions and all functions fenc and thus for all distributions and functions as
constructed above). Then we build a simulator SMAS for the MAS as follows. SMAS gets
KV = KV S and AO as inputs. To run a black-box simulation of Senc the MAS simulator
defines histm = AO and invokes Senc on histm to derive some information a. Simulator SMAS

copies a and stops.
We observe that the data in the black-box simulation has the same distribution as in the

experiment of Senc. Thus, by construction SMAS successfully predicts fMAS(O, AO) whenever
Senc’s output satisfies the value fenc(m, histm) of the previously defined function fenc. But
then the success probability of SMAS is identical to the one of Senc, which in turn approxi-
mates Aenc’s probability of winning the encryption experiment closely by assumption. Since
Aenc’s success probability is identical to the one of AMAS attacking the secrecy of the media
authentication scheme, we conclude that there would be a good simulator SMAS for AMAS

(for all O and fMAS).
Overall we have shown that we can construct an successful attacker on the encryption

if MASDKSV is not semantically secure, contradicting the assumption that the encryption
function used within the scheme is semantically secure. This completes the proof. �

Finally, we discuss that our proof extends to the case that we grant the adversary AMAS

access to a Protect-oracle and to a Reconstruct-oracle. Recall that our proof idea is to
turn an adversary AMAS against the MAS into one against the encryption scheme. To this
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end, our attacker Aenc against the encryption scheme has simulated a Protect-oracle with
the help of the given ciphertext. Here, Aenc now has to answer additional Protect queries
of AMAS, and we assume that Aenc is also given access to an encryption oracle Enc(KE , ·)
initialized with the same key with which the input ciphertext X has been produced (chosen-
plaintext security).

For each query Oi of AMAS to its putative oracle Protect, algorithm Aenc extracts
(AOi

, BOi
) ← Separate(Oi), compresses COi

← Compress(BOi
) and computes the hash

value H(Oi). It sends COi
||H(Oi) to its Enc-oracle to receive a ciphertext Xi, and signs this

ciphertext together with AOi
using the chosen signature key, si ← Sign(KSS , (AOi

, Xi)).
Adversary Aenc returns Oi ← Join(AOi

, (Xi, si)) to AMAS as the answer of the Protect-
oracle.

For each query Oi of AMAS to its putative Reconstruct-oracle algorithm Aenc proceeds
as follows. If Oi has been the answer to one of a previously simulated Protect-oracle calls
then Aenc looks up the corresponding query Oi and returns this object. In any other case
Aenc returns FAIL.

We note that the Protect-oracle is simulated perfectly by Aenc. The Reconstruct-
oracle gives consistent answers, except for the case that AMAS submits a valid protected
object but which has not been produced by a simulated Protect-query. But this would
straightforwardly contradict the unforgeability of the MAS scheme (assuming that the sig-
nature algorithm is strongly unforgeable and the Separate algorithm is collision-resistance,
see Theorem 4.4).4 Hence, this can only happen with negligible probability. The rest of the
proof now carries over easily.
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A Online Media Authentication

Dittmann et al. [DKSV04] introduce the notion of online media authentication schemes where
objects O are dividied into chunks O1||O2|| . . . ||Om of equal length, and Protect produces
(in a stateful process) “protected chunks” Oi from each Oi for i = 1, 2, . . . , m. For such
protected chunks it should be possible to verify authenticity of sub sequences Oi|| . . . ||Oj of
the protected chunks (say, if one publishes only parts of recorded satellite data).

Ditmmann et al. extend their definition of unforgeability by allowing the adversary to
output a sequence (Oi, Oi), . . . , (Oj , Oj) such that Oi|| . . . ||Oj has never appeares as a sub-
sequence in one of the Protect queries. They also give a slight modification of their basic
scheme achieving online authentication, using hash chains.

Here we briefly outline that both our notion of strong unforgeability as well as the strongly
unforgeable scheme can be easily extended to capture such online authentication as well (even
without further cryptographic assumption). First, our definition of strong unforgeability now
asks the adversary to output a sequence Oi|| . . . ||Oj such that this sequence has never been
part of a reply of Protect. Then, we modify the DKSV scheme with the strong unforgeable
signature scheme as described next.

For each new object to be authenticated we pick a unique string ID of some fixed length
(either by using a counter or by picking a sufficiently long random string). Then we apply
our basic protection algorithm to each chunk Oi, but where we now compute the signature
as si ← Sign(KSS , (AOi

, Xi, ID, 〈i〉)) and build Oi ← Join(AOi
, (X, s, ID, i)), i.e., we include

the identifier ID and the chunk number i (encoded by some fixed-length encoding 〈·〉) into
the protected chunk. To verify correctness of a sequence of protected chunks we verify the
correctness of each chunk and also check that each chunk carries the identical identifier ID

and that chunk numbers i appear in consecutive order. Only if all these tests succeed then
we accept the sequence as valid.

It is not hard to see that our security proof carries over to this extension (given that
the signature scheme is strongly unforgeable and that the Separate algorithm is collision-
resistant), thus providing a solution without further cryptographic assumption.
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