
Redactable Signatures for Tree-Structured Data:
Definitions and Constructions

Christina Brzuska, Heike Busch, Özgür Dagdelen, Marc Fischlin, Martin Franz,
Stefan Katzenbeisser, Mark Manulis, Cristina Onete, Andreas Peter,

Bertram Poettering, and Dominique Schröder

Technical University of Darmstadt
Center for Advanced Security Research Darmstadt (CASED)

Abstract. Kundu and Bertino (VLDB 2008) recently introduced the
idea of structural signatures for trees which support public redaction of
subtrees (by third-party distributors) while pertaining the integrity of
the remaining parts. An example is given by signed XML documents of
which parts should be sanitized before being published by a distributor
not holding the signing key. Kundu and Bertino also provide a construc-
tion, but fall short of providing formal security definitions and proofs.
Here we revisit their work and give rigorous security models for the
redactable signatures for tree-structured data, relate the notions, and
give a construction that can be proven secure under standard crypto-
graphic assumptions.

1 Introduction

The XML data format is increasingly used to store and organize data. This de-
velopment is most notable in the context of XML databases, which store the
entire content in XML files. In some applications, both the integrity and the au-
thenticity of the stored data must be ensured; this can in principle be achieved by
signing the tree with a conventional cryptographic signature. In some scenarios,
the content of the tree is privacy sensitive and an access control mechanism de-
termines which part of the tree may be accessed by a specific user. The database
management system must therefore be able to prune a tree upon access, so that
those parts of the tree that the user is not allowed to see are removed prior to
access. Still, it should be possible to prove the authenticity of the remaining data
with respect to the original signer, without having to re-sign the document.

This can in principle be resolved by applying sanitizable signatures [2], which
allow to overwrite certain parts of the data with a special null symbol while
retaining the integrity of the data’s signature. Such schemes also guarantee that
the signature does not allow the recovery of deleted parts. Unfortunately, pure
sanitization of data is insufficient to guarantee privacy: the recipient of the data
clearly sees (due to the presence of the null symbol) that some data has been
removed from the tree. This mere fact may already be an unwanted privacy leak.

Consider the following example taken from [6]. An XML file describes the
health records of a single person. The root node’s successors encode visits to

a medical institution, whereas their successors encode results of medical tests
performed at those institutions. Since nodes in XML files are ordered (and the
tree structure may be publicly known), the recipient of the sanitized tree will
be able to associate positions of null symbols in his tree with medical checks
performed by the institution. For example, if a null symbol appears at a tree
position associated with an HIV test, the recipient knows that such a test was
performed, even without knowing its outcome. This information is already a
privacy intrusion. Even worse breaches occur when several null symbols appear
in positions associated with checkups for a certain disease: the recipient then
quite accurately reconstructs the diagnosis.

To avoid such problems, it is therefore necessary to have a sanitizable sig-
nature that hides any performed santizations. Kundu and Bertino [6] proposed
such a signature scheme for trees. However, they did not formally define the
desired security properties; consequently, they were unable to formally prove the
security of their scheme. Indeed, we show in this paper that their construction
does not meet a strong security requirement.

Our Results. In this paper, we revisit the problem and give precise definitions for
the privacy requirements. That is, besides the unforgeability of structural tree
signatures, we also use game-based definitions to describe the notions of privacy
(deleted data cannot be recovered) and transparency (recipients cannot even
determine whether parts have been redacted). Our definitions are furthermore
strong in the sense that they, for instance, allow the adversary to adaptively ask
for multiple signatures for chosen tree structures.

Given our definitions of the desired security properties, we then formally
relate these notions, showing that transparency implies privacy, whereas the
converse is not true. We also show that the scheme of Kundu and Bertino [6]
does not achieve transparency, even if the adversary may only ask for a single
signature.

We then provide a secure construction of a tree signature scheme for ordered
trees supporting redaction of subtrees. Our construction can be implemented
with any EU-CMA signature scheme and provides reasonable efficiency. While
for general trees with n nodes and large out-degree in nodes, it requires O(n2)
signature generations, for trees with bounded out-degree the number of signa-
tures is linear in n. Our construction also permits incremental signing of trees,
i.e., if a leaf is added to a signed tree, the signatures on the remaining tree can
be re-used and the new signature generated in O(n) time. We leave it as an open
problem to find schemes with better efficiency, still meeting our security notions.

Related Work. Deleting parts of a document while maintaining the integrity and
authenticity of the remaining data is an issue that has been approached under
different setup assumptions and goals. There have been various approaches to
designing redactable signatures [9,10,8], where only linearly ordered documents
and the deletion of substrings are considered. Still, they do not require hiding
the amount of data removed from the document, i.e., one is able to derive the
lengths of the removed strings, or where these were removed from. The former

aspect has been addressed in [4] and [3], where the privacy requirement also
includes the length of the hidden portions. A solution furthermore hiding their
positions is sketched in [4] and this idea is also used as a building block in our
construction for tree.

Further works by Ateniese et al. [1] and the extension to sanitizable signatures
due to Brzuska et al. [2], where one can modify authenticated data in a controlled
way, are influential to our security models. However, sanitization in such contexts
requires the input of a secret key, whereas we allow for data to be manipulated by
public means. Moreover, sanitizable signatures usually do not hide the amount
of sanitized data.

Organization. The paper is organized as follows. After introducing the necessary
notation in Section 2 we formally define the functionality of structural signatures
for trees in Section 3. We discuss several formal security notions together with
their relations in Section 4, and propose a provably secure construction in Sec-
tion 5. Finally, we show in Appendix A that the scheme by Kundu and Bertino [6]
does not achieve our notion of security.

2 Preliminaries

Trees. A tree T is a connected graph G = (VT , ET) which consists of a nonempty
finite set VT = {v1, . . . , vr} of vertices, a set ET = {e1, . . . , es} of edges and does
not contain cycles. We simply write V (resp. E) instead of VT (resp. ET) if the
context is clear. Edges are denoted e = (vi, vj) ∈ V × V . A tree Tρ is rooted if
one vertex ρ ∈ V (the root) is distinguished from the others. The path-distance
from node v ∈ V to the root node ρ is called the depth of v. If e = (vi, vj) is
an edge, then the node that is closer to ρ is called the parent of the other node,
while the latter is called a child of the former. If two vertices have the same
parent, then these two vertices are called siblings. A leaf L is a vertex with no
children. The root is the only node without parents. If the children of each vertex
in Tρ are ordered in respect to some linear order relation, then the tree is called
ordered. Since this paper only concerns trees that are both rooted and ordered,
we consider in the following all trees as rooted and ordered. We further assume
that all edges e = (vi, vj) are directed away from the root, i.e. vi is parent of
vj . If two trees T and T ′ are isomorphic (where the isomorphism also maintains
the root and the node order), we write T ' T ′ (or T = T ′). By T\L, we denote
the tree resulted after cutting leaf L from T ; thus the vertex and edge sets of
T\L are VT \{L} and {(vi, vj) ∈ ET | vj 6= L}. Furthermore, we write T ′ ≺ T
for trees T and T ′ if either T ′ ' T\L, or T ′ ≺ (T\L) for some leaf L of T .
Consequently, we denote by T ′ � T the case where T ′ ≺ T or T ′ ' T . Note that
writing T ′ � T means saying that T ′ is a rooted ordered subtree of T with the
same root.

Signature Schemes. A signature scheme DS is a tuple (Kg,Sign,Vf) of efficient al-
gorithms, where the key generation algorithm Kg(1λ) returns a key pair (sk, pk);

the signing algorithm Sign(sk,m) takes as input a signing key sk and a mes-
sage m ∈ {0, 1}λ, and returns a signature σ; and the verification algorithm
Vf(pk,m, σ) takes public key pk, message m and signature σ, and returns 0 or 1.
We assume that the signature scheme is complete, i.e. for any (sk, pk)← Kg(1λ),
any message m ∈ {0, 1}λ, and any σ ← Sign(sk,m), we have: Vf(pk,m, σ) = 1.
Note that it is always possible to sign messages of arbitrary length by applying
a collision-resistant hash function h : {0, 1}∗ 7→ {0, 1}λ to the message prior to
signing. The security of signature schemes (Kg,Sign,Vf) is defined following [5],
as usual. In this model, an adversary may adaptively invoke a signing oracle and
is successful if it manages to compute a signature on a new message.

Definition 1 (Unforgeability). A signature scheme DS is unforgeable under
adaptive chosen message attacks (EU-CMA) if for any efficient algorithm A the
probability that the experiment ForgeDS

A evaluates to 1 is negligible (as a function
of λ), where

Experiment ForgeDS
A (λ)

(sk, pk)← Kg(1λ)
(m∗, σ∗)← ASign(sk,·)(pk)
Return 1 iff Vf(pk,m∗, σ∗) = 1 and A has never queried Sign(sk, ·) on m∗.

The probability is taken over all coin tosses of Kg, Sign, and A.

3 Structural Signatures for Trees

Kundu and Bertino proposed in [6] special signatures for trees, where parts of the
tree can be cut off without invalidating the signature on the rest of the tree and
without having to re-sign using the private key. To make formal security claims,
we first formally define structural signature schemes for trees. These schemes
sign trees and also support one public operation on signed trees: any user may
remove parts of the tree and derive a signature for the pruned tree without access
to the private key. We define such schemes for the operation of cutting single
leaves only; iterating the cutting operation then allows for the removal entire
subtrees.

Definition 2 (Structural Signature Scheme for Trees). A structural sig-
nature scheme for trees strucSig consists of four efficient algorithms (sKg, sSign,
sVf, sCut) such that:

Key Generation. The key generation algorithm sKg(1λ) outputs a private key
sk and a corresponding public key pk:

(sk, pk)← sKg(1λ).

Signing. Algorithm sSign(sk, T) takes as input a secret key sk and a tree T . It
outputs a structural signature σ (with T ′ = T):

(T ′, σ)← sSign(sk, T).

Verification. The verification algorithm sVf outputs a bit d ∈ {0, 1} verifying
that σ is a valid structural signature on a tree T with respect to a public
key pk:

d← sVf(pk, T, σ).
Cutting. The input of the algorithm sCut(pk, T, σ, L) is a public key pk, a tree

T , a signature σ, as well as a leaf L of T . It returns the tree T ′ = T\L and
a signature σ′:

(T ′, σ′)← sCut(pk, T, σ, L).

We say that a structural signature scheme is correct if:

Signing Correctness. For any λ ∈ N, any key pair (sk, pk) ← sKg(1λ), any
tree T , and any (T ′, σ)← sSign(sk, T) we have sVf(pk, T, σ) = 1.

Cutting Correctness. For any λ ∈ N, any key pair (sk, pk) ← sKg(1λ),
any tree T , any σ with sVf(pk, T, σ) = 1, any leaf L of T , and any pair
(T ′, σ′)← sCut(pk, T, σ, L), we require sVf(pk, T ′, σ′) = 1.

Again note that iterative leaf-cutting results in the removal of entire subtrees.
It is obvious that any subtree T ′ of T which can be generated by successive
executions of sCut satisfies T ′ � T , and vice versa.

Note that our cutting algorithm relies only on the public key of the signer.
In the medical example above, this allows the database to generate authentic
tree parts without accessing the private key of the medical personnel.

4 Security of Structural Signature

We define in this section the security properties of structural signature schemes
via unforgeability, privacy, and transparency. Informally, these security require-
ments state:

Unforgeability. No one should be able to compute a valid signature on a
tree without having access to the secret key. That is, even if an outsider
can request signatures on different trees, it remains impossible to forge a
signature. This is analogous to the standard unforgeability requirement for
signature schemes.

Privacy. No one should be able to gain any knowledge about parts cut off the
tree from its structural signature without having access to these parts. Our
definition is similar to the standard indistinguishability notion for encryption
schemes.

Transparency. Nobody should be able to decide whether a signature of a tree
has been created from scratch, or through an sCut. This means that a party
who receives a signed tree cannot tell whether he received a freshly signed
tree or a subtree of a signed tree where some parts have already been cut off.

In the following we will define these notions formally. We note that our definitions
resemble the ones of Brzuska et al. [2] for sanitizable signatures which, in turn,
refine previous notions [1,10] for sanitizable and redactable signatures. Yet, our
notion here takes into account the (tree) structure of documents and allows
public sanitizations.

4.1 Unforgeability

The unforgeability definition for structural signatures is defined analogously to
the standard security requirement for signature schemes. Informally, it states
that no one should be able to compute a valid signature σ on a tree T without
having access to the secret key sk. This condition must hold even if the adversary
can request signatures on q (possibly adaptively chosen) other trees. The forgery
must be non-trivial in the sense that it is not the result of a sequence of cutting
operations on a tree for which the adversary has previously requested a signature
(recall that the cut algorithm operates on public data only).

Definition 3 (Unforgeability). A structural signature scheme strucSig = (sKg,
sSign, sVf, sCut) is unforgeable under adaptively chosen tree attacks if for any
efficient algorithm A the probability that the experiment UnforgeabilitystrucSig

A eval-
uates to 1 is negligible (as a function of λ), where

Experiment UnforgeabilitystrucSig
A (λ)

(pk, sk)← sKg(1λ)
(T, σ)← AsSign(sk,·)(pk)

for i = 1, 2, . . . , q, denote by Ti resp. σi the
queries to, resp. answers from, the oracle sSign

return 1 iff
sVf(pk, T, σ) = 1 and
for all i = 1, 2, . . . , q we have T 6� Ti

The probability is taken over all coin tosses of sKg, sSign, and A.

4.2 Hiding Properties

Preventing leakage of information roughly means that it should be infeasible for
anybody to recover further information on the cut parts of the tree from the
structural signature. Here we propose two different notions, the first definition
being weaker than the second one. Intuitively, the first notion hides the contents
of the cut parts, but not necessarily the cut operations themselves, whereas our
stronger notion also hides whether cutting operations have been performed.

Privacy. A basic requirement in the medical data example is that a party can-
not gain any information on the parts of the tree that were cut off. This is
formalized by demanding that, given a subtree with a signature and two pos-
sible source trees, one cannot decide from which source tree the subtree stems
from. Intuitively, it follows that one cannot derive any information about the
cut parts.

The definition of privacy for structural signatures is based on the indistin-
guishability definition for encryption schemes: an adversary A can choose two
pairs (T0, L0), (T1, L1) of trees and leaves such that T0\L0 ' T1\L1, i.e., re-
moval of the leaves results in isomorphic trees. Furthermore, A has access to a
left-or-right oracle, which, given those two trees, consistently either returns a

cut signature for the left pair (b = 0) or for the right pair (b = 1). The scheme
offers privacy, if no adversary can decide whether the oracle returns the left or
the right cut tree.

Definition 4 (Privacy). A structural signature scheme strucSig = (sKg, sSign,
sVf, sCut) is private if for any efficient algorithm A the probability that the ex-
periment LeakPrivstrucSig

A evaluates to 1 is negligibly close to 1/2 (as a function
of λ), where

Experiment LeakPrivstrucSig
A (λ)

(sk, pk)← sKg(1λ)
b← {0, 1}
d← AsSign(sk,·),SignCut(·,·,·,·,sk,b)(pk)
return 1 if d = b.

SignCut(Tj,0, Lj,0, Tj,1, Lj,1, sk, b)
if Tj,0\Lj,0 6' Tj,1\Lj,1 abort
(Tj,b, σj,b)← sSign(sk, Tj,b)
return (T ′b, σ

′
b)← sCut(pk, Tj,b, σj,b, Lj,b)

The probability is taken over all coin tosses of b, sKg, sSign,SignCut and A. (Note
that for trees the graph isomorphism problem can be decided in polynomial time.)

Note that, similar to the case of encryption, a hybrid argument shows that
allowing the adversary to perform multiple cutting operations per oracle call is
equivalent to the case in which only a single cutting operation is performed.

Transparency. The above notion of privacy does not prevent the following infor-
mation leakage in the medical example: a party may learn that data about the
patient’s psychological treatment has been deleted from his subtree, although
he cannot deduce the actual data. To capture a stronger notion of leakage pre-
vention, we present a definition which not only protects the structure of the
tree, but also the operations that may have been performed on it. Intuitively,
an adversary should be unable to decide whether he is given a signed tree whose
signature has been derived by an sCut operation, or a freshly signed tree. Let
(T ′, σT ′)← sCut(pk, T, σ, L) be a signed tree derived from the signed tree (T, σ)
by application of the leaf-cutting algorithm, and let (T ′, σS) ← sSign(sk, T ′) be
a signature of T ′, generated from scratch (without doing any leaf-cutting). The
task for the adversary is to distinguish both cases.

Definition 5 (Transparency). A structural signature scheme strucSig = (sKg,
sSign, sVf, sCut) is transparent if for any efficient algorithm A the probability
that the experiment LeakTransstrucSig

A evaluates to 1 is negligibly close to 1/2 (as
a function of λ), where

Experiment LeakTransstrucSig
A (λ)

(sk, pk)← sKg(1λ)
b← {0, 1}
d← AsSign(sk,·),SignOrCut(·,·,sk,b)(pk)

return 1 if d = b.

SignOrCut(T, L, sk, b)
if b = 0 :

(T, σ)← sSign(sk, T)
(T ′, σ′)← sCut(pk, T, σ, L)

if b = 1 :
T ′ = T\L
(T ′, σ′) = sSign(sk, T ′)

return (T ′, σ′)

The probability is taken over all coin tosses of b, sKg, sSign,SignOrCut, and A.

As for privacy, a hybrid argument again shows that this notion is robust in
the sense that it already implies security against adversaries that pass several
cut operations in a single oracle call instead of only one.

Note further that it is easy to see that the construction of Kundu and
Bertino [6] does not satisfy this strong definition of transparency; for an analysis
see Appendix A.

As mentioned, transparency provides strong hiding guarantees and is desir-
able in many cases. However, for various application examples privacy is in fact
sufficient, namely in all cases, where the receiver already expects partly sani-
tized documents. This is the case for e.g. all anonymization procedures where,
a party’s data (patient’s name) is removed. Therefore, privacy is a sufficient re-
quirement for some applications and by using a private, non-transparent scheme,
one thereby gains in efficiency. Thus, both security requirements deserve a formal
treatment.

4.3 Relationships of the Security Requirements

In this section we show that transparency is strictly stronger than privacy. We
first prove formally that transparency implies privacy. Then we separate the
notions by turning a structural signature scheme that offers privacy into one
which still has this property, but which violates transparency.

It is clear that unforgeability does not follow from privacy (and thus not from
transparency). Take, for example, the trivial scheme which outputs constants as
signatures, say, σ = 0; the cut algorithm for this scheme prunes the three and
also outputs σ = 0. This scheme is clearly transparent, but easily forgeable. Vice
versa, it holds that unforgeability implies neither privacy, nor transparency (e.g.,
take an unforgeable scheme and modify the cut algorithm to append the original
tree to the output signature).

Proposition 1 (Transparency⇒Privacy). Any transparent structural signa-
ture scheme is also private.

Proof. Assume towards contradiction that there exists a transparent structural
signature scheme strucSig which is not private, i.e., there exists an efficient ad-
versary A that breaks the privacy of strucSig with non-negligible probability
1/2 + 1/poly(λ) for some polynomial poly(λ). We derive a contradiction showing
how to construct a successful algorithm B against transparency. The input of B
is a public key pk. It runs a black-box simulation of A on input pk and picks a
random bit b∗. Whenever A invokes its signing oracle strucSig on a tree T and
some leaf L, then B answers this query with its sSign oracle. For every query
(T0, L0), (T1, L1) that A sends to its SignCut oracle, B forwards (Tb∗ , Lb∗) to
its external SignOrCut oracle and sends the answer to A. Eventually, A stops
outputting a decision bit d. Algorithm B outputs a∗ = 0 iff d = b∗.

For the analysis first observe that B is efficient because A runs in polynomial
time and handling all queries can also be done efficiently. We now look at the
probability of B being successful:

– Given that b = 0, then the SignOrCut oracle always signs and applies the
cutting algorithm afterwards. Thus, the simulation from A’s point of view
is identical to the attack against privacy (with random bit b∗ = 0). Hence,

Prob[a∗ = 0 | b = 0] = Prob[A = b∗ | b = 0] ≥ 1/2 + 1/poly(λ).

In other words, the probability of success is lower-bounded by A’s success
probability.

– Given on the other hand b = 1, then SignOrCut signs the modified tree
T ′ directly. Bit b∗ is information theoretically hidden from A. This follows
because the privacy experiment demands that the modified trees have to be
identical. Thus, the input of the signing algorithm is independent of b∗:

Prob[a∗ = 1 | b = 1] =
1
2
.

The overall success probability of B is now at least

Prob[B = b] = Prob[b = 0] · Prob[B = 0 | b = 0]
+ Prob[b = 1] · Prob[B = 1 | b = 1]

≥ 1
2
·
(

1
2

+
1

poly(λ)

)
+

1
2
· 1

2
=

1
2

+
1

2 · poly(λ)
,

which is non-negligibly larger than 1/2. ut

The following proposition separates both notions by showing that not all
private structural signature schemes are also transparent:

Proposition 2 (Privacy6⇒Transparency). Suppose that there exists a pri-
vate structural signature scheme. Then there exists a private scheme which is
not transparent.

Proof. To prove this separation, we modify a structural signature scheme that
provides privacy in such a way that it does leak the information what kind
of operation has been performed. To do so, we append a bit to the signature
indicating whether a sign (b = 0) or cut (b = 1) operation has been performed.

More precisely, let strucSig = (sKg, sSign, sVf, sCut) be a secure structural
signature scheme that preserves privacy. We then define the scheme strucSig′ =
(sKg′, sSign′, sVf ′, sCut′) as follows:

sKg′(1λ)
return sKg(1λ)

sSign′(sk, T)
return sSign(sk, T)‖1

sVf ′(pk, T, σ)
parses σ = (σ′‖b)

(with b ∈ {0, 1})
return sVf(pk, T, σ′)

sCut′(pk, T, σ, L)
parses σ = (σ′‖b)

(with b ∈ {0, 1})
return sCut(pk, T, σ′, L)‖0

It follows easily from the construction that strucSig′ is efficient and preserves
privacy. The scheme, however, is clearly not transparent, because the last bit of
a signature directly indicates which operation has been performed. The algorithm
A breaking transparency queries its SignOrCut oracle on an arbitrary tree and
some leaf of the tree. It then parses σ = σ′‖b and outputs d = b. Obviously, this
attacker breaks transparency with probability 1. ut

5 Constructing Secure Structural Signatures

In this section, we present our structural signature scheme for ordered trees
which is unforgeable, transparent and private.

5.1 Construction

The idea of our construction is as follows (see Figure 1): We use an ordinary EU-
CMA signature scheme to sign all edges in the tree. In order to avoid match-and-
mix attacks between several trees, we endow each vertex with a fresh random
number (A) and sign for each edge the contents (which could be, in the above-
mentioned XML scenario, the XML tags and attributes) of its adjacent vertices
(B) together with the associated random numbers.

A

v2�r2 v3�r3 v4�r4

v1�r1

v5�r5

B

v2�r2 v3�r3 v4�r4

v1�r1

v5�r5

e1
e2

e4

e3

C

v2�r2 v3�r3 v4�r4

v1�r1

v5�r5

p2,4

p2,3 p3,4

D E F

v2�r2 v3�r3 v4�r4

v1�r1

v5�r5

message sig
e1 = v1�r1�v2�r2 σe1

e2 = v1�r1�v3�r3 σe2

e3 = v4�r4�v5�r5 σe3

e4 = v1�r1�v4�r4 σe4

p2,3 = v2�r2�v3�r3 σp2,3

p3,4 = v3�r3�v4�r4 σp3,4

p2,4 = v2�r2�v4�r4 σp2,4

ρ = v1�r1 σρ

σ = {σe1 , σe2 , σe3 , σe4 , σp2,3 ,
σp3,4 , σp2,4 , σρ, r1, r2, r3, r4, r5}

message sig
e1 = v1�r1�v2�r2 σe1

e2 = v1�r1�v3�r3 σe2

e3 = v4�r4�v5�r5 σe3

e4 = v1�r1�v4�r4 σe4

p2,3 = v2�r2�v3�r3 σp2,3

p3,4 = v3�r3�v4�r4 σp3,4

p2,4 = v2�r2�v4�r4 σp2,4

ρ = v1�r1 σρ

σ = {σe1 ,σe2 , σe3 , σe4 ,σp2,3 ,
σp3,4 ,σp2,4 ,σρ, r1,r2, r3, r4, r5}

1

Fig. 1. This figure demonstrates a simple application of the algorithms: (A) random-
izing vertices, (B) signing edges, (C) signing order of siblings, (D) signing the root,
(E) assembling the final signature, and (F) computing the signature when cutting the
leftmost leaf. A more detailed description of the steps is given in Section 5.1.

As we consider ordered trees, we also have to protect the order of siblings
of a node; we do this by signing elements of the linear order relation between
siblings of a node (C). Finally, the root node and its random value need to be
signed (D), as trees containing only a single node do not have any edges. The
security of the presented construction relies only on the existence of a standard
signature scheme, and no further cryptographic assumptions are required.

We start with defining some further notation. We use the notation v inter-
changeably to denote a node and its content. Let P denote the set of all parent
nodes having more than one child and let VP = (vP,1, . . . , vP,q) be the ordered
sequence of child nodes of a node P ∈ P. We write RP ⊆ VP ×VP for the linear
order relation on VP , i.e., (vP,i, vP,j) ∈ RP if and only if i < j. We often denote
the elements of RP as J := (vP,J1 , vP,J2). Similarly, we write rP,J1 and rP,J2

to denote the random values we will assign to vP,J1 and vP,J2 . Furthermore, we
write rρ for the randomness associated to the root node.

Let (Kg,Sign,Vf) be a signature scheme. We construct a structural signature
scheme strucSig = (sKg, sSign, sVf, sCut) as follows:

Key Generation. On input the security parameter 1λ, sKg runs the signature
scheme’s key generation algorithm and outputs (sk, pk)← Kg(1λ).

Signing. The signing algorithm works
as follows:

sSign(sk, T) :
// T is given as graph G = (V,E)
For each vertex v ∈ V :

rv ← {0, 1}λ
S := ""

// sign all edges
perform a post-order traversal of the tree:
for each edge e := (v, w) ∈ E do

me = v‖rv‖w‖rw
σe ← Sign(sk, 0‖me)
S := σe‖S

// sign the order of child nodes of a vertex
perform a post-order traversal of the tree:
for each vertex P ∈ P and all J ∈ RP do

mP,J := vP,J1‖rP,J1‖vP,J2‖rP,J2

σP,J ← Sign(sk, 1‖mP,J)
S := σP,J‖S

// sign the root node
σρ ← Sign(sk, 2‖ρ‖rρ)

return (T, σρ‖S‖rv1‖ . . . ‖rv|V |)

Verification. The verification algo-
rithm works as follows:

sVf(pk, T, σ) :
parse σ as σ = σρ‖S‖rv1‖ . . . ‖rv|V |
// check signature on the root node
if Vf(pk, 2‖ρ‖rρ, σρ) = 0 return 0
// check signatures over the order of child nodes
// VP of a parent node P
perform a post-order traversal of the tree:
for each vertex P ∈ P in reverse order do

for all J ∈ RP
parse S as σP,J‖S′
mP,J := vP,J1‖rP,J1‖vP,J2‖rP,J2

if Vf(pk, 1‖mP,J , σP,J) = 0 return 0
S = S′

// check signature for each edge e ∈ E
perform a post-order traversal of the tree:
for each edge e = (v, w) ∈ T in reverse order do

parse S as σe‖S′
me = v‖rv‖w‖rw
if Vf(pk, 0‖me, σe) = 0 return 0
S = S′

if S = "" return 1 else return 0

Cutting. The cutting algorithm takes a tree T and its valid structural signature
σT as well as a leaf node L ∈ V as input. sCut outputs T ′ := T \ L as well
as a redacted signature σ′T , which is constructed from σT by removing the
signatures σe for e = (P,L) ∈ E, σP,J for J ∈ RP with J = (v, L) or
J = (L, v) as well as σρ, if L = ρ. In addition, rL is removed from the
signature.

It is obvious that the construction provides both signing and cutting correctness,
as defined in Section 3.

Efficiency. The complexity of our structural signature scheme is linear in the
number of nodes and quadratic in the number of siblings per node. For binary
trees, the scheme remains linear in the number of nodes |V |, where exactly
3
2 (|V | − 1) + 1 signature operations are needed; for a tree with a bounded out-
degree it also remains linear. We note that the construction in [6] is linear in the
number of nodes as well, but is not provably transparent (see Appendix A).

We remark that the idea of signing all pairs of siblings to achieve transparency
has been already sketched in [4] for linear ordered documents. There, the authors
also present a scheme for linear ordered documents with a linear number of
signature generations, denoted RSS, which is based on redactable signatures
for (non-ordered) sets. If this underlying scheme for sets provides transparency,
then so does RSS, and we can then use RSS in our construction to achieve a
transparent scheme with improved efficiency.1

5.2 Proof of Security

We show in this section that our construction is unforgeable, transparent, and
private.

Theorem 1. The structural signature scheme strucSig = (sKg, sSign, sVf, sCut)
defined above is unforgeable, transparent, and private.

We prove this theorem via the following propositions.

Proposition 3. If (Kg,Sign,Vf) is an unforgeable signature scheme, then the
above construction is an unforgeable structural signature scheme.

Proof. Let A be a successful adversary against unforgeability of structural sig-
natures. Then, we build a successful adversary B breaking EU-CMA of the un-
derlying signature scheme. The simulation works as follows. When A queries a
tree T to its oracle sSign(sk, ·), then B draws distinct, but random numbers rv
for each vertex v ∈ V , sends the queries 0‖me, 1‖mP,J , 2‖ρ‖rρ for e ∈ E, P ∈ P
and J ∈ RP to its signing oracle Sign(sk, ·), retrieves all signatures, combines
them as in the signing algorithm, and returns the tree signature to B. In the end,
A returns (T, σ). We show that if this is a forgery, then a forgery for the under-
lying signature scheme has occurred. Furthermore, this forgery can be computed
efficiently by an extraction algorithm. B returns the output of the subsequently
defined algorithm Extract to the game. The remaining part of the proof will show
that if A is successful, then so is B.

The crucial idea is to prove that if (T, σ) is a successful forgery, then T
contains one of the following elements: a root ρ that was not a root of any
previously asked Ti; a signature over an edge me not contained in any query tree
1 The authors in [4] also claim a version of a more efficient scheme, called SRSS, to

be transparent, but we were unable to verify this claim.

Ti; or a signature over a siblings’ order relation mP,L not contained in any Ti. In
the following we provide an extraction algorithm, which extracts such a forgery
from the tree signature. We will show afterwards that if (T, σ) is a valid forgery
of a tree signature, then one of the three cases must occur and the algorithm
successfully outputs a forgery of the underlying signature scheme.

In the algorithm we use the following notation: For d ∈ N+, we denote by Td
the tree obtained from T by removing all nodes of depth larger than d; let Vd,T
be the set of vertices of depth d in tree T and Ed,T be the set of edges, such
that one node is at depth d and the other, at depth d− 1. For a node v, denote
the edge to its parent node by ev. Denote by VTP the ordered sequence of child
nodes of a single parent node P in tree T , and write RTP for its linear order.

Extraction. The extraction algorithm Extract on input (pk, (T, σ), (T1, σ1), ...,
(Tn, σn)) works as follows:

if 0← sVf(pk, (T, σ)), return failure
else if ∀i ρT 6= ρTi

, return (2‖ρ‖rρ, σρ)
else if ρT = ρTi , then I := i

for d from 1 to depth of TI + 1 do
if Ed,T 6⊆ Ed,TI

find e ∈ Ed,T \ Ed,TI
and return (0‖me, σe)

else if Ed,T ⊆ Ed,TI

if ∃P ∈ Vd−1,T such that RTP 6⊆ RTI

P

find P ∈ Vd−1,T and J ∈ RTP \ RTI

P

return (1‖mP,J , σP,J)
return failure

Lemma 1. On inputs pk, (T1, σ1), ..., (Tn, σn) and a valid forgery (T, σ) of a tree
signature, Extract returns a valid forgery against EU-CMA security of (Kg,Sign,Vf).

A proof of the lemma can be found in Appendix B. This proves the proposition.
ut

Proposition 4. The structural signature scheme as defined above is transpar-
ent.

Proof. Transparency follows from a simple investigation of distributions: As on
identical inputs, the distribution of the output of SignOrCut with b = 0 is iden-
tical to the distribution of the outputs of SignOrCut with b = 1, transparency
follows. ut

Note that transparency even holds for unbounded adversaries such that the
redacted data remains confidential information-theoretically.

The following corollary follows directly from Propositions 1 and 4.

Corollary 1. The structural signature scheme described above is private.

5.3 Dynamic Update of Signed Trees

Our structural signature scheme for trees allows for the easy addition of new
leaf nodes (and consequently new subtrees) by the signer. This update can be
performed efficiently in the sense that the signer does not need to refresh any of
the existing signatures (on edges and sibling order) that constitute the structural
signature. The signer only has to sign new edges and new sibling order relation-
ships resulting from the inclusion of some leaf node (or subtree) into the original
tree, and update the structural signature with these signatures. In the following
we provide a pseudo-code of the signature update algorithm that adds a new leaf
L into some existing tree-signature pair (T, σT) and updates the signature. Note
that this algorithm can be used to iteratively update T and σT with subtrees
containing more than one leaf.

sSignUpd(sk, T, σT , P, vP , L) :
// T is given as graph G = (V,E), σT is the signature of T , P is a node
// in T , vP is either a child node of P or ⊥, L is a new leaf node that
// should be inserted in T as a sibling node following vP or as the new
// first child node of P if vP = ⊥
parse σT as σρ‖Ss‖Se‖rv1‖ . . . ‖rv|V |
// here Ss contains concatenated signatures on the order of siblings in T
// and Se contains concatenated signatures of edges in T
// for every vertex vi, rvi

denotes the randomness for that vertex
update T := (V ∪ {L}, E ∪ {(P,L)}) with L
rL ← {0, 1}λ
// sign the order of all siblings of new leaf node L and add them to Ss
update RP to R∗P using new relationships {(L, vP,i)}i and {(L, vP,j)}j
for all J ∈ R∗P \ RP do

mP,J := vP,J1‖rP,J1‖vP,J2‖rP,J2

σP,J ← Sign(sk, 1‖mP,J)
insert σP,J into Ss preserving the post-order of the latter

// sign the edge (P,L)
me = P‖rP ‖L‖rL
σe ← Sign(sk, 0‖me)
insert σe into Se preserving the post-order of the latter
insert rL into sequence of random numbers preserving their post-order
denote the re-ordered random values by r′vi

for i ∈ {1, . . . |V |+ 1}
return (T, σρ‖Ss‖Se‖r′v1‖ . . . ‖r′v|V |+1

)

We note that the above algorithm preserves the hiding properties (privacy
and transparency) of the input tree-signature pairs (T, σT). Indeed, each edge
and each linear order relation have their own signatures. Similarly to the sCut al-
gorithm, which removes irrelevant signatures from the original set, the sSignUpd
updates the set with new signatures. An adversary is thus unable to distinguish
whether some σT is output by a single execution of sSign or of several consecutive
executions of sSignUpd.

Such dynamic updates of signed trees are a very valuable feature of our
scheme since in the envisioned applications, such as XML records with medical
data, the documents are frequently updated with new diagnoses or treatment
procedures.

Acknowledgments

We thank Moti Yung and the anonymous reviewers for valuable comments. Marc
Fischlin and Dominique Schröder are supported by the Emmy Noether Program
Fi 940/2-1 of the German Research Foundation (DFG). This work was supported
by CASED (http://www.cased.de).

References

1. Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik. Saniti-
zable Signatures. ESORICS, Volume 3679 of Lecture Notes in Computer Science,
pages 159–177. Springer, 2005.

2. Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Marcus
Page, Jakob Schelbert, Dominique Schröder, and Florian Volk. Security of San-
itizable Signatures Revisited. Public Key Cryptography, Volume 5443 of Lecture
Notes in Computer Science, pages 317–336. Springer, 2009.

3. Elisa Bertino and A. Kundu. A New Model for Secure Dissemination of XML
Content. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 38:292–301, 05 2008.

4. Ee-Chien Chang, Chee Liang Lim, and Jia Xu. Short Redactable Signatures
Using Random Trees. Cryptology ePrint Archive, Report 2009/025, 2009.
http://eprint.iacr.org/. A preliminary version has appeared at CT-RSA 2009, Lec-
ture Notes in Computer Science, Springer-Verlag.

5. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput., 17(2):281–
308, 1988.

6. Ashish Kundu and Elisa Bertino. Structural signatures for tree data structures.
Proceedings of the VLDB Endowment, 1(1):138–150, 2008.

7. Ashish Kundu and Elisa Bertino. Leakage-Free Integrity Assurance for Tree Data
Structures. Technical Report 2009-1, CERIAS, 2009.

8. Kunihiko Miyazaki, Goichiro Hanaoka, and Hideki Imai. Invisibly Sanitizable Dig-
ital Signature Scheme. IEICE Transactions, 91-A(1):392–402, 2008.

9. K. Miyazaki, S. Susaki, M. Iwamura, T. Matsumoto, R. Sasaki, and H. Yoshiura.
Digital documents sanitizing problem. Technical Report ISEC2003-20. IEICE, 2003.

10. Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content Extraction Signa-
tures. ICISC, Volume 2288 of Lecture Notes in Computer Science, pages 285–304.
Springer, 2001.

A Randomized Traversal Numbers

Kundu and Bertino [6] use traversal numbers to assign unique numbers to nodes;
subsequently, all edges (including the content of adjacent nodes and their unique

numbers) are signed. Consider for example a binary tree with a root v0 and left
child vl and right child vr; we will denote the unique numbers assigned to the
vertices as r0, rl, rr. Traversing the tree in pre-order we obtain the sequence
of associated numbers (r0, rl, rr) = (1, 2, 3). Similarly, if we perform a post-
order traversal, we obtain (r0, rl, rr) = (3, 1, 2). Given both pre- and post-order
traversal numbers one can reconstruct the tree.

As noted in [6], since the post-order traversal number 2 of the right child
vr in the example above reveals that this node had a sibling, even after vl has
been pruned, such numbers inhibit transparency. Therefore, [6] introduce random
traversal numbers which are basically order-preserving random numbers. These
numbers remain unchanged during the document’s life time. In the full version [7]
of the paper the authors outline three implementations of such random traversal
numbers:

– Sorted random numbers: Generate sufficiently random numbers, sort them,
and assign them to nodes.

– Order-preserving encryption: Assign ordered random numbers to the nodes
and apply order-preserving encryption.2

– Addition of random numbers: iteratively assign numbers to nodes by taking
the previous traversal number and adding a random offset.

We discuss next that none of the methods above yields a transparent solution.3

Consider again our simple example of a tree with root, left child and right child.
Suppose for the moment that the scheme uses post-order traversal. From an
abstract point of view, this traversals assign random numbers (rl, rr, r0) ← R
to the nodes vl, vr, v0 (visited in this order) according to some distribution R.
This distribution is balanced in the first argument for the examples above, i.e.,
letting µ = E[rl] be the expected random number assigned to vl (and assuming
for sufficiently large random numbers simply that Prob[rl = µ] = 0), we have
Prob[rl ≤ µ] = Prob[rl ≥ µ] = 1

2 . Furthermore, we have Prob[rr ≥ µ] ≥ 3
4 in

the examples above, since rr is the largest among two random traversal numbers
and is thus only smaller than µ if both rl and rr are below µ.

We can now break transparency for the simple three-node tree as follows.
In the experiment, we either get a structural signature for the tree containing
only the nodes v0 and vr or a signature for the whole tree, but where vl has
been cut. To solve the challenge, we check the randomized post-order traversal
number of the only child vr and output 0 if rr ≥ µ, and 1 otherwise. We remark
that, following Kerckhoff’s principle, the expectation µ should be assumed to be
known by the adversary (since µ can be derived from the signing algorithm).

As for the analysis note that, if the signer creates a signature by cutting a
previously generated signature for the full tree, then rr is larger than µ with
probability 3

4 . If, on the other hand, the pruned tree is signed from scratch,

2 The description of this step is rather sketchy but all possible interpretations seem
to suffer from the same problems discussed below.

3 Note that transparency, although not defined rigorously, is mentioned as a desired
security property in [6].

then rr is distributed as rv in the original tree and thus Prob[rr ≥ µ] = 1
2 . It

follows that we predict the secret choice b with probability 5
8 , which contradicts

Definition 5. Note that the attack even works on a very simple tree and requires
only one tree signature.

Note further that [6] also discusses other uniquely determining traversal com-
binations, like in-order traversal for binary trees together with post-order traver-
sal; the aforementioned attack applies in a similar fashion.

B Proof of Lemma 1

Essentially, the proof is an induction over the depth of the tree, i.e. we show at
each level d of the tree, that either we already found a forgery against EU-CMA
security of (Kg,Sign,Vf), or there are still nodes at level d + 1 in T , i.e. there
is at least one node at depth d having at least one child node. The finiteness of
the tree will assure that at some point, we find a forgery.

Within the proof, we use the following statement in an essential way: Let
T ′ be a connected subgraph of T containing the distinguished vertex ρ and
respecting the sibling order. By a simple induction proof over the number of
nodes |V \ V ′|, one can show that starting with T , via successive leaf cutting
operations, one can obtain T ′. This entails that any such connected subgraph of
any of the Ti would not be a valid forgery, as T � Ti. Therefore, in the following,
we may use � and “subtree of” interchangeably.

We assume that (T, σ) is a valid forgery with respect to queries (Ti, ..., Tn) to
sSign, and we show that Extract extracts a valid forgery against the underlying
signature scheme. The proof follows the structure of the Extract algorithm:

First of all, (T, σ) is a valid forgery which entails that it is validly signed.
Therefore, 0← sVf(pk, (T, σ)) is impossible, and Extract does not return failure
in the first execution step.

If for all i = 1, ..., n, ρT 6= ρTi
, then (2‖ρ‖rρ, σρ) is a valid forgery against

the underlying signature scheme, because Sign(sk, ·) queries beginning with 2 are
only asked for root nodes, as queries for edges and siblings order relation do not
start with 2.

If for some i = 1, ..., n, ρT = ρTi
and rρT

= rρTi
, we fix I := i as to adapt the

Extract algorithm notation. Before getting to the induction proof, we introduce
some helpful notation first: For d ∈ N, let T d denote T cut at depth d, i.e. all
nodes having distance strictly greater than d from the root node ρT are cut. We
show by induction on the depth of the tree T that the following statement is
true up to negligible probability: At each level d ≥ 0, either

(i) we already found a forgery against EU-CMA security of (Kg,Sign,Vf), or
(ii) T d is a subtree of TI .

Note that the latter always entails that the depth of T is strictly greater than d.

Base case. As ρT = ρTI
, T 0 is a subtree of TI . Therefore, the statement is

clearly true for d = 0.

Induction hypothesis. We assume that at level d−1, 1 ≤ d, we already found
a forgery against EU-CMA security of (Kg,Sign,Vf) or T d−1 is a subtree of TI .
Induction step. If we already found a forgery at stage d − 1 or lower, the
statement is trivially true for d. It is thus sufficient to treat the case, where
there is no forgery until level d− 1 and T d−1 is a subtree of TI . As this entails
that there is at least one node in T at level d− 1 having at least one child, there
is at least one node in T at level d. We now consider all of these nodes:

1. New edge. Assume there is an edge e ∈ Ed,T \ Ed,TI
, which we denote by

(v, w) = e. We claim that (0‖v‖rv‖w‖rw, σ) was no output of Sign(sk, ·): First
of all, only queries for edges need to be considered, as only those start by 0.
Furthermore, only queries for edges in TI are relevant, as by construction,
rw and rv are unique and do not appear in other trees except for negligible
probability. Therefore 0‖v‖rv‖w‖rw can only be an edge query for an edge
in TI . Furthermore, rv and rw are unique within TI . If 0‖v‖rv‖w‖rw had
been queried to Sign(sk, ·), this would mean that e is contained in ETI

and
because of the randomness’ uniqueness within TI , it follows e ∈ Ed,TI

, a
contradiction. Thus, (0‖v‖rv‖w‖rw, σ) is a valid forgery.

2. Wrong order of siblings. Now, assume that there is no forgery until level
d − 1 and T d−1 is a subtree of TI and furthermore, Ed,T ⊆ Ed,TI

. For the
sake of contradiction, assume that there is a P ∈ Vd−1,T and a J ∈ RTP \RTI

P .
We claim that 1‖vP,J1‖rP,J1‖vP,J2‖rP,J2 had not been asked to Sign(sk, ·):
first of all, as in the previous case, only signatures related to TI need to be
considered up to negligible probability. And within TI , only order relation
signatures may have caused such a query to Sign(sk, ·). Furthermore, by
uniqueness of the random values rP,J1 and rP,J2 within TI , such strings
may only be signed as order relation strings within P ∈ Vd−1,T , whereas
J ∈ RTP \ RTI

P was assumed. Thus, (1‖vP,J1‖rP,J1‖vP,J2‖rP,J2 , σP,J) is a
valid forgery against the underlying signature scheme.

3. If T d−1 is a subtree of TI and if at stage d, we neither found a forgery in
the two previous cases, then T d is a subtree of TI , as all nodes added while
getting from T d−1 to T d do exist in the same position and same order in TI .
For a more formal argument, T d−1 being a subtree of TI entails that there is
an embedding from T d−1 into TI , and the subset relations Ed,T ⊆ Ed,TI

and
RTP ⊆ RTI

P define a unique way to extend this embedding to an embedding
from T d into TI .

Finally, we argue that at least at one stage d, we find a valid forgery against
the underlying signature scheme, if (T, σ) is a valid forgery. T d cannot be a
subtree of TI at all levels d, as the trees are finite and thus, at some point,
T = Td. Thus, T d � TI would contradict the assumption that T is a valid
forgery. Thus, we are sure to find a forgery at some level, which concludes the
proof of the lemma.

