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Abstract. Sanitizable signatures allow a designated party, called the sanitizer, to modify parts
of signed data such that the immutable parts can still be verified with respect to the origi-
nal signer. Ateniese et al. (ESORICS 2005) discuss five security properties for such signature
schemes: unforgeability, immutability, privacy, transparency and accountability. These notions
have been formalized in a recent work by Brzuska et al. (PKC 2009), discussing also the rela-
tionships among the security notions. In addition, they prove a modification of the scheme of
Ateniese et al. to be secure according to these notions.

Here we discuss that a sixth property of sanitizable signature schemes may be desirable: unlink-
ability. Basically, this property prevents that one can link sanitized message-signature pairs of
the same document, thus allowing to deduce combined information about the original document.
We show that this notion implies privacy, the inability to recover the original data of sanitized
parts, but is not implied by any of the other five notions. We also discuss a scheme based on
group signatures meeting all six security properties.

1 Introduction

For a regular signature scheme any modification of the message makes the signature for the modified
message invalid. In some applications, though, it may be preferable to support message modifi-
cations such that one can still verify the authenticity of the immutable message part, and that
only authorized parties can make such changes. Signature schemes having this property are called
sanitizable, as introduced by Ateniese et al. [ACdMT05]. Related concepts have been discussed
concurrently in [SBZ01, MSI+03, JMSW02].

Ateniese et al. [ACdMT05] discuss the applicability of sanitizable signatures to anonymization of
medical data, replacing commercials in authenticated media streams or updates of reliable routing
information. They identified five desirable security properties for sanitizable signature schemes.
Informally, these are:

Unforgeability. Says that no one except for the honest signer and sanitizer can create valid
signatures.

Immutability. Demands that even a malicious sanitizer cannot change message parts which have
not been marked as modifiable by the signer.

Privacy. Prevents an outsider to recover the original data of sanitized message parts.
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Transparency. Covers the indistinguishability of signatures created by the signer or the sanitizer.

Accountability. Refers to the inability of a malicious signer or sanitizer to deny authorship.

Brzuska et al. [BFF+09] define these five properties with game-based approaches formally and
relate them, showing that accountability implies unforgeability and transparency implies privacy;
all other properties are independent. They also prove a modification of the scheme by Ateniese et
al. [ACdMT05] to be secure according to these five properties.

Unlinkability. Here we discuss that an additional property may be useful in some settings. We
call this property unlinkability and motivate it by the following example (see also Figure 1): Assume
that we have signed medical records and at some point we anonymize the data by redacting the
personal information of the patients like names, addresses etc. At some other time, say for revenues
reasons, we remove the actual medical treatments and leave only the personal information. Then one
should not be able to link these data through the (sanitized) signatures and therefore reconstruct
the full records. However, previous schemes like the one by Brzuska et al. [BFF+09] and, for
example, the ones in [KL06, CLM08, CJ10] in fact allow such attacks. They are usually based on
chameleon hashes which remain unchanged for the sanitization step and thus allow to identify two
sanitized signatures derived from the same signature through the hash value. Other constructions
like the one in [MSI+03] even come with an explicit document identifier, allowing to link sanitized
messages easily.

Figure 1: Linkability problem

We hence introduce a formal definition of unlinkability and relate it to the previously given
notions. It turns out that unlinkability is not implied by any of the other properties, but vice versa
implies privacy. The reason is that privacy prevents an adversary of recovering the original data
for sanitized parts, and violation of this property also enables the adversary to reconstruct and to
link messages easily.

Construction. We then present a construction of a sanitizable signature scheme obeying all six
properties, including unlinkability. The idea is fundamentally different from previous approaches
which usually rely on chameleon hashes. In our case the signer first signs the fixed parts with a
regular signature scheme. For the modifiable parts the signer and the sanitizer use a group signature
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scheme [CvH91], i.e., a signature scheme which allows to sign anonymously on behalf of the group
but such that a group manager can revoke the identity of the user that has signed [BMW03]. In
our case the group only consists of the signer and sanitizer, and the signer also incarnates the group
manager. If the sanitizer later changes (some of) the modifiable message parts it can create a new
group signature and replace the signer’s group signature.

The anonymity of the group signature scheme in our context guarantees transparency (the
indistinguishability of signatures originating from the signer and the sanitizer). The possibility to
identify a group member by the group manager (i.e., the signer in our case) supports sanitizer-
accountability, i.e., the ability to provide a proof that the sanitizer has created the signature.
Signer-accountability is provided by the non-frameability of the group signature scheme which
prevents a malicious group manager (i.e., the signer) from falsely accusing the sanitizer to be the
source of a signature. Immutability follows from the unforgeability of the regular signature scheme
for the fixed parts, and unlinkability from the fact that the sanitizer signs the entire message from
scratch (the signature for fixed message parts remains unchanged).

We remark that the actual construction needs a careful implementation of the idea above to
make the derived sanitizable signature scheme satisfy all desired security properties. This is in
particular true since proposed group signature schemes in the literature like [BMW03, BSZ05,
KY05, DP06, Gro06, Gro07] come with varying security features and set-up assumptions. In this
version we thus present a simple but not necessarily the most practical approach to turn our idea
into a secure sanitizable scheme, e.g., following the definitions in [BFF+09] we do not rely on the
fact that public keys of the signer or sanitizer are registered, although this is most likely in practice.

Our solution shows that, in general, sanitizable signatures can be built from group signatures,
thereby providing a new application for the latter primitive. This relation also immediately gives a
feasibility result for sanitizable signatures: Since the work by Bellare et al. [BMW03] about group
signatures proves that one can derive them from IND-CCA secure encryption, non-interactive zero-
knowledge proofs and digital signatures, all known to exist given trapdoor permutations, it follows
that one can also build secure sanitizable signatures from trapdoor permutations.

Organization. In Section 2 we introduce the notion of sanitizable signatures and the security
properties given in [ACdMT05, BFF+09]. In Section 3 we discuss the notion of unlinkability and
its relationship to the other security properties. In Section 4 we present our construction of a secure
sanitizable scheme based on group signatures. We discuss variations thereof in Section 5.

2 Preliminaries

In this section we revisit the notion of sanitizable signatures and the previously given security
properties.

2.1 Sanitizable Signatures

In a sanitizable signature scheme both the signer and the sanitizer hold a key pair (sksig, pksig),
(sksan, pksan) such that the signer can sign messages with its secret key sksig and “attach” a descrip-
tion of the admissible modifications adm which are allowed to the sanitizer pksan. The sanitizer can
then later change such a message according to some modification mod and update the signature
using his secret key sksan. In order to settle disputes about the origin of a message-signature pair the
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algorithm Proof enables the signer to produce a proof π from previously signed messages that a sig-
nature has been created by the sanitizer. This proof can then be verified with the help of the Judge
algorithm (but which only needs to decide about the origin in case of a valid message-signature
pair in question; for invalid pairs such decisions are in general impossible).

To model admissible modifications we assume that adm and mod are (descriptions of) ef-
ficient deterministic algorithms such that mod maps any message m to the modified message
m′ = mod(m), and adm(mod) ∈ {0, 1} indicates if the modification is admissible and matches
adm, in which case adm(mod) = 1. For example, for messages m = m[1] . . . m[k] divided into
blocks m[i] of equal bit length t we can let adm contain t and the indices of the modifiable blocks,
and mod then essentially consists of pairs (j,m′[j]) defining the new value for the j-th block.

For ease of notation we let fixadm be an efficient deterministic algorithm which is uniquely deter-
mined by adm and which maps m to the immutable message part fixadm(m), e.g., for block-divided
messages fixadm(m) is the concatenation of all blocks not appearing in adm. To exclude trivial ex-
amples we demand that admissible modifications leave the fixed part of a message unchanged, i.e.,
fixadm(m) = fixadm(mod(m)) for all m ∈ {0, 1}∗ and all mod with adm(mod) = 1. Analogously,
to avoid choices like fixadm having empty output, we also require that the fixed part must be “max-
imal” given adm, i.e., fixadm(m′) �= fixadm(m) for m′ /∈ {mod(m) | mod with adm(mod) = 1}.

Jumping ahead, we note that for our construction based on group signatures we make another
assumption on adm. This property, denoted modification-decidability, allows to decide efficiently
for given messages m,m∗ and adm whether m∗ is an admissible modification of m with respect to
adm or not. This property is for example satisfied for the block-based approach. However, for our
definitions of the security properties and their relationships we do not impose any restriction at
this point.

The following definition is taken from [BFF+09]:

Definition 2.1 (Sanitizable Signature Scheme) A sanitizable signature scheme SanSig con-
sists of seven efficient algorithms (KGensig,KGensan,Sign,Sanit,Verify,Proof, Judge) such that:

Key Generation. There are two key generation algorithms, one for the signer and one for the
sanitizer. Both create a pair of keys, a private key and the corresponding public key:

(pksig, sksig)← KGensig(1n), (pksan, sksan)← KGensan(1n)

Signing. The Sign algorithm takes as input a message m ∈ {0, 1}∗, the secret key sksig of the
signer, the public key pksan of the sanitizer, as well as a description adm of the admissibly
modifiable message parts. It outputs a signature (or ⊥, indicating an error):

σ ← Sign(m, sksig, pksan,adm).

We assume that adm is recoverable from any signature σ �=⊥.

Sanitizing. Algorithm Sanit takes a message m ∈ {0, 1}∗, a signature σ, the public key pksig of
the signer and the secret key sksan of the sanitizer. It modifies the message m according to
the modification instruction mod and determines a new signature σ′ for the modified message
m′ = mod(m). Then Sanit outputs m′ and σ′ (or possibly ⊥ in case of an error).

(m′, σ′)← Sanit(m,mod, σ, pksig, sksan)
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Verification. The Verify algorithm outputs a bit d ∈ {true, false} verifying the correctness of
a signature σ for a message m with respect to the public keys pksig and pksan.

d← Verify(m,σ, pksig, pksan)

Proof. The Proof algorithm takes as input the secret signing key sksig, a message m and a signature
σ as well a set of (polynomially many) additional message-signature pairs (mi, σi)i=1,2,...,q and
the public key pksan. It outputs a string π ∈ {0, 1}∗:

π ← Proof(sksig,m, σ, (m1, σ1), . . . , (mq, σq), pksan)

Judge. Algorithm Judge takes as input a message m and a valid signature σ, the public keys
of the parties and a proof π. It outputs a decision d ∈ {Sig, San} indicating whether the
message-signature pair has been created by the signer or the sanitizer:

d← Judge(m,σ, pksig, pksan, π)

For a sanitizable signature scheme the usual correctness properties should hold, saying that gen-
uinely signed or sanitized messages are accepted and that a genuinely created proof by the signer
leads the judge to decide in favor of the signer. For a formal approach to correctness see [BFF+09].

2.2 Security of Sanitizable Signatures

Here we recall the security notions for sanitizable signatures given by Brzuska et al. [BFF+09].
We note that, there, they show that signer and sanitizer accountability together imply unforge-
ability, and that transparency implies privacy. Hence, in principle it suffices to show immutability,
accountability and transparency.

Unforgeability. Unforgeability demands that no outsider should be able to forge signatures
under the keys of the honest signer and sanitizer, i.e., no adversary should be able to compute a
tuple (m∗, σ∗) such that Verify(m∗, σ∗, pksig, pksan) = true without having the secret keys sksig, sksan.
This must hold even if one can see additional signatures for other input data, including the message-
signature pairs and the public keys. We also give the adversary access to a Proof oracle, because
proofs could potentially leak information about the secret signing key. Yet, except for this secret
key the adversary fully determines the other input data, including the message-signature pairs and
the public keys. This allows to capture for example scenarios where several sanitizers are assigned
to the same signer.

Definition 2.2 (Unforgeability) A sanitizable signature scheme SanSig is unforgeable if for
any efficient algorithm A the probability that the following experiment returns 1 is negligible (as a
function of n):

Experiment UnforgeabilitySanSig
A (n)

(pksig, sksig)← KGensig(1n)
(pksan, sksan)← KGensan(1n)
(m∗, σ∗)← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,...,·)(pksig, pksan)
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letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q
denote the queries and answers to and from oracle Sign,
and (mj ,modj, σj , pksig,j

) and (m′
j , σ

′
j) for j = q + 1, . . . , r

denote the queries and answers to and from oracle Sanit.
return 1 iff

Verify(m∗, σ∗, pksig, pksan) = true and
for all i = 1, 2, . . . , q we have (pksan,m∗) �= (pksan,i,mi) and
for all j = q + 1, . . . , r we have (pksig,m

∗) �= (pksig,j
,m′

j).

Immutability. This property demands informally that a malicious sanitizer cannot change in-
admissible blocks. In the attack model below the malicious sanitizer A interacts with the signer
to receive signatures σi for messages mi, descriptions admi and keys pksan,i of its choice, before
eventually outputting a valid pair (pk∗san,m∗, σ∗) such that message m∗ is not a “legitimate” trans-
formation of one of the mi’s under the same key pk∗san = pksan,i. The latter is formalized by requiring
that for each query pk∗san �= pksan,i or m∗ /∈ {mod(mi) |mod with admi(mod) = 1} for the value
admi in σi, e.g., that for block-divided messages m∗ and mi differ in at least one inadmissible block.
As the adversary can query the signer for several sanitizer keys pksan,i, the security definition also
covers the case where the signer interacts with several sanitizers simultaneously.

Definition 2.3 (Immutability) A sanitizable signature scheme SanSig is immutable if for any
efficient algorithm A the probability that the following experiment ImmutabilitySanSig

A (n) returns 1 is
negligible (as a function of n).

Experiment ImmutabilitySanSig
A (n)

(pksig, sksig)← KGensig(1n)
(pk∗san,m∗, σ∗)← ASign(·,sksig,·,·),Proof(sksig,...,·)(pksig)

letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q
denote the queries and answers to and from oracle Sign.

return 1 if
Verify(m∗, σ∗, pksig, pk

∗
san) = true and

for all i = 1, 2, . . . , q we have
pk∗san �= pksan,i or
m∗ /∈ {mod(mi) | mod with admi(mod) = 1}

Accountability. Accountability says the origin of a (sanitized) signature should be undeniable.
There are the following two types of accountability: sanitizer-accountability says that, if a message
has not been signed by the signer, then even a malicious sanitizer should not be able to make
the judge accuse the signer. Signer-accountability says that, if a message and its signature have
not been sanitized, then even a malicious signer should not be able to make the judge accuse the
sanitizer.

In the sanitizer-accountability game let ASanit be an efficient adversary playing the role of the
malicious sanitizer. Adversary ASanit has access to a Sign and Proof oracle. Her task is to output
a valid message-signature pair m∗, σ∗ together with a key pk∗san (with (pk∗san,m∗) being different
from pairs (mi, pksan,i) previously queried to the Sign oracle) such that the proof produced by the
signer via Proof still leads the judge to decide “Sig”, i.e., that the signature has been created by
the signer.
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Definition 2.4 (Sanitizer-Accountability) A sanitizable signature scheme SanSig is said to
be sanitizer-accountable if for any efficient algorithm ASanit the probability that the experiment
San-AccountabilitySanSig

ASanit
(n) below returns 1 is negligible (as a function of n).

Experiment San-AccountabilitySanSig
ASanit

(n)
(pksig, sksig)← KGensig(1n)
(pk∗san,m∗, σ∗)← ASign(·,sksig,·,·),Proof(sksig,...,·)

Sanit (pksig)
letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q
denote the queries and answers to and from oracle Sign

π ← Proof(sksig,m
∗, σ∗, (m1, σ1), . . . , (mq, σq), pk∗san)

return 1 iff
(pk∗san,m∗) �= (pksan,i,mi) for all i = 1, 2, . . . , q, and
Verify(m∗, σ∗, pksig, pk

∗
san) = true, and

Judge(m∗, σ∗, pksig, pk
∗
san, π) = Sig

In the signer-accountability game a malicious signer ASign gets a public sanitizing key pksan as
input. She is allowed to query a sanitizing oracle about tuples (mi,modi, σi, pksig,i

) receiving
answers (m′

i, σ
′
i). Adversary ASign finally outputs a tuple (pk∗sig,m∗, σ∗, π∗) and is considered to

succeed if Judge accuses the sanitizer for the new key-message pair pk∗sig,m∗ with a valid signature
σ∗.

Definition 2.5 (Signer-Accountability) A sanitizable signature scheme SanSig is signer-ac-
countable if for any efficient ASign the probability that the experiment Sig-AccountabilitySanSig

ASign
(n)

below returns 1 is negligible (as a function of n):

Experiment Sig-AccountabilitySanSig
ASign

(n)
(pksan, sksan)← KGensan(1n)
(pk∗sig,m∗, σ∗, π∗)← ASanit(·,·,·,·,sksan)

Sign (pksan)
letting (m′

i, σ
′
i) for i = 1, 2, . . . , q

denote the answers from oracle Sanit.
return 1 iff

(pk∗sig,m∗) �= (pksig,i
,m′

i) for all i = 1, 2, . . . , q, and
Verify(m∗, σ∗, pk∗sig, pksan) = true and
Judge(m∗, σ∗, pk∗sig, pksan, π

∗) = San

Privacy. Privacy roughly means that it should be infeasible to recover information about the
sanitized parts of the message. As information leakage through the modified message itself can
never be prevented, we only refer to information which is available through the sanitized signature.

We present here the indistinguishability notion from [BFF+09] where an adversary can choose
pairs (m0,mod0), (m1,mod1) of messages and modifications together with a description adm and
has access to a “left-or-right” box.1 This oracle either returns a sanitized signature for the left
tuple (b = 0) or for the right tuple (b = 1). The task of the attacker is to predict the random bit b
significantly better than by guessing. Here we need the additional constraint that for each call to the

1Brzuska et al. [BFF+09] also discuss a simulation-based approach which is equivalent to the indistinguishability
notion.
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left-or-right box the resulting modified messages are identical for both tuples and the modifications
both match adm, else the task would be trivial. We write (m0,mod0,adm) ≡ (m1,mod1,adm) for
this.

Definition 2.6 (Privacy) A sanitizable signature scheme SanSig is private if for any efficient
algorithm A the probability that the following experiment returns 1 is negligibly close to 1

2 :

Experiment PrivacySanSig
A (n)

(pksig, sksig)← KGensig(1n)
(pksan, sksan)← KGensan(1n)
b← {0, 1}
a← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,··· ),LoRSanit(·,·,·,sksig,sksan,b)(pksig, pksan)

where oracle LoRSanit(·, ·, ·, sksig, sksan, b)
on input (mj,0,modj,0),(mj,1,modj,1) and admj

first computes σj,b ← Sign(mj,b, sksig, pksan,admj) and then
returns (m′

j , σ
′
j)← Sanit(mj,b,modj,b, σj,b, pksig, sksan),

and where (mj,0,modj,0,admj) ≡ (mj,1,modj,1,admj),
i.e., mj,0 and mj,1 are mapped to the same modified message.

return 1 iff a = b.

Transparency. We define transparency by the following adversarial game. We consider an adver-
sary A with access to Sign, Sanit and Proof oracles with which the adversary can create signatures
for (sanitized) messages and learn proofs. In addition, A gets access to a Sanit/Sign box which con-
tains a secret random bit b ∈ {0, 1} and which, on input a message m, a modification information
mod and a description adm

• for b = 0 runs the signer algorithm to create σ ← Sign(m, sksig, pksig,adm), then runs the
sanitizer algorithm and returns the sanitized message m′ with the new signature σ′, and

• for b = 1 acts as in the case b = 0 but also signs m′ from scratch with the signing algorithm
to create a signature σ′ and returns the pair (m′, σ′).

Adversary A eventually produces an output a, the guess for b. A sanitizable signature is now said
to be transparent if for all efficient algorithms A the probability for a right guess a = b in the
above game is negligibly close to 1

2 . Below we also define a relaxed version called proof-restricted
transparency and discuss the idea after the definition.

Definition 2.7 ((Proof-Restricted) Transparency) A sanitizable signature scheme SanSig is
(proof-restricted) transparent if for any efficient algorithm A the probability that the following
experiment TransparencySanSig

A (n) returns 1 is negligibly close to 1
2 .

Experiment TransparencySanSig
A (n)

(pksig, sksig)← KGensig(1n)
(pksan, sksan)← KGensan(1n)
b← {0, 1}
a← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,...,·),Sanit/Sign(·,·,·,sksig,sksan,pksig,pksan,b)(pksig, pksan)

where oracle Sanit/Sign for input mk,modk,admk
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first computes σk ← Sign(mk, sksig, pksan,admk),
then computes (m′

k, σ
′
k)← Sanit(mk,modk, σk, pksig, sksan),

then, if b = 1, replaces σ′
k by σ′

k ← Sign(m′
k, sksig, pksan,admk),

and finally returns (m′
k, σ

′
k).

return 1 iff
a = b
(and, in the proof-restricted case, A has not queried
any m′

k output by Sanit/Sign to Proof)

The original definition of Brzuska et al. [BFF+09] does not consider the proof-restricted case.
Without this restriction, though, achieving transparency at first seems to be impossible because
the adversary can then always submit the replies of the Sanit/Sign oracle to the Proof oracle and
thereby recover the secret bit b. However, in their construction the Proof algorithm searches in
the list of previously signed messages and only gives a useful answer if it finds a match, enabling
transparency without this restriction. Yet, any solution (like ours here) where the Proof algorithm
is “history-free” can only achieve the proof-restricted version. Note that Proof algorithms forgoing
the set of previously signed messages are preferable from an efficiency point of view, of course.

As for the implications among the security notions [BFF+09] we note that proof-restricted
transparency only implies a proof-restricted form of privacy, where the answer messages of the
LoRSanit oracle cannot be submitted to the Proof oracle either. However, since we show in the
next section that unlinkability implies full privacy and our construction achieves unlinkability,
our scheme is also private in the non-restricted sense. We note that all the separation results in
[BFF+09] remain valid for proof-restricted transparency.

3 Unlinkability

In this section we define unlinkability formally and discuss its relationship to the other security
notions.

3.1 Definition

As explained in the introduction, unlinkability refers to the impossibility to use the signatures to
identify sanitized message-signature pairs originating from the same source. Technically, we use
an indistinguishability-based approach to define this property, saying that, given a signature for a
sanitized message of two possible sources, the adversary cannot predict the actual original message
better than by guessing. This should even hold if the adversary herself provides the two source
message-signature pairs and modifications of which one is sanitized. The stipulation here is that
the two modifications yield the same sanitized message. Else, if for example the sanitized messages
still contain some unique but distinct entry, then predicting the source is easy, of course. This,
however, is beyond the scope of signature schemes: the scheme should only prevent that signatures
can be used to link data.

Formally, we use a game-based approach to define unlinkability, similar to the other security
notions in [BFF+09]. The adversary is given access to a signing oracle and a sanitizer oracle (and a
proof oracle since this step depends on the signer’s secret key and may leak valuable information).
The adversary is also allowed to query a left-or-right oracle LoRSanit which is initialized with a
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secret random bit b. In each of the multiple queries to LoRSanit the adversary provides a pair of
tuples, each consisting of a message, a modification and a valid signature, such that the recoverable
description of admissible modifications is identical in both cases (since we assume that adm is
recoverable from a signature providing distinct descriptions adm would allow a trivial attack; so
would the case that only one signature is valid). Depending on the bit b, the adversary gets
the sanitized message-signature pair of either the left or right input pair. The adversary should
eventually predict the bit b significantly better than with the guessing probability of 1

2 .

Definition 3.1 (Unlinkability) A sanitizable signature scheme SanSig is unlinkable if for any
efficient algorithm A the probability that the following experiment UnlinkabilitySanSig

A (n) returns 1 is
negligibly close to 1

2 .

Experiment UnlinkabilitySanSig
A (n)

(pksig, sksig)← KGensig(1n)
(pksan, sksan)← KGensan(1n)
b← {0, 1}
a← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,··· ,·),LoRSanit(·,·,sksig,sksan,b)(pksig, pksan)

where oracle LoRSanit(·, ·, sksig, sksan, b), on input
(mj,0,modj,0, σj,0),(mj,1,modj,1, σj,1) with recoverable admj,0 = admj,1

Verify(mj0, σj,0, pksig, pksan) = true, Verify(mj1, σj,1, pksig, pksan) = true,
returns (m′

j , σ
′
j)← Sanit(mj,b,modj,b, σj,b, pksig, sksan),

and where (mj,0,modj,0,admj) ≡ (mj,1,modj,1,admj),
i.e., mj,0 and mj,1 are mapped to the same modified message.

return 1 if a = b.

A pictorial description is given in Figure 2. We note that the definition above is for example robust
concerning several sanitization steps in the LoRSanit oracle. That is, we could allow the adversary
in the experiment above to submit arbitrarily long “modification chains” mod

1
j,0, . . . ,mod

m
j,0 and

mod
1
j,1, . . . ,mod

m
j,1 such that the two source documents are gradually sanitized with a match in the

resulting documents. Still, predicting b remains hard, as such chains can potentially be simulated
by calling the sanitizer oracle for the first m − 1 modifications manually, before entering the final
sanitization step into the LoRSanit oracle. Jumping ahead, we remark that this property also allows
to show that unlinkability actually implies stronger notions of privacy than defined in [BFF+09]
(see the next section).

Recall the example of medical records which are sanitized twice, one time basically removing
the personal information and the other time removing the medical data. Our notion of unlinkability
can then be used to show that such sanitized message-signature pairs do not allow to reconstruct
the full data better than by guessing. Assume for simplicity that we only have two records with
entries (name#0, data#0) and (name#1, data#1). Then we create all four possible combinations
(name#a, data#b) for a, b ∈ {0, 1} and ask for signatures for them (with both parts being admissibly
changeable). For each a ∈ {0, 1} we then insert the pairs (name#a, data#0) and (name#a, data#1)
twice into the LoRSanit oracle, one time cutting off the name-part, the other time removing the
data-part. Altogether we make thus four calls to the LoRSanit oracle, and we hand those four
replies to the adversary. Our unlinkability definition says that one cannot distinguish the two cases
(left or right sanitization) better than by guessing, thus also disallowing to tell which data belong
to whose name.
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Figure 2: Unlinkability. A wins if it outputs a = b.

Our definition above is for unlinkability with respect to message-signature pairs sanitized by the
same sanitizer. One can easily extend the above definition by demanding that the adversary can
also determine different sanitizers for the left and for the right input data. But then both sanitizers
must have been declared to have the permission to sanitize, otherwise one could easily determine
the secret bit of the LoRSanit by picking an invalid sanitizer for one of the input tuples.

3.2 Relationships of the Security Notions

We first show that unlinkability does not follow from any of the other security requirements. Then
we prove that unlinkability implies privacy, and finally discuss that unlinkability does not imply
any of the other properties.

Proposition 3.2 (Independence of Unlinkability) Assume that there exists a sanitizable sig-
nature scheme (obeying one or more of the properties unforgeability, immutability, privacy, (proof-
restricted) transparency, signer-accountability and sanitizer-accountability). Then there exists a
sanitizable signature scheme which is not unlinkable but preserves the other security properties.

Proof. We show this proposition by modifying a sanitizable signature scheme possibly fulfilling the
other security requirements in a way that unlinkability no longer holds, but all the other require-
ments remain unaffected. The idea is to augment signatures by unique identifiers such that sanitied
documents can be easily linked. Let SanSig = (KGensig,KGensan,Sign,Sanit,Verify,Proof, Judge)
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be a secure sanitizable signature scheme and let SanSig′ = (KGensig,KGensan,Sign′,Sanit′,Verify′,
Proof′, Judge′) be the following modification of SanSig:

• KGensig and KGensan remain unchanged.

• Sign′ works as Sign, except that it appends a random value id ← {0, 1}n to the signature,
σ′ = σ||id.

• Sanit′ works as Sanit, except that it first chops off the final n bits id of the input signature,
then runs Sanit and finally appends id to the resulting signature again.

• all other algorithms merely chop off the final n bits of any input signature and then work as
their ancestors (but using the shortened signatures).

It is clear that unforgeability, immutability and accountability are not affected by the modification
of the signature value above. As for privacy note that the signatures for the left or right message
contain the same identifier, and (proof-restricted) transparency follows because in the final signa-
tures (which is either first signed and then sanitized, or signed from scratch) the identifier is an
independent random element. Unlinkability does not hold because a sanitized documents inherits
the (quasi) unique identifier from the original signature, allowing to determine the origin easily.

More formally, the adversary against unlinkability calls the signing oracle twice about the
same message m, the input key pksan and the same adm, obtaining two signatures σ0||id0 and
σ1||id0 with distinct id0 �= id1 (the case id0 = id1 only happens with probability 2−n). It picks
some admissible modification mod (say, the one which leaves the message unchanged) and submits
(m,mod, σ0||id0,m,mod, σ1||id1) to the LoRSanit oracle to obtain a sanitized message with signa-
ture σ′

b||idb. The adversary outputs a = 0 iff id0 matches the identifier in this signature, such that
a matches b with overwhelming probability. �

Proposition 3.3 (Unlinkability Implies Privacy) Any unlinkable sanitizable signature scheme
is also private.

Proof. Assume that such a signature was not private. Then consider an adversary Apriv being able
to win in the privacy game with probability significantly better than 1

2 . We show that we we can
build an adversary Aunlink against unlinkability, winning with the same probability as Apriv.

Note that the only difference between the two attacks lies in the possibility of Aunlink to provide
the signatures to the LoRSanit oracle, whereas for Apriv this signature is created inside the LoRSanit-
box from scratch (using the supplied admj). This can be easily simulated by Aunlink by calling
the signer oracle sequentially about the two messages pairs (with identical admj) to first derive a
signature for each message, and then to submit these two signatures as part of the LoRSanit-query.
It follows that the success probability of Aunlink is identical to the one of Apriv. �

The proof above shows that unlinkability actually implies something stronger than the privacy
notion. Namely, instead of calling the LoRSanit oracle in the privacy experiments about message
pairs and single modifications, one may now call this oracle about modification chains (with the
stipulation that the final messages are identical) and possibly receive the intermediate signatures as
additional output. Since one can easily simulate such upstream modifications in the unlinkability
experiment with the help of the signing and sanitizing oracle, privacy in this case follows again
from our unlinkability notion.
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With the next proposition we show that unlinkability does not imply any of the other security
properties (assuming that we start with a secure sanitizable signature scheme like the one we
construct in the next section):

Proposition 3.4 (Independence of Other Properties) Assume that there exists a sanitizable
signature scheme which is unforgeable, immutable, private, (proof-restricted) transparent, signer-
accountable, sanitizer-accountable and unlinkable. Then for any of the properties immutability,
transparency, unlinkability, signer-accountability and sanitizer-accountability, there exists a saniti-
zable signature scheme obeying all properties except for the one in question.

Proof. The fact that unlinkability does not follow from the other properties has already been shown
in Proposition 3.2. For the other properties we remark that the counterexamples in [BFF+09]
which seperate immutability, transparency, signer-accountability and sanitizer-accountability from
the other properties also preserve unlinkability in each case (and also hold for proof-restricted
transparency). �

4 Constructions based on Group Signatures

In this section we present our unlinkable sanitizable signature scheme (which also satisfies the other
security properties). As explained in the introduction, the idea is to use a group signature scheme
for the group consisting of the signer and the sanitizer, such that the signer signs the immutable
message part with a regular signature scheme and the full message with the group signature scheme.
The sanitizer can then update the full message and only sign this second component. The signer
also takes over the role of the group manager in order to provide accountability.

4.1 Group Signatures

Group signatures, introduced by Chaum and van Heyst [CvH91], allow a set of users to sign on
behalf of the group such that outsiders cannot distinguish between different signers (anonymity)
but such that a group manager can trace the signer’s identity (traceability). We follow the formal
framework of Bellare et al. [BMW03] but add the non-frameability requirement [BSZ05] that even
the group manager cannot sign on behalf of the users. Recall that this is necessary for the accoun-
tability in our sanitizable signature scheme, where the signer acts as the group manager and should
not be able to make the judge falsely accuse the sanitizer.

Definition 4.1 (Group Signature) A group signature scheme GS consists of six efficient al-
gorithms GS = (GKGen,UKGen,GSig,GVf,Open,GJudge), where GKGen,UKGen are only invoked
during the setup.

Setup phase. There are two key generation algorithms. Let k be the number of group members.
Each user i, 1 ≤ i ≤ k runs UKGen to generate a key pair. Formally, UKGen gets the security
parameter 1n as input and returns a key pair:

(skuser,i, pkuser,i)← UKGen(1n).

We write gskuser for the tuple (skuser,1, . . . , skuser,k). The group manager’s key generation
algorithm now computes the group manager’s secret key gmsk as well as the public verification

13



key gpk for group signatures, and certificates cert = (cert1, . . . , certk) for each of the user’s
public key gpkuser = (pkuser,1, . . . , pkuser,k):

(gmsk, gpk, cert)← GKGen(1n, gpkuser)

Each certificate is passed to the corresponding user.

Signing. To create a signature for a message m ∈ {0, 1}∗ the users’s private key as well as the
matching certificate and the group’s public key gpk are required:

σ ← GSig(skuser,i, certi, gpk,m).

Verification. A signature σ for a message m is verifiable with the group’s public key gpk:

d← GVf(gpk,m, σ)

with d ∈ {true, false}.
Opening messages. In order to settle disputes about a signature’s origin, the group manager can

produce a proof for the judge, usually suggesting which group member i signed the message:

(i, π)← Open(gmsk,m, σ, gpkuser, gpk)

where possibly (i, π) = ⊥.

Judge. Depending on the proof presented by the group manager, the judge decides about the sig-
nature’s origin:

j ← GJudge(m,σ, i, π, gpk, gpkuser)

with j ∈ {true, false,⊥}.
The usual correctness properties should hold, i.e., genuinely generated signatures shall be ac-

cepted be the verification algorithm, and group manager proofs for honestly signed messages should
be confirmed by the judge. More formally,

Signing Correctness. For any security parameter n ∈ N, any k ∈ N, any tuple of user key
pairs (skuser,1, pkuser,1), . . . , (skuserk, pkuserk) ← UKGen(1n) issued by UKGen and any output
(gmsk, gpk, cert)← GKGen(1n, gpkuser), we have that for every message m ∈ {0, 1}∗ and any
σ ← GSig(skuser,i, certi,m) for i ∈ {1, 2, . . . , k} it holds GVf(gpk,m, σ) = true.

Proof Correctness. For any security parameter n ∈ N, any k ∈ N, any tuple of user key
pairs (skuser,1, pkuser,1), . . . , (skuserk, pkuserk) ← UKGen(1n) issued by UKGen and any output
(gmsk, gpk, cert)← GKGen(1n, gpkuser), it is guaranteed that for every message m ∈ {0, 1}∗,
any σ ← GSig(skuser,i, certi,m) for i ∈ {1, 2, . . . , k} and every proof (i, π) ← Open(gmsk,m,
σ, gpk) we have GJudge(m,σ, i, π, gpk, gpkuser) = true.

Anonymity of group signatures means that it should be infeasible for outsiders to determine who
generated the signature. This group signature property later ensures the transparency property
of our sanitizable signature scheme. To simplify we give the definition only with respect to two
users (the signer and the sanitizer in our case) and without corruptions, since we only care about
transparency against outsiders. We, nonetheless, still give the adversary the user’s secret keys and
certificates but could alternatively only grant it oracle access to corresponding signing oracles:

14



Definition 4.2 (Anonymity) A group signature scheme GS = (GKGen,UKGen,GSig,GVf,Open,
GJudge) satisfies (full) anonymity if for any efficient algorithm B the probability that the following
experiment returns 1 is negligibly close to 1

2 (as a function of n):

Experiment Expanon
GS,B(n)

(skuser,0, pkuser,0), (skuser,1, pkuser,1)← UKGen(1n)
(gmsk, gpk, cert)← GKGen(1n, gpkuser)
b← {0, 1}
a← BOpen(gmsk,·,·,gpkuser,gpk),LoRSign(gskuser ,cert,gpk,·,b)(gpk, gskuser, cert)

where oracle LoRSign on input mi returns
σi ← GSig(skuserb, certb, gpk,mi)
and B never queries Open about any mi

having submitted in a communication with LoRSign before.
return 1 iff a = b

Note that Bellare et al. [BMW03] define anonymity with respect to a single challenge signature
only, whereas in our definition above we allow the adversary access to a left-or-right oracle which
she can query multiple times. The single-query case implies the multiple-queries case by a standard
hybrid argument. Also, we prohibit the adversary from submitting any message to Open if it has
been used to get a signature via LoRSign, whereas the definition in [BMW03] only demands that
message-signature pairs (mi, σi) appearing in a communication with LoRSign may not be submitted
to Open. This relaxation possibly enlarges the pool of candidates and suffices for our setting.

Traceability of a group signature means that even malicious group members can be traced by
the group manager. This property guarantees (sanitizer-)accountability for our sanitizable scheme.
We again tailor the definition towards our needs and give the definition for two users only of which
one (the sanitizer) is controlled by the adversary:

Definition 4.3 (Traceability) A group signature scheme GS = (GKGen,UKGen,GSig,GVf,Open,
GJudge) satisfies traceability if for any efficient adversary B the probability that the following
experiment returns 1 is negligible:

Experiment Exptrace
GS,B(n)

(skuser,0, pkuser,0)← UKGen(1n)
(st, pkuser

∗
,1)← B(choose, 1n, pkuser,0)

(gmsk, gpk, cert0, cert1)← GKGen(1n, pkuser,0, pkuser
∗
1)

(m∗, σ∗)← BGSig(skuser,0,cert0,·,gpk),Open(gmsk,·,·,gpk)(guess, st, gpk, cert)
return 0 if GVf(gpk,m∗, σ∗) = false

return 1 if (i, π) = ⊥ for (i, π)← Open(gmsk,m∗, σ∗, gpk)
return 1 if

i = 0 and
GJudge(m∗, σ∗, 0, π, gpk) = true and
B has never queried the GSig-oracle about m∗ in the guess stage.

Finally, non-frameability of a group signature scheme provides signer-accountability: even a
malicious signer collaborating with the group manager cannot make the sanitizer falsly accused as
the source of a signature. In the definition below we let the adversary ask for signatures under
the sanitizer’s secret key even for chosen group data. This is necessary since the signer (and thus

15



the group manager) is under control of the adversary and the sanitizer may be assigned to several
signers.

Definition 4.4 (Non-Frameability) A group signature scheme GS = (GKGen,UKGen,GSig,GVf,
Open,GJudge) is non-frameable if for any efficient adversary B the probability that the following
experiment returns 1 is negligible:

Experiment Expnonfr
GS,B (n)

(skuser,1, pkuser,1)← UKGen(1n)
(m∗, σ∗, π∗, gpk∗, cert∗1)← BGSig(skuser,1,·,·,·)(1n, pkuser,1)
return 1 if

GVf(gpk∗,m∗, σ∗) = true and
GJudge(m∗, σ∗, 1, π∗, gpk∗) = true and
B has not queried the GSig-oracle about m∗.

Definition 4.5 (Secure Group Signature) We call a group signature scheme secure if it is
anonymous, traceable and non-frameable.

As for instantiations we remark that the (generic) construction by Bellare et al. [BMW03] satis-
fies our adapted definitions. As for more efficient group signature schemes, we can implement our
sanitizable signature scheme with other group signature schemes like [KY05, DP06, Gro06, Gro07].
Yet, these group signature schemes need additional set-up assumptions like a trusted party gen-
erating common parameters or interactive registration of users. Our sanitizable signature scheme
then inherits these characteristics (recall that, in practice, registration of signer and sanitizer keys
is for example necessary to provide meaningful accountability).

4.2 Construction

In this section we show that the new security requirement of unlinkability can be achieved in
combination with the five established security properties formalized in [BFF+09]. Recall that we
sign the entire message, including the modifiable parts, with the group signature scheme, and —in
order to prevent inadmissible changes— the signer also signs the fixed part with a regular scheme.
This requires some care because if we take an arbitrary signature scheme then the signature itself
may act as a unique identifier, even for messages with identical fixed parts. Thereby, unlinkability
would be violated.

The solution is to use a secure deterministic signature scheme for the fixed part (such that
the signature is identical for messages with the same fixed part). Alternatively, one can deploy a
rerandomizable signature scheme such that the sanitizer can rerandomize the signature, excising
the link to the input signature. Below we use the “deterministic solution” for simplicity, and since
every secure signature scheme can be easily turned into a deterministic one via pseudorandom
functions [Gol87].

Signature schemes and their security are defined in Appendix A where we in particular define
strong unforgeability of such schemes. We need this unforgeability notion (saying that one cannot
even find a new signature for a previously signed message) to provide unlinkability. Examples of
signature schemes achieving this strong notion are [BR96, Cor00, BLS04, BB04, BSW06]. Moreover,
it is possible to obtain a strongly unforgeable signature scheme out of any unforgeable signature
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scheme applying the transformation of Bellare and Shoup [BS07]. Applying the transformation of
[Gol87] one can then make such schemes also deterministic.

Recall that the idea behind our scheme is that for each signature the signer uses a group
manager key, creates a certified user key to sign the modifiable parts, and certifies the sanitizer’s
public key as a group member to support modifications. But since our definition of sanitizable
signatures demands statefree solutions, the signer formally cannot store the group manager key
for this sanitizer and would need to create a new one for each call. We bypass this as follows:
we let the signer for each signing request, including a public key of the sanitizer pksan, create
the group manager’s keys etc. via the corresponding group signature algorithms, but provide the
randomness for these algorithms by applying a pseudorandom function to pksan (see Appendix A
for a definition of pseudorandom functions). By this, we end up with (almost) independent keys
for different sanitizers, but use consistent parameters for each sanitizer. For the same reason we
also include the group membership certificate of the sanitizer in the signature, although it would
be given directly to the sanitizer instead. As a side effect, since the group manager’s public key is
tied to the sanitizer in question, we also rely on group signatures with static joins only.

Construction 4.6 (Sanitizable Signature Scheme) Let S = (SKGen,SSign,SVf) be a (regu-
lar) signature scheme, let GS = (GKGen,UKGen,GSig,GVf,Open,GJudge) be a group signature
scheme. Let PRF = (KGenprf,PRF) be pseudorandom function. Define the sanitizable signature
scheme SanSig = (KGensig,KGensan,Sign,Sanit,Verify,Proof, Judge) as follows:

Key Generation. First, algorithm KGensig gets the input 1n and runs (ssk, spk)← SKGen(1n) to
create a key pair for the signature scheme, and then also invokes k ← KGenprf(1n) to derive
a key for the pseudorandom function. It outputs (sksig, pksig) = ((ssk, k), spk). Algorithm
KGensan(1n) generates a key pair (sksan, pksan) = (gsksan, gpksan) ← UKGen(1n) of the group
signature scheme.

Signing. Algorithm Sign on input m ∈ {0, 1}∗, sksig = (ssk, k), pksan,adm sets mfix = fixadm(m)
for the algorithm fixadm determined by adm. It runs the user key generation algorithm
(gsksig, gpksig)← UKGen(1n;PRF(k, 0‖pksan)) for randomness PRF(k, 0‖pksan) and afterwards
the group manager algorithm to compute

(gmsk, gpk, certsig, certsan)← GKGen(1n, (gpksig, pksan);PRF(k, 1‖pksan))

for randomness PRF(k, 1‖pksan). It computes

σfix = SSign(ssk, (mfix,adm, pksan, gpk)) and

σfull = GSig(gsksig, certsig, (m, pksig), gpk)

using the signing algorithms of the regular and of the group signature scheme. The algorithm
finally returns σ = (σfix, σfull,adm, pksan, certsan, gpk).

Sanitizing. Algorithm Sanit on input a message m, information mod, a signature σ = (σfix, σfull,
adm, pksan, certsan, gpk), keys pksig and sksan first recovers mfix = fixadm(m). It then checks
that mod is admissible according to adm and that σfix is a valid signature for message
(mfix,adm, pksan, gpk) under key spk. If not, it stops outputting ⊥. Else, it derives the
modified message m′ = mod(m) and computes

σ′
full

= GSig(gsksan, certsan, (m′, pksig), gpk)
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and outputs m′ together with σ′ = (σfix, σ′
full

,adm, pksan, certsan, gpk).

Verification. Algorithm Verify gets as input a message m ∈ {0, 1}∗, a signature σ = (σfix, σfull,
adm, pksan, certsan, gpk) and public keys pksig = spk and pksan. It first recovers mfix =
fixadm(m). It then checks whether SVf(spk, (mfix,adm, pksan, gpk), σfix) = 1 and GVf(gpk,
(m, pksig), σfull) returns true, too. If so, it outputs 1, declaring the entire signature as valid.
Otherwise it returns 0, indicating an invalid signature.

Proof. Algorithm Proof gets as input sksig, m and σ = (σfix, σfull,adm, pksan, certsan, gpk). It
parses the key as sksig = (ssk, k) and recomputes

(gmsk, gpk′, cert′sig, cert
′
san) = GKGen(1n, (gpksig, pksan);PRF(k, 1||pksan))

and checks that gpk′ = gpk and cert′san = certsan (and immediately returns ⊥ if not). It
next verifies that SVf(spk, (mfix,adm, pksan, gpk), σfix) = 1 and, if so, computes and outputs
(i, π) ← Open(gmsk, (m, pksig), σfull, gpk), where i ∈ {Sig, San} is the identity returned by
the Open algorithm (or, Proof returns ⊥ if any of the verification steps above fail).

Judge. The judge on input m,σ, pksig, pksan and a proof (i, π) with i ∈ {Sig, San} parses σ as
(σfix, σfull,adm, pksan, certsan, gpk). It derives b ← GJudge((m, pksig), σfull, i, π, gpk) using
the judge algorithm of the group signature scheme. If b = true it outputs i, else it outputs
i = Sig.

Completeness of signatures generated by the signer and sanitizer follows easily from the complete-
ness of the underlying signature schemes and the fact that fixadm leaves the fixed message parts
unchanged for modified messages. There is a negligible probability that a signature of the signer or
the sanitizer also verifies under the other party’s other key, yielding possibly a wrong answer from
the judge. We ignore this issue here for simplicity.

4.3 Security Proof

We need an additional property of the admissible modifications adm: given arbitrary messages
m,m∗ ∈ {0, 1}∗ (and a security parameter 1n) it should be efficiently decidable whether m∗ ∈
{mod(m) |mod with adm(mod) = 1} or not. We call such adm modification-decidable and a
sanitizable signature scheme modification-restricted if it only allows modification-decidable adm.
As an example consider again block-divided messages where adm describes the block-length and the
indices of changeable blocks. Then it is easy to check whether m∗ has been changed in admissible
blocks only or not.

Theorem 4.7 Let S be a strongly unforgeable deterministic signature scheme and let GS be a
secure group signature scheme. Assume further that PRF is a pseudorandom function. Then the
modification-restricted sanitizable signature scheme in Construction 4.6 is unforgeable, immutable,
private, proof-restricted transparent, accountable and unlinkable.

Proof. Recall that it suffices to show immutability, proof-restricted transparency, accountability
and unlinkability. The other properties then follow. Before doing so we slightly modify the scheme
in the sense that we generate truly random and independent data (gmsk, gpk, certsig, certsan) ←
GKGen(1n, gpksig, pksan) for each sanitizer key appearing in signature requests in the experiments.
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We then maintain a list of the assigned data to keys instead of invoking the pseudorandom function
each time.

By the security of the pseudorandom function it follows that the modified scheme is as a secure
as the original scheme (except for a negligible security loss for each property). Here we use the fact
that for each of the experiment we can decide efficiently whether the adversary has won or not,
thus enabling us to turn any significantly changing success probabilities in any of the experiments
into a successful distinguisher against the pseudorandom function. For all properties except for
immutability this decidability is clear, for immutability it follows from the modification-restriction
of the scheme.

Immutability. Recall that immutability refers to the fact that the adversary with oracle access to
the signer and the proof algorithm cannot create a valid message-signature for a key pk∗san such that
for all pevious queries i we either have pk∗san �= pksani or m∗ /∈ {mod(m) | mod with admi(mod) = 1}.

Assume towards contradiction that our (modified) scheme is not immutable. We then show that
this violates the unforgeability of the signer’s signature scheme S, i.e. we transform a successful
attacker against immutability into a successful adversary against unforgeability of the signature
scheme. Let Aimmu be an efficient successful attacker against immutability. Given Aimmu we build
a successful forger Bunf against the signer’s signature scheme. To this end, Bunf immitates Aimmu’s
environment with the help of a signing oracle as follows. Bunf receives as input a public key spk
of the signature scheme and picks the other key pairs herself. (Note that Bunf does not need to
generate a key k for the pseudorandom function as we have already eliminated this part.)

Adversary Bunf then invokes Aimmu on the public keys and answers each oracle query of Aimmu

by using the corresponding secret keys and by calling the signature oracle whenever the signer was
supposed to compute a signature with the help of ssk. When Aimmu eventually outputs pk∗san, m∗

and σ∗ = (σ∗
fix

, σ∗
full

,adm
∗, pk∗san, cert∗san, gpk∗). Let m∗

fix
be the fixed part of message m∗ with

respect to adm
∗. Then our adversary Bunf returns the message (m∗

fix
,adm

∗, pk∗san, gpk∗) and the
forgery attempt σ∗

fix
.

Note that, if Aimmu succeeds, it must particularly hold that σ∗
fix

is a valid signature for m∗
fix

.
Hence, it suffices to show that the message m∗

fix
has not been submitted by Bunf to the signa-

ture oracle before. If this was the case then it must have happened for a signature request (else
Bunf does not call the external signing oracle) for some signature query i. But then it must be
that pk∗san = pksani and adm

∗ = admi for this query, and thus – as Aimmu succeeds – we have
m∗ /∈ {mod(mi) | mod with admi(mod) = 1}. And thus, by the maximality requirement of fixadm

(see subsection 2.1), it follows that fixadm∗(m∗) �= fixadm,i(mi), i.e., mfix

∗ �= mfix,i and the out-
put message (m∗

fix
,adm

∗, pk∗san, gpk∗) with signature σ∗
fix

thus constitutes a valid forgery for our
adversary Bunf.

Sanitizer-Accountabiliy. Remember that sanitizer-accountability guarantees that for a mali-
cious sanitizer, having access to a signing oracle Sign and to a proof oracle Proof, it is infeasible to
create a fresh triple consisting of a valid message-signature pair (m∗, σ∗) and a sanitizer key pk∗san
such that the proof π, provided by the signer’s Proof algorithm, makes the judge to accuse the
signer.

Assume towards contradiction thatAsan is an efficient attacker and breaks sanitizer-accountability.
We then show how to build an algorithm Btrace against the traceability of the group signature scheme
GS. The input of the algorithm Btrace, initialized in mode choose, is a public key pkuser,0. She first
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generates a key pair (ssk, spk) ← SKGen(1n) of the underlying deterministic signature scheme S
and simulates Asan on input pksig = spk in a black-box way. In the following let q denote Asan’s
maximal number of signature and proof queries to oracles Sign and Proof, and let Q be an initially
empty list in which Btrace stores tuples of the form (pksan, (gsksig, gpksig, gmsk, gpk, certsig, certsan)).
Asan’s output is a triple (pk∗san,m∗, σ∗), and algorithm Btrace tries to guess the first Asan ex-

ecution in which Asan sends the “output” sanitizer public-key pk∗san to her signing oracle or the
Proof-oracle, and also whether or not this happens for a signature or proof query. Here, we refer
to the (q + 1)-st query as the case that the sanitizer’s public key pk∗san has never been sent to the
signing oracle but only appears in the output. More formally, Btrace picks an index k ∈ {1, . . . , q+1}
uniformly at random and a bit p ← {0, 1} such that pksan,k is our “target” key of the sanitizer in
a signature request (p = 0) or a proof request (p = 1). We note that algorithm Btrace will start the
guess stage with the k-th query and stays in mode choose till then.

We now turn to the simulation of the signing oracle Sign and of the proof oracle Proof. We
distinguish between two cases. Firstly, we consider the case where the current number j of the
query to the Sign-oracle equals our guess k and we predict that the target key appears for the first
time in a signature query, i.e., j = k and p = 0. Secondly, we deal with the case where j �= k or
p = 1.

Case 1: j = k and p = 0. Let assume that the adversary Asan queries the signing oracle Sign for
the k-th time on a message m, on a sanitizer’s public key pksan, and on a description of admissibly
modifiable parts adm. In this particular case, Btrace stores ((ssk, spk), Q) in her state st and outputs
(st, pksan). Afterwards, Btrace is initialized on input (st, gpk, cert) in mode guess and has access
to a group signature oracle GSig and to an open oracle Open. Adversary Btrace parses the state
st as ((ssk, spk), Q) and answers the k-th query now as follows: She sets mfix = fixadm(m) for
the algorithm fixadm determined by adm, computes σfix = SSign(ssk, (mfix,adm, pksan, gpk)) and
invokes her external group signature GSig oracle on message (m, pksig). The oracle returns the group
signature σfull. Algorithm Btrace returns the signature σ = (σfix, σfull,adm, pksan, certsan, gpk) to
adversary Asan.

Case 2: j �= k or p = 1. Whenever Asan invokes her signing oracle Sign on a tuple (m, pksan,adm)
for j �= k, then Btrace (either still in mode choose or already in mode guess) computes the answer
as follows.

If j > k and pksan,j = pksan,k then Btrace (working in mode guess) sets mfix = fixadm(m) for
the algorithm fixadm determined by adm, computes σfix = SSign(ssk, (mfix,adm, pksan, gpk)) and
invokes her external group signature oracle on input (certsig, (m, pksig)), which returns the group
signature σfull. Algorithm Btrace returns the signature σ = (σfix, σfull,adm, pksan, certsan, gpk) to
Asan.

Else, if j < k or pksan,j �= pksan,k, then adversary Btrace sets mfix = fixadm(m) for the algorithm
fixadm determined by adm. She checks if pksan,j is stored in Q, and if so, then she recovers the
stored keys from the list Q, denoted by (gsksig, gpksig, gmsk, gpk, certsig, certsan), and computes the
signature

σfix = SSign(ssk, (mfix,adm, pksan, gpk)) and σfull = GSig(gsksig, certsig, (m, pksig), gpk) .

Otherwise, if pksan,j is not stored in Q, then Btrace runs the key generation of the user (gsksig, gpksig)←
UKGen(1n) as well as the group manager algorithm GKGen(1n, (gpksig, pksan)) in order to derive a
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fresh key (gmsk, gpk, certsig, certsan). Algorithm Btrace stores the tuple (pksan,j, (gsksig, gpksig, gmsk,
gpk, certsig, certsan)) in Q and computes the signature

σfix = SSign(ssk, (mfix,adm, pksan, gpk)) and σfull = GSig(gsksig, certsig, (m, pksig), gpk)

using the signing algorithms of the regular and of the group signature scheme and returns σ =
(σfix, σfull,adm, pksan, certsan, gpk).

We now turn to the simulation of the proof oracle Proof. We again distinguish between the
cases that our alleged target key shows up in the j-th query to the Proof oracle and p = 1, and the
other cases.

Case 1: j = k and p = 1. At this point Btrace is still in mode choose. Suppose adversary
Asan has sent a message m and on a signature σ = (σfix, σfull,adm, pksan, certsan, gpk) to the
oracle. Then Btrace outputs (st, pksan) for state st = ((ssk, spk), Q) and changes into mode guess. It
receives (st, gpk, cert) as input and answers the query as follows. She first runs the same verification
checks as the Proof-oracle (comparing the public key data and verifiying the signature’s validity).
Adversary Btrace next invokes her external open oracle Open on the pair (m,σfull) and returns the
answer (i, π).

Case 2: j �= k or p = 0. In order to answer such a signature query, we have to distinguish
between two cases. Firstly, in the case that pksan,j �= pksan,k or j < k, Btrace checks whether pksan,j

is in the list Q. Suppose that pksan is in Q, then let (gsksig, gpksig, gmsk, gpk, certsig, certsan) be
the corresponding keys. Btrace then performs the same steps as the Proof-oracle and returns (i, π).
Otherwise, if pksan,j �= pksan,k and pksan,j is not in Q, then Btrace generates fresh keys:

(gmsk, gpk, certsig, certsan) = GKGen(1n, (gpksig, pksan))

and proceeds as the Proof-oracle to return (i, π). In the case that pksan,j = pksan,k, then Btrace

invokes her external open oracle Open on the pair (m,σfull) and returns the answer (i, π) (if the
correctness checks that Proof would perform also succeed).

Finally, Asan stops, outputting a tuple (pk∗san,m∗, σ∗). σ∗ contains a group signature σ∗
full

over
the message m∗

full
= (m∗, pksig). Btrace returns the pair (m∗

full
, σ∗

full
) as her final output. This

concludes the description of the simulation.

Analysis. For the analysis first observe that Btrace is efficient because Asan runs in polynomial-
time and the additional steps can all be carried out efficiently. Given that we predict the first
appearance of pk∗san correctly, which happens with probability at least 1

2(q+1) for a polynomial q,
Btrace performs a perfect simulation from Asan’s point of view. Let assume that Asan succeeds with
noticeable probability ε(n) and

Whenever Asan succeeds, then she outputs a valid triple (pk∗san,m∗, σ∗) such that for the pair
(m∗, pk∗san) the common freshness condition holds, i.e., Asan has never queried her signing oracle
Sign about this pair. But if the tuple is fresh and Btrace has guessed the right target key of the
sanitizer, then all queries forwarded by Btrace to the external signing oracle have been for this key
pk∗san and for different messages than m∗

full
(else (m∗, pk∗san) would have been a previous request by

Asan). Hence, the tuple (m∗
full

, σ∗
full

, pk∗san) is also a valid output in the sense of the traceability
experiment (Note that pk∗san = gpk∗san).
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It remains to show that if Asan’s output (pk∗san,m∗, σ∗) is a successful attack, then the triple
(m∗

full
, σ∗

full
, pk∗san) satisfies the success conditions for an attacker against traceability. If Asan is

successful, then we have that Verify(m∗, σ∗, pksig, pk
∗
san) = true and Judge(m∗, σ∗, pksig, pk

∗
san, π) =

sig for a genuinely generated proof Π. That means, that GVf(gpk,m∗
full

, σ∗
full

) = true and either
it holds that Open(gmsk,m∗

full
, σfull, gpk) = (i, π) = ⊥ either for (i, π), we have i = 0 and

GJudge(m∗
full

, σfull, 0, π, gpk) = true. Thus, any successful attack on the sanitizer-accountability
yields a successful attack to the traceability of the underlying group signature scheme.

Signer-Accountability. Let Asig successfully break the signer-accountability. We then de-
rive from Asig an attacker Bnonfr against the non-frameability property of the group signature
scheme. Bnonfr gets as input the public key pkuser,1 and has access to a GSig-oracle endowed
with the secret key skuser,1. At first, Bnonfr forwards pkuser,1 to Asig as the sanitizer’s public
key. When Asig issues a query (mi, σi,modi, pksig,i) to her Sanit oracle, Bnonfr executes the same
checks on these inputs, as the sanitizing algorithm would do. If all these checks succeed, Bnonfr

parses σi into its components in order to deduce certsan,i and gpki. She then computes m′
i =

modi(mi) and queries (certsan,i, (m′
i, pksig,i), gpki) to her GSig oracle which returns a signature

σ′
full,i. Bnonfr then obtains σ′

i from σi by replacing σfull,i by σ′
full,i. She returns σ′

i to Asig.
Note that this simulation is perfect from Asig’s point of view. Finally, Asig outputs a quadru-
ple (pk∗sig,m∗, σ∗, π∗). Bnonfr parses σ∗ into its components and derives σ∗

full
, gpk∗ and cert∗san.

We now argue that if Asig is successful, then Bnonfr satisfies the success condition of the non-
frameability game by outputting ((m∗, pk∗sig), σ∗

full
, π∗, gpk∗, cert∗san). First of all, if Asig wins,

then one has Verify(m∗, σ∗, pk∗sig, pksan) = true. Thus, σ∗
full

is a valid group signature over
(m∗, pksig) under group public key gpk∗. Moreover, we have that (pk∗sig,m∗) �= (pksig,i,m

′
i) for

all previous queries (mi, σi,modi, pksig,i) to the Sanit oracle. This implies that during the simula-
tion, Bnonfr does not query the GSig-oracle about message (m∗, pk∗sig). In addition, it holds that
Judge(m∗, σ∗, pk∗sig, pksan, π

∗) outputs San, which implies that GJudge(m∗, σ∗, 1, π∗, gpk∗) outputs
true. Thus, the success probability of Bnonfr equals the success probability of Asig.

(Proof-Restricted) Transparency. Transparency says that it is infeasible for any efficient ad-
versary Atrans to find out whether a signed message was issued by the signer or by the sanitizer.
This should even hold if Atrans accesses a signer- and a sanitizer-oracle as well as a SanSig-oracle
which, depending on a bit b, either always responds with sanitizer outputs or either always re-
turns signer outputs. Additionally, we even allow Atrans to use Proof in order to find out about a
message’s origin (but in the proof-restricted case the adversary is not allowed to query Proof for
outputs of Sanit/Sign to avoid trivial attacks).

We assume towards contradiction that our scheme is not proof-restricted transparent. We
prove that in this case, anonymity of the underlying group signature scheme cannot hold. Let
Atrans be a successful adversary against transparency, from which we build adversary Banon, a
successful attacker against the anonymity of the underlying group signature scheme. Algorithm
Banon simulates Atrans’s oracles as described next.
Banon first generates keys (ssk, spk) for SSign. She gets gpk, skuser0, skuser1, cert0, cert1 as inputs,

which enables her to sign and sanitize messages on behalf of the signer and the sanitizer (possibly
picking fresh group keys for signature queries involving a different sanitizer public key than pkuser,1).
Thus, she can easily answer Atrans’s request to the Sign-oracle as well as to the Sanit-oracle.
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Requests (mk,modk,admk) of Atrans to Sanit/Sign are answered as follows: Banon signs the
message (mfixk,admk, pksan, gpk) via SSign thus producing σfixk. Then, she passes the message
(mk, pksig,k

) to her LoRSign-oracle and gets a group signature σk over it, which is either a signer
signature (user 0) or a sanitizer signature (user 1). Algorithm Banon returns (σfixk, σk,admk,
pksan, certsan, gpk) to Atrans. Similarly, if Atrans sends a request (mi, σfixi, σfulli,admi, pksan,i,
certsan,i, gpki) to oracle Proof, then, if gpk = gpki, algorithm Banon inputs (mi, pksig,i

), σfulli into
Open to receive (di, πi) with di ∈ {0, 1} (or ⊥); she passes (di, πi) to Atrans. For gpk �= gpki she
simply returns ⊥. At the end Atrans outputs a bit a which Banon copies and stops.

For the analysis note that the simulation is perfect in the sense that all simulated oracle replies
are distributed as in the genuine attack. Hence, it remains to show that the restrictions on the
anonymity adversary apply. Note that, if Atrans is successful, she has not queried messages m to
Proof which have been previous outputs of oracle Sanit/Sign. But then it follows immediately that
Banon has neither queried pairs (m, pksig) to Open that have been output by LoRSign.

Thus, if Atrans is successful then so is Banon.

Unlinkability. In this section we show that our sanitizable signature is unlinkable, i.e., given ac-
cess to a signing oracle, a sanitizing oracle and a proof oracle an adversary cannot essentially distin-
guish left or right outputs of an oracle LoRSanit better than by flipping a coin. The oracle LoRSanit,
initialized with a random bit b, takes two pairs (m0,mod0, σ0,adm0) and (m1,mod1, σ1,adm1) such
that adm0 = adm1, both signatures are valid and the modified message mod0(m0) = mod1(m1)
coincide. It outputs Sanit(mb,modb, σb, pksig, sksan).

First note that for each query to LoRSanit we have adm := adm0 = adm1 and since admissible
modifications do not change the fixed part of messages and the modified messages of a query
coincide, it also holds

mfix,0 = fixadm(m0) = fixadm(mod0(m0)) = fixadm(mod1(m1)) = fixadm(m1) = mfix,1.

Hence, we must have that the signature component for the fixed parts must be the same for both
messages. If an adversary would submit distinct signatures σfix0 �= σfix1 for these two parts and
both would be valid, it would straightforwardly contradict the strong unforgeability of the regular
signature scheme. Namely, since the honest signer produces those signatures deterministically it has
only output one of the two signatures so far (collisions among different messages would immediately
imply a forgery and cannot happen with more than negligible probability). Hence, such a query
with identical messages and distinct signatures for the fixed part must thus contain a forgery.

We conclude that the signature parts σfix for the sanitized messages must be identical. Since
we also include the group manager’s public key for both values b ∈ {0, 1} the signature for the
full message is a group signature for the same sanitized message m′

0 = m′
1 under the same group

key and group member key, computed from scratch and thus identically distributed in both cases.
It follows that, unless the adversary creates a forgery against the signer’s signature scheme, the
probability of predicting b is exactly 1

2 . �

5 Variations

In this section we briefly discuss two variations of our generic construction described in Section 4.2.
First we show that we can achieve a more efficient construction when we drop the accountability
property and then we explain how to extend our construction to address multiple sanitizers.
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5.1 Construction Based on Ring Signatures

Our construction based on group signatures utilized the traceability and non-frameability property
of the underlying group signature scheme to ensure accountability of the sanitizable signature
scheme. If one is willing to sacrifice the accountability property, we can replace the group signature
with a ring signature, yet obtaining a significantly more efficient construction.

Ring signatures were introduced in [RST01] and can be seen as a weaker variant of group
signatures. That is, a member of the ring is still able to sign a message on behalf of the ring
without revealing its identity, but in contrast to group signatures the rings do not require any
central group manager and can be formed in an ad-hoc manner. However, due to the absence of
a designated group manager, ring signatures do not enjoy the traceability property, i.e., it is not
possible to revoke the anonymity of a signer for a particular message. Thus, on the one hand ring
signatures comes with less security features, but on the other hand allows greater flexibility.

In the context of our sanitizable signature construction we can observe two benefits from using
rings instead of groups. First, the use of ring signatures eliminates the issuing of certificates. Second,
by limiting rings to only two group members, i.e., requiring a unique ring for each signer/sanitizer
pair, we can apply a 2-user ring signature scheme for which very efficient constructions in the
standard model exist [BKM06]. By the anonymity and unforgeability property of ring signatures,
the proofs of transparency, unlinkability and immutability of our group based sanitizable signature
scheme carries over to the ring based version. Unforgeability, which needs to be shown from scratch
now, follows easily from the unforgeability of both, the regular and ring signature scheme.

5.2 Multiple Sanitizers

The proposed construction only considers the case of a single sanitizer. However, as group signatures
allow groups for more than two member, we can easily extend our construction to become applicable
for multiple sanitizer. To this end, the signer simply uses the group signature for a group that now
contains (possibly) multiple sanitizers. Later, the signer can partially delegate its signing rights
to several sanitizers of the group, by including the public keys of all designated sanitizers into the
signature of the fixed part of the message.

In this setting, it might by likely that neither the number nor the identities of all sanitizers are
known in the key generation phase. (Partially) dynamic group signature schemes [BSZ05] capture
exactly that situation, i.e., the group manager only chooses a group public key in the setup phase
and subsequently an entity (i.e., sanitizer) can join the group by engaging in a join protocol with
the group manager. Dynamic group signature schemes, that meet our requirements are proposed
e.g., in [BSZ05, DP06].
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A Other Cryptographic Primitives

Signatures. A signature scheme S = (SKGen,SSign,SVf) is a triple of efficient algorithms such
that SKGen(1n) returns a key pair (ssk, spk), SSign on input ssk and a message m∗ returns a
signature σ, and SVf on input spk,m, σ returns a bit d. It should hold that for any n ∈ N, any
(ssk, spk)← SKGen(1n), any m ∈ {0, 1}∗, any σ ← SSign(ssk,m) that SVf(spk,m, σ) = 1.

The signature scheme is called unforgeable if for any efficient algorithm B the probability that,
on input spk (generated as part of (ssk, spk)← SKGen(1n)), and with oracle access to SSign(ssk, ·),
algorithm A outputs m∗, σ∗ such that SVf(spk,m∗, σ∗) = 1 and B has never submitted m∗ to the
SSign-oracle, is negligible. It is called strongly unforgeable if the probability remains negligible even
if the adversary only outputs (m∗, σ∗) which has never appeared in the communication with oracle
SSign.

Pseudorandom Functions. A pseudorandom function PRF = (KGenprf,PRF) is a pair of effi-
cient algorithms with PRF(k, ·) : {0, 1}∗ → {0, 1}n for k ← KGenprf(1n) such that for any efficient
algorithm B the following value is negligible:

∣∣∣Prob
[
BPRF(k,·)(1n) = 1

]
− Prob

[BR(1n) = 1
]∣∣∣ ,

where the first probability is taken over k← KGenprf(1n) and B’s internal toin cosses, and the second
probability is over the choice of the random function R : {0, 1}∗ → {0, 1}n and B’s randomness.
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