
On the Security of OAEP

Alexandra Boldyreva1 and Marc Fischlin2

1College of Computing, Georgia Institute of Technology, USA

sasha@gatech.edu www.cc.gatech.edu/˜aboldyre

2Darmstadt University of Technology, Germany

marc.fischlin@gmail.com www.fischlin.de

Abstract

Currently, the best and only evidence of the security of the OAEP encryption scheme is a proof
in the contentious random oracle model. Here we give further arguments in support of the security of
OAEP. We first show that partial instantiations, where one of the two random oracles used in OAEP is
instantiated by a function family, can be provably secure (still in the random oracle model). For various
security statements about OAEP we specify sufficient conditions for the instantiating function families
that, in some cases, are realizable through standard cryptographic primitives and, in other cases, may
currently not be known to be achievable but appear moderate and plausible. Furthermore, we give the
first non-trivial security result about fully instantiated OAEP in the standard model, where both oracles
are instantiated simultaneously. Namely, we show that instantiating both random oracles in OAEP by
modest functions implies non-malleability under chosen plaintext attacks for random messages. We also
discuss the implications, especially of the full instantiation result, to the usage of OAEP for secure hybird
encryption (as required in SSL/TLS, for example).

Keywords: OAEP, provable security, public-key encryption, random oracle model.

1 Introduction

OAEP is one of the most known and widely deployed asymmetric encryption schemes. It was designed by
Bellare and Rogaway [5] as a scheme based on a trapdoor permutation such as RSA. OAEP is standardized
in RSA’s PKCS #1 v2.1 and is part of the ANSI X9.44, IEEE P1363, ISO 18033-2 and SET standards. The
encryption algorithm of OAEPG,H [F] takes a public key f , which is an instance of a trapdoor permutation
family F , and a message M , picks r at random and computes the ciphertext C = f(s||t) for s = G(r)⊕M ||0k1

and t = H(s)⊕ r, where G and H are some hash functions. Despite its importance the only security results
for OAEP are a proof of IND-CPA security assuming F is a one-way trapdoor permutation family [5] and
a proof of IND-CCA2 security assuming F is partial one-way [15], both in the random oracle (RO) model,
i.e., where G and H are idealized and modeled as random oracles [4]. However, such proofs merely provide
heuristic evidence that breaking the scheme may be hard in reality (when the random oracles are instantiated
with real functions).

A growing number of papers raised concerns regarding soundness of the controversial random oracle model
[11, 18, 19, 16, 1, 13, 9, 20]. Moreover, most of the recent results question security of the practical schemes
known to be secure in the RO model. For example, Dodis et al. [13] showed some evidence that the RSA
Full Domain Hash signature scheme may not be secure in the standard model. Boldyreva and Fischlin [9]

showed that even presumably strong candidates like perfectly one-way hash functions (POWHFs) [10, 12] are
insufficient to prove security of partial instantiations of OAEP (when only one of the two random oracles is
instantiated with an instance of a POWHF).

The motivation of this work is to gather evidence of soundness of the OAEP design. Like the aforementioned
works our goal is to go beyond the classical RO heuristic and study security of the scheme when one or all of its
ROs are instantiated. Positive results in the direction of partial instantiations would give further evidence that
breaking OAEP for good instantiations is hard, because breaking the scheme would then require to exploit
interdependent weaknesses between the instantiations or the family F . Given the negative results of [9] it is
unlikely to expect that the properties needed from the instantiating function families are weak or even easily
realizable, even if one accepts weaker security stipulations than chosen-ciphertext security for partial or full
instantiations. For example, although it seems plausible, it is currently not even known whether OAEP can
be proven IND-CPA secure in the standard model assuming any reasonable properties of the instantiating
functions.

Here we show that security proofs for instantiations of OAEP are indeed possible. For various security
statements about OAEP we specify sufficient conditions on G and H that are certainly weaker than assum-
ing that the functions behave as random oracles, yielding “positive” security statements regarding partially
instantiated OAEP. Furthermore, we give the first non-trivial security results about fully instantiated OAEP
in the standard model, where both oracles G and H are instantiated simultaneously. We next discuss these
results in more detail.

The OAEP Framework. For better comprehension of our technical results we first reconsider the OAEP
encryption scheme from a more abstract viewpoint. Let f be a random instance of a partial one-way trapdoor
permutation family F , and the encryption algorithm computes a ciphertext as C = f(s||t). Partial one-
wayness [15] requires that it is hard to find the leading part of the pre-image s||t under f and to output, say,
s only. If we consider now for example a family Ft-clear where each function is defined as f ≡ g||ID such that
f(s||t) = g(s)||t for a trapdoor permutation g, then this family Ft-clear is clearly partial one-way (and also a
trapdoor permutation). Hence, this example describes a special case OAEPG,H [Ft-clear] for the partial one-way
trapdoor permutation family Ft-clear where each function outputs the t-part in clear. In particular, the security
proof in the random oracle model for OAEP and general partial one-way families (including RSA as a special
case) [15] carries over, but we outdo this by giving positive results of partial instantiation for such families
Ft-clear.

Towards the standard-model security results for fully instantiated OAEP we take the above viewpoint one
step further and look at OAEPG,H [Flsb||t-clear] for families Flsb||t-clear where each function f outputs the k1 least
significant bits of s = G(r)⊕M ||0k1 (which equal those bits of G(r)) and t in clear. Since each function in
Flsb||t-clear is also a member in Ft-clear the partial instantiation results above remain true for OAEPG,H [Flsb||t-clear].

We note that security of partial instantiations of OAEPG,H [Ft-clear] and of OAEPG,H [Flsb||t-clear], although
for qualified partial one-way trapdoor families, also have implications for the popular OAEPG,H [RSA] case.
They show that any successful attacks on instantiations for RSA would have to take advantage of specific
properties of the RSA function. Generic attacks which would also work for Ft-clear or Flsb||t-clear are then ruled
out.

Partial Instantiation Results. Positive results about partial instantiations were first shown in [9] for the
PSS-E encryption scheme. There it was also shown, however, that perfectly one-way hash functions cannot be
securely used to instantiate either one of the ROs in OAEP. These negative results about partial instantiation
through POWHFs hold for OAEPG,H [Ft-clear] as well. Yet we show that partial instantiations are possible by
switching to other primitives.

To instantiate the G-oracle in OAEPG,H [Ft-clear] while preserving IND-CCA2 security (in the random oracle
model), we introduce the notion of a near-collision resistant pseudorandom generator. For such a generator
G it is infeasible to find different seeds r 6= r′ such that predetermined parts of the generator’s outputs G(r),
G(r′) match (they may differ on other parts). To be more precise for OAEPG,H [Ft-clear] the generator G is not
allowed to coincide on the k1 least significant bits, bequeathing this property to the values s = G(r)⊕M ||0k1

and s′ = G(r′)⊕M ||0k1 in the encryption process. We discuss that such pseudorandom generators can be
derived from any one-way permutation.

Instantiating the H oracle in OAEP turns out to be more challenging. To this end we consider non-

2

malleable pseudorandom generators, where a given image of a seed r should not help significantly to produce
an image of a related seed r′. Instantiating H through such a non-malleable pseudorandom generator the
resulting scheme achieves NM-CPA security, where it is infeasible to convert a given ciphertext into one of
a related message. Although this security notion for encryption schemes is not as strong as IND-CCA, it
yet exceeds the classical IND-CPA security. That is, Bellare et al. [3] show that NM-CPA implies IND-CPA
and is incomparable to IND-CCA1 security. Hence, NM-CPA security of schemes lies somewhere in between
IND-CPA and IND-CCA2.1

We also show that it is possible to extend the above result and to instantiate the H-oracle in OAEPG,H [Ft-clear]
without even sacrificing IND-CCA2 security (again, for random oracle G). This however requires the very
strong assumption for the pseudorandom generators which then must be non-malleable under chosen-image
attacks. For such a generator non-malleability should even hold if the adversary can learn seeds of chosen
images, and such generators resemble chosen-ciphertext secure encryption schemes already. Hence, we see this
partial instantiation as a mere plausibility result that one can presumably instantiate oracle H and still have
IND-CCA2 security. This is contrast to the results in [11] for example, showing that there are encryption
schemes secure in the random oracle model but which cannot be securely realized for any primitive, not even
for a secure encryption scheme itself.

As for the existence of non-malleable pseudorandom generators, we are not aware if they can be derived
from standard cryptographic assumptions, and we leave this as an interesting open problem. We also remark
that, while non-malleability under chosen-image attacks seems to be a rather synthetic property, plain non-
malleability as required in the NM-CPA result appears to be a modest and plausible assumption for typical
instantiation candidates like hash functions. For instance, it should not be easy to flip bits in given hash value,
affecting bits in the pre-image in a reasonable way.

Full Instantiation Result. Our main result is a standard-model security proof for a fully instantiated
OAEP. It is not very reasonable to expect a proof of IND-CCA2 security of OAEP in the standard model,
even assuming very strong properties of instantiating functions (although we all would like to see such result).
As we mentioned above, we are not aware if one can even show IND-CPA security of fully instantiated OAEP.

Nevertheless we show that OAEP in the standard model can be proven to satisfy a rather strong notion of
security notion, namely $NM-CPA. It is slightly weaker than the standard non-malleability notion NM-CPA
in that there is a restriction that an unknown random message is encrypted in the challenge ciphertext. A bit
more formally this security notion $NM-CPA requires that given a public key and a ciphertext of a challenge
message chosen uniformly at random from a large message space it is hard to compute a valid ciphertext of
a message non-trivially related to the challenge message. Note that this is consistent with how asymmetric
schemes are typically used to build hybrid encryption schemes, where the key of the symmetric scheme is
derived from a random string encrypted with the public-key scheme. To appreciate the power of the $NM-CPA
definition we note that it implies for example the notion of OW-CPA and, moreover, Bleichenbacher’s attack
[7] on PKCS #1 v1.5 is not possible for $NM-CPA secure schemes.2 Thus our result provides better evidence
that OAEP resists such attacks, and specifies what properties of the instantiating functions are sufficient for
this.

For our full instantiation proof we consider OAEPG,H [Flsb||t-clear] where the t-part and the least significant
bits of the s-part are output in clear. To achieve the $NM-CPA security notion under full instantiation of
both oracles G and H in OAEPG,H [Flsb||t-clear] we need to augment the near-collision resistant generator G by
a trapdoor property, allowing to invert images efficiently given the trapdoor information; such generators exist
if trapdoor permutations exist. We again use a non-malleable pseudorandom generator H for instantiating H.
Assuming that the generators above exist we show that OAEPG,H [Flsb||t-clear] is $NM-CPA.3

1We mitigate the notion of NM-CPA such that the relation specifying related messages and the distribution over the messages
must be fixed at the outset. This mildly affects the relationship to the IND notions, but we omit technical details in the
introduction.

2Bleichenbacher’s attack works by generating a sequence of ciphertexts from a given ciphertext and verifying validity of the
derived ciphertexts by querying the decryption oracle. While requiring adaptive queries to recover the entire message, one can view
the message in first derived ciphertext in such an attack as having a small (but not negligible) probability of being non-trivially
related to the original (possibly random) message.

3Very recently, Brown [2] has shown that RSA-OAEP cannot be proven OW-CPA under certain security reductions. Our
approach here does not fall under this kind of reductions and does not contradict his result. We provide more details in
Section 3.2.

3

To give further evidence of the usefulness of the $NM-CPA notion we finally show that we can derive a
hybrid encryption scheme that is NM-CPA in the random oracle model from an asymmetric scheme secure
in the sense of $NM-CPA. For this, one encrypts a random string r with the asymmetric scheme and then
runs r through an idealized key derivation process to obtain K = G(r), modeled through a random oracle G.
The actual message is then encrypted with a symmetric scheme for key K. The construction of such hybrid
encryption schemes resembles the encryption method in SSL/TLS [17]. There, simply speaking, the client
encrypts a random string under the server’s public key and then both parties derive the actual symmetric key
K by hashing the random string iteratively. If one considers this hashing step as an idealized process then our
results provide a security guarantee for this technique. Observe that this result is still cast in the random oracle
model; yet it separates the security of the key derivation process from the security of the asymmetric encryption
scheme and can be seen as a partial instantiation for the random oracles in the encryption algorithm.

Prospect. The random oracle model should provide confidence that the design of a cryptographic scheme
is sound, even if a security proof in the standard model for this scheme is missing. The heuristic argument
is that “good” instantiations of random oracles then give evidence that no “clever” attacks against a scheme
work. But the well-known negative results about the random oracle principle have raised some doubts how
much confidence this security heuristic really gives.

The approach we take here towards challenging the doubts is to trade security goals against partial or
full instantiations of random oracles. Our “test case” OAEP shows that this is a viable way and gives more
insights in “how clever” attacks against the instantiations would have to be. And while this still does not
rule out the possibility of extraordinary attacks we see this as an important supplement to the random oracle
heuristic and to the question how instantiating candidates should be selected, hopefully inciting other results
along this direction.

2 Preliminaries

If S is a set then x
$← S means that the value x is chosen uniformly at random from S. If A is a deterministic

(resp. randomized algorithm) with a single output then x ← A(y, z, . . .) (resp. x
$← A(y, z, . . .)) means that

the value x is assigned the output of A for input (y, z, . . .). An algorithm is called efficient if it runs in
polynomial time in the input length (which, in our case, usually refers to polynomial time in the security
parameter).

A function family F =
⋃

k F (1k) consists of sets of functions F (1k) = {f : {0, 1}m(k) → {0, 1}n(k)}. It
is called a family of trapdoor permutations if for each f ∈ F (1k) there exists f−1 such that f(f−1) ≡ ID.
We usually identify the functions f and f−1 simply with their descriptions, and write (f, f−1) $← F (1k) for
the random choice of f (specifying also f−1) from the family F (1k). Unless stated differently the minimal
assumption about a function family in this paper is that it is one-way, and that it is efficiently computable.

2.1 The OAEP Framework

The OAEP encryption framework [5] is parameterized by integers k, k0 and k1 (where k0, k1 are linear functions
of k) and makes use of a trapdoor permutation family F with domain and range {0, 1}k and two random oracles

G : {0, 1}k0 → {0, 1}k−k0 and H : {0, 1}k−k0 → {0, 1}k0 .

The message space is {0, 1}k−k0−k1 . The scheme OAEPG,H [F] = (K, E ,D) is defined as follows:

• The key generation algorithm K(1k) picks a pair (f, f−1)← F (1k) at random. Let pk specify f and let
sk specify f−1.

• The encryption algorithm E(pk,M) picks r
$← {0, 1}k0 , and computes s ← G(r)⊕ (M‖0k1) and t ←

H(s)⊕ r. It finally outputs C ← f(s||t).

• The decryption algorithm D(sk, C) computes s‖t ← f−1(C), r ← t⊕H(s) and M ← s⊕G(r). If the
last k1 bits of M are zeros, then it returns the first k − k0 − k1 bits of M , else it returns ⊥.

4

The encryption scheme OAEPG,H [F] is IND-CCA2 secure in the RO model if the underlying trapdoor per-
mutation family F is partial one-way [15].

As a side effect of the partial one-wayness result for OAEP [15] we can immediately conclude security
of a particular OAEP variant, where we use partial one-way trapdoor permutation family Ft-clear based on a
trapdoor permutation function family F . Namely, each function ft-clear : {0, 1}k → {0, 1}k in Ft-clear is described
by ft-clear(s||t) ≡ f(s)||ID(t) = f(s)||t for a one-way permutation f : {0, 1}k−k0 → {0, 1}k−k0 , i.e., the t-part is
output in clear. A random instance (ft-clear, f

−1
t-clear)← Ft-clear(1k) is sampled by picking (f, f−1)← F (1k) and

setting ft-clear as above (the inverse f−1
t-clear is straightforwardly defined). Then Ft-clear is clearly partial one-way

and thus OAEPG,H [Ft-clear] IND-CCA2 secure in the random oracle model.
Analogously, we consider another important variant of OAEP where we also output the k1 least significant

bits lsbk1(s) of s in clear and merely apply the trapdoor function f to the leading k − k0 − k1 bits of s.
That is, a random function flsb||t-clear : {0, 1}k → {0, 1}k in Flsb||t-clear(1k) is described by a random trapdoor
permutation f : {0, 1}k−k0−k1 → {0, 1}k−k0−k1 and flsb||t-clear(s||t) = f(s1...k−k0−k1)||lsbk1(s)||t. Note that
since s = G(r)⊕M ||0k1 this means that we output the least significant bits lsbk1(G(r)) of G(r) and t in
clear. For this reason we sometimes write s||γ instead of s and denote by γ the k1 bits lsbk1(G(r)) such
that flsb||t-clear(s||γ||t) = f(s)||γ||t. Flsb||t-clear is clearly partial one-way and OAEPG,H [Flsb||t-clear] is IND-CCA2
secure in the random oracle model.

In both cases we often identify Ft-clear resp. Flsb||t-clear simply with the underlying family F and vice
versa. In particular we often denote a random function from Ft-clear or Flsb||t-clear simply by f . We call
Ft-clear resp. Flsb||t-clear the induced family of F .

Random Oracle Instantiations. For an instantiation of the random oracle G in OAEPG,H [F] we consider
a pair of efficient algorithms G = (KGenG,G) where KGenG on input 1k returns a random key K and the
deterministic algorithm4 G maps this key K and input r ∈ {0, 1}k0 to an output string G(K, r) = GK(r) of
k − k0 bits. Then we write OAEPG,H [F] for the encryption scheme which works as defined above, but where
the key pair (sk,pk) is now given by sk = (f−1,K) and pk = (f,K) and where each evaluation of G(r) is
replaced by GK(r). We say that OAEPG,H [F] is a partial G-instantiation of OAEP through G.

A partial H-instantiation OAEPG,H[F] of OAEP through H and partial instantiations of the aforemen-
tioned OAEP variations are defined accordingly. If we instantiate both oracles G, H simultaneously then we
speak of a full instantiation OAEPG,H[F] of OAEP through G and H.

2.2 Security of Encryption Schemes

In this section we review the relevant security notions for asymmetric encryption schemes AS = (K, E ,D).
In addition to indistinguishability under chosen-plaintext and chosen-ciphertext attacks (IND-CPA, IND-
CCA1, IND-CCA2) —see Appendix A for formal definitions— we occasionally also rely on the notions of
non-malleability. This notion was introduced and formalized in [14, 3]. The most basic version is called
NM-CPA and says that a ciphertext of a message M∗ should not help to find a ciphertext of a related message
M , where the distribution of message M∗ is defined by an efficient distribution M and related messages are
specified by an efficient relation R, both chosen by the adversary.

Definition 2.1 (NM-CPA) Let AS be an asymmetric encryption scheme. Then AS is called secure in
the sense of NM-CPA if for for every efficient algorithm A the following random variables Expnm-cpa-1

AS,A (k),
Expnm-cpa-0

AS,A (k) are computationally indistinguishable:

4In general, the instantiating functions can be randomized. This requires some care with the decryption algorithms and
possibly introduces new attacks. Since our results all hold with respect to deterministic algorithms this is beyond our scope here;
see [9] for more details.

5

Experiment Expnm-cpa-1
AS,A (k)

(pk, sk) $← K(1k)
(M, state) $← A(pk)
M∗ $←M
C∗ $← Epk(M∗)
(R,C) $← A(state, C∗)
M ← Dsk(C)
Return 1 iff

(C 6= C∗) ∧R(M∗,M)

Experiment Expnm-cpa-0
AS,A (k)

(pk, sk) $← K(1k)
(M, state) $← A(pk)
M∗ $←M ; M ′ $←M
C ′ $← Epk(M ′)
(R,C) $← A(state, C ′)
M ← Dsk(C)
Return 1 iff

(C 6= C ′) ∧R(M∗,M)

It is assumed that the messages in the support of M have equal length.

We note that the original definition of NM-CPA in [3] actually allows the adversary to output a vector
of ciphertexts. Our results for OAEP merely hold with respect to binary relations and therefore we restrict
the definition here to such relations. We remark that the aforementioned relationships of NM-CPA to the
indistinguishability notions, e.g., that this notion is strictly stronger than the one of IND-CPA, hold for
relations of arity two as well.

We define a weaker security notion is that of $NM-CPA where the adversary does not have the ability to
choose a distribution over the messages, but where a random message is encrypted and the adversary tries to
find a ciphertext of a related message.

Definition 2.2 ($NM-CPA) Let AS = (K, E ,D) be an asymmetric encryption scheme and let M for input
1k describe the uniform distribution over all `(k) bit strings for some polynomial `. Then AS is called secure
in the sense of $NM-CPA if for for every efficient algorithm A and for every efficient relation R the following
random variables Exp$nm-cpa-1

AS,A,M,R(k), Exp$nm-cpa-1
AS,A,M,R(k) are computationally indistinguishable:

Experiment Exp$nm-cpa-1
AS,A,M,R(k)

(pk, sk) $← K(1k)
M∗ $←M(1k)
C∗ $← Epk(M∗)
C

$← A(pk, C∗, 〈R〉)
M ← Dsk(C)
Return 1 iff

(C 6= C∗) ∧R(M∗,M)

Experiment Exp$nm-cpa-0
AS,A,M,R(k)

(pk, sk) $← K(1k)
M∗ $←M(1k) ; M ′ $←M(1k)
C ′ $← Epk(M ′)
C

$← A(pk, C ′, 〈R〉)
M ← Dsk(C)
Return 1 iff

(C 6= C ′) ∧R(M∗,M)

While the notion of $NM-CPA is weaker than the one of NM-CPA —in addition to the restriction to
uniformly distributed messages the relation is now fixed in advance— it yet suffices for example to show
security in the sense of OW-CPA (where the adversary’s goal is to recover a random message in a given
ciphertext) and it also covers Bleichenbacher’s attack on PKCS #1 v1.5. In Section 5 we also show that the
notion of $NM-CPA is enough to derive NM-CPA security under an idealized key derivation function. Namely,
one encrypts a random string r under the $NM-CPA public-key encryption scheme and then pipes r through a
random oracle G to derive a key K = G(r) for the symmetric scheme. In fact, one can view the SSL encryption
method where the client sends an encrypted random key to the server and both parties derive a symmetric
key through a complicated hash function operation as a special case of this method. Then this result about
lifting $NM-CPA to NM-CPA security, together with the $NM-CPA security proof for the full instantiation
of OAEPlsb||t-clear, provides an interesting security heuristic (as long as the key derivation process behaves in
an ideal way).

2.3 Pseudorandom Generators

Typically, the minimal expected requirement when instantiating a random oracle is that the instantiating
function describes a pseudorandom generator, consisting of the key generation algorithm KGen producing a
public key K and the evaluation algorithm G mapping a random seed r with key K to the pseudorandom
output. Usually the output of this generator should still look random when some side information hint(r)

6

about the seed r is given. This probabilistic function hint must be of course uninvertible, a weaker notion
than one-wayness (cf. [10]).

We also incorporate into the definition the possibility that the key generation algorithm outputs some
secret trapdoor information K−1 in addition to K. Given this information K−1 one can efficiently invert
images. If this trapdoor property is not required we can assume that K−1 = ⊥ and often omit K−1 in the
key generator’s output.

Definition 2.3 ((Trapdoor) Pseudorandom Generator) Let KGen be an efficient key-generation algo-
rithm that takes as input 1k for k ∈ N and outputs a key K; let G be an efficient deterministic evaluation
algorithm that, on input K and a string r ∈ {0, 1}k returns a string of length `(k). Then G = (KGen,G) is
called a pseudorandom generator (with respect to hint) if the following random variables are computationally
indistinguishable:

• Let K ← KGen(1k), r
$← {0, 1}k, h← hint(r), output (K, G(K, r), h).

• Let K ← KGen(1k), r
$← {0, 1}k, h← hint(r), u← {0, 1}`(n), output (K, u, h).

Furthermore, if there is an efficient algorithm TdG such that for any k ∈ N, any (K, K−1)← KGen(1k), any
r ∈ {0, 1}k we have G(K, TdG(K−1,G(K, r))) = G(K, r) then (KGen,G,TdG) is called a trapdoor pseudorandom
generator.

For our results about OAEP we often need further properties from the pseudorandom generator, including
near-collision resistance and non-malleability. The former means that given a seed r it is hard to find a different
seed r′ such that G(K, r) and G(K, r′) coincide on a predetermined set of bits (even if they are allowed to
differ on the other bits). Non-malleability refers to generators where the generator’s output for a seed should
not help to produce an image of a related seed. We give precise definitions and details concerning existential
questions on site.

3 Partial Instantiations for OAEP

In this section we prove security of partial instantiations of OAEP. Our results show that one can replace
either one of the random oracle in OAEP by reasonable primitives and still maintain security (in the random
oracle model).

3.1 Instantiating the G-Oracle for IND-CCA2 security

We first show how to construct a pseudorandom generator with a special form of collision-resistance. This
property says that finding an input r′ to a random input r, such that G(K, r) and G(K, r′) coincide on the
k least significant bits lsbk(G(K, r)), lsbk(G(K, r′)), is infeasible. According to comparable collision types for
hash functions [6] we call this near-collision resistance.

Definition 3.1 (Near-collision Resistant Pseudorandom Generator) A pseudorandom generator G =
(KGen,G) is called near-collision resistant (for the least significant k bits) if for any efficient algorithm C
the following holds: Let K ← KGen(1k), r ← {0, 1}k, r′ ← C(K, r). Then the probability that r 6= r′ but
lsbk(G(K, r)) = lsbk(G(K, r′)) is negligible.

Near-collision resistant generators can be built, for example, from one-way permutations via the well-
known Yao-Blum-Micali construction [21, 8]. In that case, given a family G of one-way permutations the key
generation algorithm KGenYBM(1k) of this generator simply picks a random instance g : {0, 1}k → {0, 1}k of
G(1k), and GYBM(g, r) = (hb(r),hb(g(r)), . . . ,hb(gn−1(r)), gn(r)) is defined through the hardcore bits hb of
g. Since g is a permutation different inputs r 6= r′ yield different output parts gn(r) 6= gn(r′).

Given a near-collision resistant pseudorandom generator we show how to instantiate the G-oracle in
OAEPG,H [Ft-clear] for the family Ft-clear which is induced by a trapdoor permutation family F (i.e., where
a member f : {0, 1}k−k0 → {0, 1}k−k0 of F is applied to the k-bit inputs such that the lower k0 bits are output
in clear).

7

Theorem 3.2 Let G = (KGenG,G) be a pseudorandom generator which is near-collision resistant (for the
k1 least significant bits). Let F be trapdoor permutation family and let Ft-clear be the induced partial one-
way trapdoor permutation family defined in Section 2.1. Then the partial G-instantiation OAEPG,H [Ft-clear] of
OAEP through G is IND-CCA2 in the random oracle model.

The full proof appears in Appendix B. The idea is to gradually change the way the challenge ciphertext
(encrypting one of two adversarially chosen messages, the hidden choice made at random) is computed in a
sequence of games. We show that each of these steps does not change an adversary’s success probability of
predicting the secret choice noticeably:

• Initially, in Game0 the challenge ciphertext f(s∗)||t∗ for message M∗ is computed as in the scheme’s
description by s∗ = G(K, r∗)⊕M∗||0k1 for the near-collision resistant generator G and t∗ = H(s∗)⊕ r∗

for random oracle H.

• In Game1 the ciphertext is now computed by setting s∗ = G(K, r∗)⊕M∗||0k1 as before, but letting
t∗ = ω ⊕ r∗ for a random ω which is independent of H(s∗). Because H is a random oracle this will not
affect the adversary’s success probability, except for the rare case that the adversary queries H about
s∗.

• In Game2, in a rather cosmetic change, we further substitute t∗ = ω ⊕ r∗ simply for t∗ = ω, making the
t-part independent of the generator’s pre-image r∗.

• in Game3 we use the pseudorandomness of generator G to replace s∗ = G(K, r∗)⊕M∗||0k1 by s∗ =
u⊕M∗||0k1 for a random u.

Since ciphertexts in the last game are distributed independently of the actual message security of the original
scheme follows, after a careful analysis that decryption queries do not help; this is the step where we exploit
that H is still a random oracle and that G is near-collision resistant. Namely, the near-collision resistance
prevents an adversary from transforming the challenge ciphertext for values r∗, s∗ into a valid one for the same
s∗ but a different r; otherwise the least significant bits of s∗ = G(K, r∗)⊕M∗||0k1 = G(K, r)⊕M ||0k1 would
not coincide and the derived ciphertext would be invalid with high probability. Given this, the adversary must
always use a “fresh” value s when submitting a ciphertext to the decryption oracle, and must have queried the
random oracle H about s before (or else the ciphertext is most likely invalid). But then the adversary already
“knows” r = t⊕H(s) —recall that for Ft-clear the t-part is included in clear in ciphertexts— and therefore
”knows” the (padded) message M ||z = s⊕ G(K, r) encapsulated in the ciphertext.

3.2 Instantiating the H-Oracle

To instantiate the H-oracle we introduce the notion of a non-malleable pseudorandom generator. For such a
pseudorandom generator it should be infeasible to find for a given image y∗ = HK(s∗) of a random s∗ a different
image y = HK(s) of a related value s, where the corresponding efficient relation R(s∗, s) must be determined
before seeing K and y∗.5 More precisely, we formalize non-malleability of a pseudorandom generator by the
indistinguishability of two experiments. For any adversary B it should not matter whether B is given f(s∗),
y∗ = HK(s∗) or f(s∗), y′ = HK(s′) for an independent s′ instead: the probability that B outputs f(s) and
y = HK(s) such that s is related to s∗ via relation R should be roughly the same in both cases.6

Definition 3.3 (Non-Malleable Pseudorandom Generator) Assume H = (KGenH,H) is a pseudoran-
dom generator (which is pseudorandom with respect to hint(x) = (f, f(x)) for (f, f−1) ← F (1k) from the
trapdoor function family F). Then H is called non-malleable with respect to hint if for any efficient algo-
rithm B and any efficient relation R the following random variables Expnm-cma-1

H,B,F,R (k), Expnm-cma-0
H,B,F,R (k) are

computationally indistinguishable, where the experiments are defined as follows.
5We are thankful to the people from the Ecrypt network for pointing out that a possibly stronger definition for adaptively

chosen relations allows trivial relations over the images and cannot be satisfied.
6Adding the image under the trapdoor permutation uniquely determines the pre-image of the pseudorandom generator’s output

and enables us to specify R(s∗, s) via the pre-images. Since this also bundles the security of the trapdoor permutation and the
generator, Brown’s recent impossibility result about security reductions for OAEP [2] does not apply.

8

Experiment Expnm-cpa-1
G,B,F,R (k)

K
$← KGenH(1k)

(f, f−1) $← F

s∗
$← {0, 1}k

y∗
$← HK(s∗)

(z, y) $← B(K, f, f(s∗), y∗)
s← f−1(z)
Return 1 iff

R(s∗, s) ∧ HK(s) = y ∧ s∗ 6= s

Experiment Expnm-cpa-0
G,B,F,R (k)

K
$← KGenH(1k)

(f, f−1) $← F

s∗
$← {0, 1}k ; s′

$← {0, 1}k

y′
$← HK(s′)

(z, y) $← B(K, f, f(s∗), y′)
s← f−1(z)
Return 1 iff

R(s∗, s) ∧ HK(s) = y ∧ s∗ 6= s

Given a non-malleable pseudorandom generator we can prove NM-CPA security of the partial H-instantiation
of OAEP, under the restriction that the adversarial chosen message distribution and relation are defined at the
beginning of the attack via (M, R, state)← A(1k) and thus depend only the security parameter. This relaxed
notion still implies for example IND-CPA security (but for messages picked independently of the public key),
is still incomparable to IND-CCA1 security, and also thwarts Bleichenbacher’s attack. We call such schemes
NM-CPA for pre-defined message distributions and relations.

Theorem 3.4 Let F be a trapdoor permutation family and let Ft-clear be the induced partial one-way trapdoor
permutation family. Let H = (KGenH,H) be a pseudorandom generator (with respect to hint(x) = (f, f(x))
for (f, f−1) ← F (1k)). Assume further that H is non-malleable with respect to hint. Then the partial H-
instantiation OAEPG,H[Ft-clear] through H is NM-CPA for pre-defined message distributions and relations in
the random oracle model.

The proof idea is as follows. Assume that an attacker, given a ciphertext for some values r∗, s∗ (which
uniquely define the message in a ciphertext), tries to prepare a related ciphertext for some value r 6= r∗,
without having queried random oracle G about r before. Then such a ciphertext is most likely invalid because
with overwhelming probability the least significant bits of s⊕G(r) are not zero. Else, if r = r∗, then we must
have f(s) 6= f(s∗) and s 6= s∗, since the adversarial ciphertext must be different for a successful attack. But
then the values H(K, s∗) and H(K, s) for different pre-images must be related via the ciphertext’s relation,
contradicting the non-malleability of the generator H. In any other case, if r 6= r∗ and r is among the queries
to G, the random value G(r∗) is independent of G(r). So must be the messages M∗||0k1 = s∗ ⊕G(r∗) and
M ||0k1 = s⊕G(r), as required for non-malleability. Details can be found in Appendix C.

Replacing the H-oracle without violating IND-CCA2 security is more ambitious and we require a very
strong assumption on the pseudorandom generator, called non-malleability under chosen-image attacks (where
the adversary can also make inversion queries to the trapdoor pseudorandom generator). Since any pseudo-
random generator with this property is already close to a chosen-ciphertext secure encryption scheme, we
rather see this as an indication that a partial instantiation might be possible and that separation results as
[11, 18, 19, 1, 16, 20, 9, 13] seem to be hard to find. The formal treatment of the following and the proof
appear in Appendix D

Theorem 3.5 Let F be trapdoor permutation family and let Ft-clear be the induced partial one-way trapdoor per-
mutation family defined in Section 2.1. Let H = (KGenH,H,TdH) be a trapdoor pseudorandom generator which
is non-malleable under chosen-image attacks (with respect to hint(x) = (f, f(x)) for (f, f−1) ← Ft-clear(1k)).
Then the partial H-instantiation OAEPG,H[Ft-clear] through H is IND-CCA2 in the random oracle model.

4 Full Instantiation for OAEP

In this section we prove that there exists a full instantiation of OAEPlsb||t-clear which is secure in the sense
of $NM-CPA in the standard model, implying for example that the scheme is OW-CPA. Recall that in
OAEPlsb||t-clear we write s||γ = G(s)⊕M ||0k1 instead of s to name the least significant bits explicitly.

To prove our result we need a near-collision resistant trapdoor pseudorandom generator, i.e., which combines
near-collision resistance with the trapdoor property. Such generators can be easily built by using again the
Blum-Micali-Yao generator, but this time by deploying a trapdoor permutation g instead of a one-way permuta-
tion, i.e., the generator’s output for random r is given by GYBM(g, r) = (hb(r),hb(g(r)), . . . ,hb(gn−1(r)), gn(r)).

9

Letting K−1 contain the trapdoor information g−1 algorithm TdG can easily invert the k1 least significant
bits y of the output to recover a pre-image r.

To be precise we make use of two additional, specific properties of the Blum-Micali-Yao generator. First,
we assume that recovering a pre-image is possible given the k1 least significant bits only, i.e., without seeing
the remaining part of the image. To simplify the proof we furthermore presume that the k1 least significant
bits of the generator’s output are statistically close to uniform (over the choice of the seed).7 We simply refer
to generators with the above properties as a near-collision resistant trapdoor pseudorandom generator (for the
least significant k bits).

Theorem 4.1 Let F be trapdoor permutation family and let Flsb||t-clear be the induced partial one-way trapdoor
permutation family. Let G = (KGenG,G) be a near-collision resistant trapdoor pseudorandom generator (for
the k1 least significant bits). Let H = (KGenH,H) be a generator which is pseudorandom and non-malleable
with respect to hint(s||γ) = (f, f(s)||γ) for (f, f−1)← F (1k). Then the full instantiation OAEPG,H[Flsb||t-clear]
through G and H is $NM-CPA.

The proof appears in Appendix E. The basic idea is similar to the one of NM-CPA security for the partial
H-instantiation. The important difference is that the randomness of the encrypted message M in a ciphertext
f(s)||γ||t for s||γ = GK(r)⊕M ||0k1 helps to overcome otherwise existing “circular” dependencies between G
and H in the computations of ciphertexts (which, in the partial instantiation case, do not occur due to the
fact that G is a random oracle).

5 Hybrid Encryption from $NM-CPA Schemes

We show that a public-key scheme which is secure in the sense of $NM-CPA (i.e., for pre-defined relations),
together with an IND-CCA2 secure symmetric scheme suffices to build a NM-CPA secure hybrid scheme in
the random oracle model (i.e., even for adaptively chosen message distributions and relations).

Construction 5.1 Let AS = (EKasym, Easym,Dasym) be an asymmetric encryption scheme and let SS =
(EKsym, Esym,Dsym) be a symmetric encryption scheme. Let G be a hash function mapping k-bit strings into
the key space of the symmetric scheme. Then the hybrid encryption scheme AS′ = (EK′asym, E ′asym,D′asym) is
defined as follows.

• The key generation algorithm EK′asym(1k) outputs a key pair (sk,pk) $← EKasym(1k).

• The encryption algorithm E ′asym on input pk,M picks r
$← {0, 1}k, computes Casym

$← Easym(pk, r),

Csym
$← Esym(G(r),M) and returns (Casym, Csym).

• The decryption algorithm D′asym on input (Casym, Csym) and sk computes r ← Dasym(sk, Casym), M ←
Dsym(G(r), Csym) and returns M .

Theorem 5.2 Let AS = (EKasym, Easym,Dasym) be an asymmetric encryption scheme which is $NM-CPA.
Let SS = (EKsym, Esym,Dsym) be an IND-CCA2 symmetric encryption scheme. Let G be a hash function and
assume AS′ = (EK′asym, E ′asym,D′asym) is the hybrid encryption scheme defined according to Construction 5.1.
Then AS′ is NM-CPA secure in the random oracle model.

The proof is in Appendix F and actually shows that the scheme is NM-CPA with respect to the stronger
notion where the adversary outputs a sequence C = (C1, . . . , Cm) of ciphertexts and the success is measured
according to R(M∗,M) for M = (M1, . . . ,Mm).

7It is easy to adapt the proof to the more general case of arbitrary distributions of the least significant bits, as long as they
support extraction. But this would also require to change the definition of the non-malleable pseudorandom generator GKG(s||γ)
to support arbitrary distributions on the γ-part.

10

Acknowledgments

We thank the anonymous reviewers for comments. Part of the work done while both authors were visiting
Centre de Recerca Matematica (CRM) and Technical University of Catalonia (UPC), Barcelona, Spain, whose
support is highly appreciated. The second author was also supported by the Emmy Noether Program Fi
940/2-1 of the German Research Foundation (DFG).

References

[1] M. Bellare, A. Boldyreva and A. Palacio. An uninstantiable random-oracle-model scheme for a hybrid-
encryption problem. In Eurocrypt 2004, Volume 3027 of LNCS, pp. 171–188. Springer-Verlag, 2004.

[2] D. R. L. Brown. Unprovable Security of RSA-OAEP in the Standard Model. Cryptology ePrint Archive,
Report 2006/223, 2006.

[3] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations Among Notions of Security for Public-Key
Encryption Schemes. In CRYPTO ’98, Volume 1462 of LNCS, pp. 26–45. Springer-Verlag, 1998.

[4] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient protocols.
In CCS ’93, pp. 62–73. ACM, 1993.

[5] M. Bellare and P. Rogaway. Optimal asymmetric encryption – how to encrypt with RSA. In Eurocrypt
’94, Volume 950 of of LNCS, pp. 92–111. Springer-Verlag, 1995.

[6] E. Biham and R. Chen. Near-Collisions of SHA-0. In CRYPTO’ 2004, Volume 3152 of LNCS, pp. 290–305.
Springer-Verlag, 2004.

[7] D. Bleichenbacher. Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard
PKCS #1. In CRYPTO ’98, Volume 1462 of LNCS, pp. 1–12. Springer-Verlag, 1998.

[8] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudorandom bits.
Journal on Computing, Volume 13, pp. 850–864, SIAM, 1984.

[9] A. Boldyreva and M. Fischlin. Analysis of random-oracle instantiation scenarios for OAEP and other
practical schemes. In CRYPTO 2005, Volume 3621 of LNCS, pp. 412–429. Springer-Verlag, 2005.

[10] R. Canetti. Towards realizing random oracles: Hash functions that hide all partial information. In
CRYPTO ’97, Volume 1294 of LNCS. pp. 455–469. Springer-Verlag, 1997.

[11] R. Canetti, O. Goldreich and S. Halevi. The random oracle methodology, revisited. In STOC ’98,
pp. 209–218. ACM, 1998.

[12] R. Canetti, D. Micciancio and O. Reingold. Perfectly one-way probabilistic hash functions. In STOC ’98,
pp. 131–140. ACM, 1998.

[13] Y. Dodis, R. Oliveira, and K. Pietrzak. On the generic insecurity of full-domain hash. In CRYPTO 2005,
Volume 3621 of LNCS, pp. 449–466. Springer-Verlag, 2005.

[14] D. Dolev, C. Dwork and M. Naor. Non-malleable cryptography. Journal on Computing, Vol. 30(2),
pp. 391–437. SIAM, 2000.

[15] E. Fujisaki, T. Okamoto, D. Pointcheval and J. Stern. RSA-OAEP is secure under the RSA assumption.
In CRYPTO 2001, volume 2139 of LNCS, pp. 260–274. Springer-Verlag, 2001.

[16] S. Goldwasser and Y. T. Kalai. On the (in)security of the Fiat-Shamir paradigm. In FOCS 2003. IEEE,
2003.

[17] IETF-TLS Working Group. Transport Layer Security. http://www.ietf.org/html.charters/
tls-charter.html, November 2005.

11

[18] U. Maurer, R. Renner and C. Holenstein. Indifferentiability, impossibility results on reductions, and
applications to the random oracle methodology. In TCC 2004, volume 2951 of LNCS, pp. 21–39. Springer-
Verlag, 2004.

[19] J. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-committing
encryption case. In CRYPTO 2002, volume 2442 of LNCS, pp. 111–126. Springer-Verlag, 2002.

[20] P. Paillier and D. Vergnaud. Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log. In
Asiacrypt 2005, volume 3788 of LNCS, pp. 1–20. Springer-Verlag, 2005.

[21] A. Yao. Theory and applications of trapdoor functions. In FOCS ’82, pp. 80–91. IEEE, 1982.

A Encryption Schemes and their Security

An asymmetric encryption scheme AE = (K, E ,D) is specified by three polynomial-time algorithms with the
following functionalities. The randomized key-generation algorithm K takes input 1k, where k is the security
parameter, and outputs a pair (pk, sk) consisting of a public key and a matching secret key, respectively. The
randomized encryption algorithm E takes input a public key pk and a message M , and outputs a ciphertext
C. The deterministic decryption algorithm D takes input a secret key sk and a ciphertext C, and outputs
a message M or a special symbol ⊥ to indicate that the ciphertext is invalid. Associated to k is a message
space MsgSp(k) from which M is allowed to be drawn. For any (pk, sk) ∈ [K(1k)], any M ∈ MsgSp(k), it is
required that D(sk, E(pk,M)) = M . The syntax of symmetric encryption schemes is very similar, except the
same symmetric key K is used in place of public and secret keys (pk = sk = K) and the adversary is denied
the key K.

Definition A.1 [Security of Asymmetric Encryption] Let AE = (K, E ,D) be an asymmetric encryption
scheme. Consider experiments Expenc-ind-cpa

AE,A,b (k), Expenc-ind-cca
AE,A,b (k) associated to AE, a bit b ∈ {0, 1} and an

adversary A. In both experiments A is given input a public key pk and access to a left-right encryption oracle
OAE(pk, b, ·, ·), where pk and sk are matching keys generated via (pk, sk) $← K(1k). The oracle takes input
two messages M0,M1 ∈ MsgSp(k) of equal length and returns a ciphertext C

$← E(pk,Mb). In experiment
Expenc-ind-cca

AE,A,b (k) the adversary is also given input a decryption oracle D(sk, ·). A queries the oracle(s) on
inputs of its choice8, with a restriction of not querying its decryption oracle on ciphertexts previously returned
by the left-right encryption oracle. A eventually stops and outputs a guess d which is also the output of the
experiment. AE is said to be IND-CPA (resp. IND-CCA) secure if the the following

Pr[Expenc-ind-atk
AE,A,1 (k) = 1]− Pr[Expenc-ind-atk

AE,A,0 (k) = 1] .

is negligible in k.

IND-CPA and IND-CCA security of symmetric encryption schemes is defined similarly, except that adver-
sary is not given any key.

We adopt the convention that the time complexity of adversary A is the execution time of the entire
experiment, including the time taken for key generation, and computation of answers to oracle queries. The
same convention will be used implicitly in other definitions of the paper.

B Proof of Theorem 3.2

In this section we present the formal proof of the IND-CCA2 security of the partial instantiation of G through
a near-collision resistant pseudorandom generator.

Let A be an arbitrary probabilistic polynomial-time algorithm. Let Game0
A,b(k) denote the original attack

of A on the encryption scheme OAEPG,H [Ft-clear] where message Mb for fixed bit b is encrypted in the challenge
ciphertext. Let Game1

A,b(k) denote the game where we replace H(s∗) in the challenge ciphertext by a uniformly

8For simplicity in the analyses of asymmetric encryption schemes we assume that an adversary does at most one query to its
left-right encryption oracle. It is well-known that this restriction does not change the asymptotic advantage of the adversary.

12

and independently distributed string ω∗. A rather syntactical change then allows us to replace t∗ = ω∗ ⊕ r by
t∗ = ω∗ in Game2

A,b. In Game3
A,b(k) we furthermore replace the value G(K, r) by a independent random string

u∗ ← {0, 1}k−k0 in the challenge ciphertext. All games are described formally in Figure B.

Experiment Game0
A,b(k):

((f−1,K), (f,K)) $← K(1k)
(M0,M1, state) $← AH,D(sk,·)(f,K)
Compute ciphertext (C∗, t∗):

Pick r∗
$← {0, 1}k0

Compute s∗ ← G(K, r∗)⊕Mb||0k1

Compute C∗ ← f(s∗)
Compute t∗ ← H(s∗)⊕ r∗

d
$← AH,D(sk,·)−{(C∗,t∗)}((C∗, t∗), state)

Experiment Game1
A,b(k):

((f−1,K), (f,K)) $← K(1k)
(M0,M1, state) $← AH,D(sk,·)(f,K)
Compute ciphertext (C∗, t∗):

Pick r∗
$← {0, 1}k0

Compute s∗ ← G(K, r∗)⊕Mb||0k1

Compute C∗ ← f(s∗)

Pick ω∗
$← {0, 1}k0

Compute t∗ ← ω∗ ⊕ r∗

d
$← AH,D(sk,·)−{(C∗,t∗)}((C∗, t∗), state)

Experiment Game2
A,b(k):

((f−1,K), (f,K)) $← K(1k)
(M0,M1, state) $← AH,D(sk,·)(f,K)
Compute ciphertext (C∗, t∗):

Pick r∗
$← {0, 1}k0

Compute s∗ ← G(K, r∗)⊕Mb||0k1

Compute C∗ ← f(s∗)
Pick ω∗

$← {0, 1}k0

Compute t∗ ← ω∗

d
$← AH,D(sk,·)−{(C∗,t∗)}((C∗, t∗), state)

Experiment Game3
A,b(k):

((f−1,K), (f,K)) $← K(1k)
(M0,M1, state) $← AH,D(sk,·)(f,K)
Compute ciphertext (C∗, t∗):

Pick u∗
$← {0, 1}k−k0

Compute s∗ ← u∗ ⊕Mb||0k1

Compute C∗ ← f(s∗)
Pick ω∗

$← {0, 1}k0

Compute t∗ ← ω∗

d
$← AH,D(sk,·)−{(C∗,t∗)}((C∗, t∗), state)

Figure 1: Games in the Proof of Theorem 3.2: Shaded areas indicate the differences between the games. It is
always assumed that the output (M0, M1, state) of A in the first phase satisfies |M0| = |M1|.

Note that in Game3
A,b the distribution of the data is independent of bit b. Hence, the probabilities

Pr
[
Game3

A,1(k) = 1
]

and Pr
[
Game3

A,0(k) = 1
]

for b = 1 and b = 0, respectively, are identical. Therefore,

Pr
[
Game0

A,1(k) = 1
]
− Pr

[
Game0

A,0(k) = 1
]

=
2∑

i=0

Pr
[
Gamei

A,1(k) = 1
]
− Pr

[
Gamei+1

A,1(k) = 1
]

+Pr
[
Game2

A,1(k) = 1
]
− Pr

[
Game2

A,0(k) = 1
]

+
0∑

i=2

Pr
[
Gamei+1

A,0(k) = 1
]
− Pr

[
Gamei

A,0(k) = 1
]

and it suffices to show that Pr
[
Gamei

A,b(k) = 1
]
− Pr

[
Gamei+1

A,b(k) = 1
]

for i = 0, 1, 2 are negligible for any
b ∈ {0, 1}. by flipping A’s output bit we can always assume that the differences are positive. In the sequel we
fix the bit b.

Simulating the Decryption Oracle. We first describe how to simulate decryption queries in the games
without knowing the secret key f−1 to f . This is accomplished through the random oracle mode and via one
procedure D which works for all games. In addition to a ciphertext (C, t) this procedure gets the public data
K, f and a list LH , representing A’s queries to random oracle H and the answers as input. The procedure

13

checks if there is exactly one pair (s, ω) in LH such that C = f(s); if so, then it computes r ← t⊕ ω and then
M ||z ← s⊕ Gncr(K, r). It finally outputs M if z = 0k1 . In any other case, if there is no unique entry in LH

or if z 6= 0k1 then it returns ⊥.
We next prove that this decryption procedure may substitute the actual decryption oracle except with

negligible simulation error probability in all games. More formally, this means that for every decryption
request in the game we run D (on the list LH of communication between A and H up to this point) instead
of D. Let DecErrori denote the event that D returns a different answer than D for the i-th decryption query
in the corresponding game, given that the first i − 1 replies were identical. It then suffices to show that the
probability of DecErrori is negligible for arbitrary i. Recall that we call a ciphertext valid iff D returns a
message M 6= ⊥.

First note that collisions (s, ω), (s′, ω) for different s 6= s′ in the list LH are unlikely and happen with
negligible probability only at any point. This holds in all games, because the values ω are picked at random. So
we can condition on the event that there are no such collision and analyze Pr [DecErrori] under this condition,
i.e., it suffices to discuss the case of missing entries in LH , as this is the only case when D’s behavior diverges;
if there is a unique entry in LH then D gives the same answer as the genuine decryption oracle.

Behavior in Game Zero. Assume that A submits some (C, t) to the decryption oracle with the i-th query
in Game0

A,b such that there is no matching entry in LH . Let s, r,M ||z denote the unique values such that
f(s) = C, r = t⊕H(s) and M ||z = Gnm(r)⊕ s. Let ω∗, r∗,M∗

b ||0k1 denote the corresponding values for the
challenge ciphertext (C∗, t∗).

• If we are in the first phase of the game, before A receives the challenge ciphertext, and there is no value
for s in LH , then r = H(s)⊕ t is an unknown random value. The probability that the least significant
bits of G(K, r)⊕ s equal 0k1 is therefore negligibly close to 2−k1 by the pseudorandomness of G. Else it
would be easy to construct a distinguisher.

• If we are in the second phase, after having received the challenge ciphertext, and C 6= C∗, then we have
s 6= s∗ and H(s) is again an unknown random value for which the same argument as for the first phase
applies.

• If we are in the second phase and C = C∗ and thus s = s∗ but t 6= t∗, then we have r 6= r∗ as well. The
equation G(K, r)⊕M ||z = s = s∗ = Gncr(K, r∗)⊕M∗

b ||0k1 implies the equation lsbk1(G(K, r))⊕ lsbk1(G(K, r∗)) =
z and in order for the actual decryption oracle to decrypt to a valid message, the least significant bits
z must be zero. But the probability of finding such r∗ is negligible by the near-collision resistance
(otherwise it would be easy to construct a successful collision finder).

Hence, the probability of event DecErrori in Game0
A,b is negligible and D simulates D correctly with overwhelm-

ing probability.

Behavior in Games One, Two and Three. We address D’s behavior in experiment Game1
A,b. This case is

even easier as the challenge ciphertext is now independent of H. That is, if the adversary submits a ciphertext
(C, t) to the decryption oracle, without having queried H about s = f−1(C) before, then r = t⊕H(s) is an
unknown random value. Hence, as in Game0

A,b, the probability that the least significant bits of G(K, r) equal
those of s is negligible. The same argument also applies to Game2

A,b and Game3
A,b. Note that we merely compare

the behavior of the simulated decryption oracle and the original decryption procedure in the corresponding
game, i.e., even if the challenge ciphertext is created with false values.

Comparing Games Zero and One. We next show that A’s output differs between Game0
A,b and Game1

A,b

by a negligible probability only. The only difference between the games occurs if A at some point queries H
about the value s∗ used in the challenge ciphertext (else the experiments are identical from A’ viewpoint).
Assume towards contradiction that this probability was non-negligible. Then we construct an algorithm Bb

(for fixed bit b), refuting the one-wayness of trapdoor permutation family F .
Algorithm Bb is given (f, Z) as input, where f is a random function from F and Z = f(Y) for a random

Y . The goal of Bb is to find Y . To achieve this goal Bb picks K ← KGenG(1k) and starts to simulate A on
(K, f). Using standard techniques, Bb also simulates random oracle access to H, maintaining a list LH for
the communication between A and the simulated oracle H. Every time A queries H about a value s, then Bb

also checks if f(s) = Z. If so, Bb stops immediately with output s.

14

Furthermore, Bb uses the simulated decryption oracle, procedure D, to answer decryption queries of A
without knowing f−1. If A outputs two challenge messages M0,M1 then Bb picks ω∗ at random and returns
(C∗, t∗) = (Z, ω∗). If finally A stops and has not triggered the event f(s) = Z, then Bb stops with output ⊥.

To analyze the success probability of Bb note that Bb prepares the challenge ciphertext part C∗ = Z = f(Y)
with an independent random value Y (which Bb tries to determine) instead of f(G(K, r)⊕Mb||0k1), and uses
t∗ = ω∗ instead of t∗ = H(s∗)⊕ r. We discuss that if the probability of A asking H about f−1(C∗) drops
significantly in this simulation, i.e., from noticeable in experiment Game1

A,b to negligible here, then this refutes
the pseudorandomness of G via a distinguisher Db.

Consider the distinguisher Db, which on input (K, u) for random or pseudorandom u, picks f from F and
starts the same simulation of A as Bb does (including the simulation of oracle H and decryption queries via
D). Only to prepare the challenge ciphertext Db now computes C∗ = f(u⊕Mb||0k1) and sets t∗ = ω∗ for
random ω∗. If A during the simulation at some point submits a query to H about f−1(C∗) then Db stops
with output 1, else it returns 0.

If Db’s input u is pseudorandom then Db mimics A’s attack in Game1
A,b up to the H-query perfectly9 (since

t∗ = ω∗ is also uniformly distributed, like t∗ = H(f−1(C∗))⊕ r for the unknown hash value). Hence, Db

outputs 1 with noticeable probability. If, on the other hand, u is truly random, then f−1(C∗) has the same
distribution as the random X and Db would output 1 (namely, if A queries H) with negligible probability
only. This would yield a contradiction to the pseudorandomness of G.

Overall it follows that Bb inverts f on Y with noticeable probability, in contradiction to the one-wayness
of F . Therefore, our assumption about A querying H about f−1(C∗) with noticeable probability in Game1

A,b

must have been wrong. But then A*s output behavior cannot change noticeably in the two games.

Comparing Games One and Two. Note that replacing t∗ = ω∗ ⊕ r by t∗ = ω∗ cannot change A’s output
behavior at all.

Comparing Games Two and Three. If the adversary’s output probability would change noticeably between
the two games because of the substitution of G(K, r) by u, then this would contradict the pseudorandomness
of G. Namely, construct a distinguisher Db as in the previous case, but this time Db on input K, u runs the
simulation till the end (including generation of the challenge ciphertext from u), and finally copies A’s output.
If u was pseudorandom then Db’s output is almost identical (except for the negligible error in simulating
decryption queries) to Game1

A,b, and if u was truly random then Db’s output is negligibly close to the one in
Game2

A,b.
We conclude that the encryption scheme is IND-CCA2 in the RO model.

C Proof of Theorem 3.4

In this section we show that the partial instantiation of the H-oracle in OAEP through a non-malleable
pseudorandom generator yields NM-CPA security (for pre-defined message distributions and relations).

Let A be an arbitrary probabilistic polynomial-time algorithm attacking the encryption scheme in a
NM-CPA scenario. As in the previous proof we consider a sequence of games where the fixed bit b ∈ {0, 1}
indicates whether the ciphertext encrypts message M∗ (b = 0) or the independent message M ′ (b = 1).

• Let Game0
A,b(k) denote the original attack of A on the encryption scheme in experiment Expnm-cpa-b

AS,A ,
where the adversary gets to see an encryption of message M∗ ← M and M ′ ← M, respectively, and
where it tries to find a ciphertext of a related message to M∗ (for both cases b = 0 and b = 1).

• In Game1
A,b(k) we restrict A’s access to random oracle G such that queries about the value r∗ in the

challenge ciphertext are answered with ⊥ instead (we write G− {r∗} for this oracle).

• In Game2
A,b(k) we change the output of the experiment if A returns a ciphertext C = f(s)||t such that

the corresponding r value is different from r∗, yet A has not asked oracle G − {r∗} about r before; in
that case we set the experiment’s output to 0.

9Up to the negligible simulation error for decryption queries.

15

• In Game3
A,b(k) we further restrict the experiment’s output, and define the output to be 0 if the adversary

outputs a ciphertext with value r = r∗ (and without having asked G− {r∗} about r, of course).

• In Game4
A,b(k) we are left with the case that the adversary outputs r 6= r∗ and has asked G−{r∗} about

the value r before. We now change the experiment by always encrypting message M ′ ← M (even for
b = 0).

All games are described formally in Figure C. It is easy to see that the output of experiments Game0
A,b(k)

for b = 0, 1 are identical distributions to the ones of Expnm-cpa-0
AS,A and Expnm-cpa-1

AS,A , respectively, and that the
output distribution of experiments Game4

A,b(k) for b = 0, 1 are identical.
To prove the theorem it remains to show that for both bits b = 0, 1 the transition from Game0

A,b(k)
(≡ Expnm-cpa-b

AS,A) to Game4
A,b(k) does not change the output behavior significantly. More precisely, it suffices

to show that ∣∣∣Pr
[
Gamei

A,b(k) = 1
]
− Pr

[
Gamei+1

A,b(k) = 1
]∣∣∣

is negligible for each i = 0, 1, 2, 3 and each b = 0, 1. By flipping the relation’s output in A’s attack we can
always assume that each difference (without considering the absolute value) is positive. In the sequel fix a bit
b.

Comparing Games Zero and One. We show that the probability that A asks G about r∗ in experiment
Game0

A,b(k) is negligible. Assume towards contradiction that this is not the case. Then it is easy to construct
a successful distinguisher Db for the pseudorandomness of H (with respect to the hint(s∗) function which picks
(f, f−1) $← F and outputs f, f(s∗)).

Algorithm Db gets as input the generator’s key K and f as well as a pair (f(s∗), u∗) where s∗
$←

{0, 1}k−k0−k1 and u∗ is either HK(s∗) or truly random. Algorithm Db next invokes a black-box simula-
tion of A on 1k, simulating random oracle G by well-known techniques. When A outputs a distributionM, a
relation R (and state) Db picks r∗ ← {0, 1}k0 and computes t∗ = u∗ ⊕ r∗. It continues the simulation of A for
pk = (K, f) and (state, f(s∗)||t∗) until A stops. If at some point during the simulation A has submitted r∗ to
the (simulated) random oracle G, possibly before seeing the challenge ciphertext, then Db outputs 1, else Db

returns 0.
It is clear that if A’s probability of querying G about r∗ would drop from noticeable to negligible in the

case of a random u∗ then Db would successfully distinguish pseudorandom and random inputs with respect
to hint(s∗) = (f, f(s∗)). Hence A must also have noticeable success probability in the case of random u∗.
But for such a random u∗ the value t∗ = u∗ ⊕ r∗ hides r∗ information-theoretically, and the probability
that the i-th query to G equals r∗ (given that the first i − 1 queries were all different from r∗) is at most
1/(2k0 − i − 1). Therefore A’s overall success probability remains negligible since the number of queries is
polynomially bounded, contradicting our initial assumption.

Comparing Games One and Two. The only difference between the two games lies in the case where A
outputs a ciphertext f(s)||t, implicitly specifying M, r, such that r 6= r∗ and A has never asked G − {r∗}
about r. But then G(r) is an unknown random value and the probability that the k1 least significant bits
of G(r)⊕M ||0k1 equal those of s is at most 2−k1 . We can thus neglect the contribution of this event to the
output, without losing more than a negligible amount.

Comparing Games Two and Three. We claim that the probability ofA outputting a ciphertext of a related
message for r = r∗ is negligible. This follows from the non-malleability of H and the pseudorandomness of H.
Namely, in a first step we can replace the pair (f(s∗),HK(s∗)) in the computation of the challenge ciphertext
by a pair (f(s∗),HK(s′)) for an independent s′. As we will describe below, by the non-malleability of H
the success probability of A for r = r∗ will not change significantly. Then, due to the pseudorandomness
of H we can replace HK(s′) by a pseudorandom value u′. But then r∗ is information-theoretically hidden
from A and the probability that A outputs a valid ciphertext for r = r∗ is negligible (and so must be the
initial probability). Note that pseudorandomness of H alone does not guarantee this but that some kind of
non-malleability is necessary (cf. [9]).

We next formalize the above ideas. In Game2
A(k) denote by SameRnd the event that A outputs a ciphertext

f(s)||t such that f(s)||t = Epk(M ; r) is a valid ciphertext for M but different from f(s∗)||t∗, r = r∗ and

16

Experiment Game0A,b(k):

(pk, sk)
$← K(1k)

(M, R, state)
$← AG(1k)

Pick M∗ $←M
if b = 0 then M ′ ←M∗ else M ′ $←M
Pick r∗

$← {0, 1}k
Compute C∗||t∗ ← E(pk, M ′; r∗)

C||t $← AG(C∗||t∗, pk, state)
M ← D(sk, C||t)
return R(M∗, M)

Experiment Game1A,b(k):

(pk, sk)
$← K(1k)

Pick r∗
$← {0, 1}k

(M, R, state)
$← A G − {r∗}

(1k)

Pick M∗ $←M
if b = 0 then M ′ ←M∗ else M ′ $←M
Compute C∗||t∗ ← E(pk, M ′; r∗)

C||t $← A G − {r∗}
(C∗||t∗, pk, state)

M ← D(sk, C||t)
return R(M∗, M)

Experiment Game2A,b(k):

(pk, sk)
$← K(1k)

Pick r∗
$← {0, 1}k

(M, R, state)
$← AG−{r∗}(1k)

Pick M∗ $←M
if b = 0 then M ′ ←M∗ else M ′ $←M
Compute C∗||t∗ ← E(pk, M ′; r∗)

C||t $← AG−{r∗}(C∗||t∗, pk, state)
M ← D(sk, C||t)

Let r be such that C||t = E(pk, M ; r)

if r 6= r∗ and r /∈ AskG then

return 0

else

return R(M∗, M)

Experiment Game3A,b(k):

(pk, sk)
$← K(1k)

Pick r∗
$← {0, 1}k

(M, R, state)
$← AG−{r∗}(1k)

Pick M∗ $←M
if b = 0 then M ′ ←M∗ else M ′ $←M
Compute C∗||t∗ ← E(pk, M ′; r∗)

C||t $← AG−{r∗}(C∗||t∗, pk, state)
M ← D(sk, C||t)

Let r be such that C||t = E(pk, M ; r)

if (r 6= r∗ and r /∈ AskG) or r = r∗ then

return 0
else

return R(M∗, M)

Experiment Game4A,b(k):

(pk, sk)
$← K(1k)

Pick r∗
$← {0, 1}k

(M, R, state)
$← AG−{r∗}(1k)

Compute ciphertext (C∗, t∗):

Pick M∗ $←M

Pick M ′ $←M
Compute C∗||t∗ ← E(pk, M ′; r∗)

C||t $← AG−{r∗}(C∗||t∗, pk, state)
M ← D(sk, C||t)

Let r be such that C||t = E(pk, M ; r)
if (r 6= r∗ and r /∈ AskG) or r = r∗ then

return 0
else

return R(M∗, M)

Figure 2: Games in the Proof of Theorem 3.4: Shaded areas indicate the differences between the games. It is
always assumed that the support of M consists of equal-length messages and that C∗||t∗ 6= C||t. Let AskG denote the
queries A made to its oracle.

17

RA(M∗,M) = 1 for the pre-defined relation RA. Now consider the probability of event SameRnd when
we slightly change the experiment by tweaking the computation of the challenge ciphertext f(s∗)||t∗ for
t∗ = HK(s∗)⊕ r∗ as follows. We instead pick an independent s′ and compute t∗ as t∗ = HK(s′)⊕ r∗ (but keep
the value f(s∗)). Denote the corresponding experiment by Game2

A,b
′(k) and the event by SameRnd′.

We claim that the probability of SameRnd in the altered game changes only negligibly, due to the non-
malleability of H. Specifically, construct the following algorithm Bb from A, executing either Game2

A,b(k) or
Game2

A,b
′(k), and the following relation RB.

Since we consider the case of a pre-defined distributionsM and relations RA in A’s attack we can specify
a pre-defined relation RB based on M and RA as follows: This relation works by simulating A’s program in
the first phase, up to the step where A outputs M, R and state. The description of the relation includes all
random oracle queries made by A and the answers (including the pre-selected value r∗), the descriptions of
M and R as well as state and the fixed bit b, and two random messages M∗,M ′ ←M(1k). The relation RB
for input s∗, s then lets γ = s∗ ⊕M∗||0k1 if b = 0 and γ = s∗ ⊕M ′||0k1 if b = 1; then let M ||z = s⊕ γ and
output 1 iff z = 0k1 and RA(M∗,M) = 1.

This algorithm Bb gets as input a tuple (f, f(s∗), y) where f
$← F , s∗

$← {0, 1}k and y is either HK(s∗)
or HK(s′) for an independent s′

$← {0, 1}k−k0 . It also receives the description of the relation RB, including
the random oracle queries to G−{r∗} and the values r∗,M∗,M ′. Algorithm Bb starts a black-box simulation
of A for input (f,K) and state as well as f(s∗)||t∗ for t∗ = y ⊕ r∗; algorithm Bb also When the encryption
attacker A finally outputs f(s)||t we let Bb output f(s), t⊕ r∗.

For the analysis consider first the case that Bb’s input y equals HK(s∗). It is easy to see that Bb perfectly
simulates A’s view in Game2

A,b(k). Hence, if SameRnd occurs in the simulation —which happens with the
same probability as in Game2

A,b(k)— then we have for Bb’s output (RB, f(s), t⊕ r∗) that r = r∗ and thus
G(r∗) = G(r) for the unspecified value G(r∗). Therefore, and since the ciphertext f(s)||t of M under r is
valid,

t⊕ r∗ = H(s)⊕ r ⊕ r∗ = H(s), RA(M∗,M) = 1 and

M ||0k1 = s⊕G(r) = s⊕G(r∗) = s⊕ (s∗ ⊕M∗||0k1) = s⊕ γ if b = 0

M ||0k1 = s⊕G(r) = s⊕G(r∗) = s⊕ (s∗ ⊕M ′||0k1) = s⊕ γ if b = 1

Furthermore, for r = r∗ the values s, s∗ and thus the ciphertexts must be different. Hence Bb’s attack returns
1 with the same probability as SameRnd in Game2

A,b(k) occurs.
Now consider the case that y equals HK(s′) for an independent value s′. As above it follows that Bb’s

attack returns 1 with the same probability as SameRnd′ in Game2
A,b

′(k) happens. By the non-malleability
assumption the probability for SameRnd′ in Game2

A,b
′(k) must be negligibly close to SameRnd in Game2

A(k).
In the next step we transform Game2

A,b
′(k) into an experiment Game2

A,b
′′(k) where, instead of using HK(s′)

for the computation of the challenge ciphertext, we pick a truly random string u′, i.e., now we set t∗ = u′ ⊕ r∗.
Denote by SameRnd′′ the event that A outputs (RA, f(s)||t) in this game such that f(s)||t = Epk(M ; r) is a
valid ciphertext for M but different from f(s∗)||t∗, and that RA(M∗,M) = 1 and r = r∗.

We claim that the difference of the probabilities for SameRnd′ and SameRnd′′ is negligible. Consider the
following distinguisher Db against the pseudorandomness. It gets as input a value (K, y) where y is either
HK(s′) for a random s′ or equals a random value u′. Then Db picks (f, f−1)← F and r∗ ← {0, 1}k0 and starts
a black-box simulation of A for input (f,K). In particular, Db simulates random oracle access to G − {r∗}
as Bb. If A at some points generates M, R and state then Db picks M∗ $← M(1k) and s∗ ← {0, 1}k−k0 and
continues the simulation for (state, f(s∗)||t∗) where t∗ = y ⊕ r∗ for the given y. When A finally returns f(s)||t
then Db tries to decrypt f(s)||t to M, r and returns 1 if and only if decryption succeeds, f(s)||t 6= f(s∗)||t∗,
r = r∗ and RA(M∗,M) = 1.

Note that in contrast to Bb the distinguisher Db here knows the inverse function f−1 to f ; this is necessary
to evaluate the relation RA on the messages at the end. But then it is easy to verify that Db returns 1 in the
experiment above for y = HK(s′) with the same probability that SameRnd′ in Game2

A,b
′(k) happens, and for

random y = u′ with the same probability that SameRnd′′ in Game2
A,b

′′(k) occurs. By the pseudorandomness
both probabilities must be negligibly close then.

18

The final step is to observe that the probability of SameRnd′′ in Game2
A,b

′′(k) is negligible. This is because
the distribution of the challenge ciphertext is now completely independent of r∗ and we can thus think of r∗

as drawn only after A has output the valid ciphertext f(s)||t. But the probability of r = r∗ is at most 2−k0 in
this case. It follows that the probability of event SameRnd in Game2

A,b(k) is negligible. This proves that the
output distributions in Game2

A,b(k) and Game3
A,b(k) are negligibly close.

Comparing Games Three and Four. For b = 1 it is clear that the two games are identical. Let b = 0.
Since A is only granted access to oracle G− {r∗} the distributions of s∗ in both games are identical. On the
other hand, the adversary’s message M is already determined upon giving the final output (because r 6= r∗

has been submitted to G before). Hence, this message M is independent of the message encrypted in the
challenge ciphertext, no matter whether this is M∗ or M ′.

This proves that the encryption scheme is secure in the NM-CPA sense.

D Instantiating the H-Oracle for IND-CCA2 Security

In this section we show that the partial instantiation of H achieves IND-CCA2 security, as long as the
instantiating pseudorandom generator is non-malleable under chosen-image attacks (i.e., where the adversary
is allowed to make inversion queries to the trapdoor pseudorandom generator):

Definition D.1 Assume H = (KGenH,H,TdH) is a trapdoor pseudorandom generator (which is pseudoran-
dom with respect to hint(x) = (f, f(x)) for (f, f−1) ← F (1k) from the trapdoor function family F). Then H
is called non-malleable under chosen-image attacks with respect to hint if for any efficient algorithm B and
any efficient relation R the following random variables Expnm-cia-1

H,B,F,R (k), Expnm-cia-0
H,B,F,R (k) are computationally

indistinguishable, where the experiments are defined as follows.

Experiment Expnm-cia-1
G,B,F,R (k)

(K, K−1) $← KGenH(1k)
(f, f−1) $← F

s∗
$← {0, 1}k

y∗
$← HK(s∗)

(z, y) $← BTdH(K−1,·)−{y∗}(K, f, f(s∗), y∗)
s← f−1(z)
Return 1 iff

R(s∗, s) ∧ HK(s) = y ∧ s∗ 6= s

Experiment Expnm-cia-0
G,B,F,R (k)

K
$← KGenH(1k)

(f, f−1) $← F

s∗
$← {0, 1}k ; s′

$← {0, 1}k

y′
$← HK(s′)

(z, y) $← BTdH(K−1,·)−{y′}(K, f, f(s∗), y′)
s← f−1(z)
Return 1 iff

R(s∗, s) ∧ HK(s) = y ∧ s∗ 6= s

Although it seems to be moot to plug in a “chosen-ciphertext secure” function to obtain a chosen-ciphertext
encryption scheme, our goal is to show that one can instantiate the random oracle in principle, providing a
possibly non-optimized feasibility result. As the counterexamples show such results are far from trivial, e.g.,
the CGH encryption scheme [11] in the random oracle model cannot be instantiated with any function, not
even with a secure encryption scheme.

We now prove Theorem 3.5 stating that the partial H-instantiation through a pseudorandom generator
which is non-malleable under chosen-image attacks is IND-CCA2:

Proof of Theorem 3.5: The proof follows similar to the one of the IND-CCA2 secure G-instantiation.

That is, for an arbitrary probabilistic polynomial-time algorithm A we let Game0
A,b(k) denote the original

attack of A on the encryption scheme OAEPG,H[Ft-clear] where message Mb for fixed bit b is encrypted in the
challenge ciphertext. Let Game1

A,b(k) denote the game where we replace G(r∗) in the challenge ciphertext by
a uniformly and independently distributed string ω∗, making the challenge ciphertext independent of b (as
formally carried out in Game2

A,b(k)). All games are described formally in Figure D. We remark that we use
the chosen-image pseudorandomness of H for showing that the adversarial behavior in the two games cannot
differ significantly.

19

Experiment Game0
A,b(k):

((f−1,K), (f,K)) $← K(1k)
(M0,M1, state) $← AG,D(sk,·)(f,K)
Compute ciphertext (C∗, t∗):

Pick r∗
$← {0, 1}k0

Compute s∗ ← G(r∗)⊕Mb||0k1

Compute C∗ ← f(s∗)
Compute t∗ ← H(K, s∗)⊕ r∗

d
$← AG,D(sk,·)−{(C∗,t∗)}((C∗, t∗), state)

Experiment Game1
A,b(k):

((f−1,K), (f,K)) $← K(1k)
(M0,M1, state) $← AG,D(sk,·)(f,K)
Compute ciphertext (C∗, t∗):

Pick r∗
$← {0, 1}k0

Pick ω∗
$← {0, 1}k−k0

Compute s∗ ← ω∗ ⊕Mb||0k1

Compute C∗ ← f(s∗)
Compute t∗ ← H(K, s∗)⊕ r∗

d
$← AG,D(sk,·)−{(C∗,t∗)}((C∗, t∗), state)

Experiment Game1
A,b(k):

((f−1,K), (f,K)) $← K(1k)
(M0,M1, state) $← AG,D(sk,·)(f,K)
Compute ciphertext (C∗, t∗):

Pick r∗
$← {0, 1}k0

Pick ω∗
$← {0, 1}k−k0

Compute s∗ ← ω∗

Compute C∗ ← f(s∗)
Compute t∗ ← H(K, s∗)⊕ r∗

d
$← AG,D(sk,·)−{(C∗,t∗)}((C∗, t∗), state)

Figure 3: Games in the Proof of Theorem 3.5: Shaded areas indicate the differences between the games. It is
always assumed that the output (M0, M1, state) of A in the first phase satisfies |M0| = |M1|.

It again suffices to show that Pr
[
Gamei

A,b(k) = 1
]
− Pr

[
Gamei+1

A,b(k) = 1
]

is negligible for any i = 0, 1

and b ∈ {0, 1}, as the probabilities Pr
[
Game2

A,1(k) = 1
]

and Pr
[
Game2

A,0(k) = 1
]

for b = 1 and b = 0,
respectively, are identical.

Simulating the Decryption Oracle. We again first describe how to simulate decryption queries in the
games without knowing the secret key f−1 to f . This is accomplished through the random oracle model and
via one procedure D which works for all games. In addition to a ciphertext (C, t) this procedure gets the
public data K, f and a list LG, representing A’s queries to random oracle G and the answers as input. The
procedure also gets access to the function TdH(K−1, ·), initialized with the matching secret key K−1 to K.
To answer a decryption request (C, t) procedure D browses through each entry (r, ω) in the list LG and does
the following (where (C∗, t∗) denotes the challenge ciphertext):

• Compute h = t⊕ r and submit h to TdH(K−1, ·).

• Check if the answer s matches C, i.e., if f(s) = C. If so, compute M ||z = s⊕ ω.

• If z = 0k1 then return M .

• In any other case, if there is no matching entry (r, ω), or if there is one but z 6= 0k1 , then D returns ⊥.

Note that D never puts a G-query during this procedure. Observe also that, if there is a corresponding entry
in LG, then it is unique.

20

We next prove that this decryption procedure may substitute the actual decryption oracle except with neg-
ligible simulation error probability in all games. More formally, this means that for every decryption request
in the game we run D (on the list LG of communication between A and G up to this point) instead of D.
Let DecErrori denote the event that D returns a different answer than D for the i-th decryption query in the
corresponding game, given that the first i−1 replies were identical. It then suffices to show that the probability
of DecErrori is negligible for arbitrary i. Recall that we call a ciphertext valid iff D returns a message M 6= ⊥.

Behavior in Game Zero. Assume that A submits some (C, t) to the decryption oracle with the i-th query
in Game0

A,b such that there is no matching entry in LG. Let s, r,M ||z denote the unique values such that
f(s) = C, r = t⊕ H(K, s) and M ||z = G(r)⊕ s. Let ω∗, r∗,M∗

b ||0k1 denote the corresponding values for the
challenge ciphertext (C∗, t∗).

• If we are in the first phase of the game, before A receives the challenge ciphertext, and there is no value
for r in LG, then G(r) is an unknown random value. The probability that the least significant bits of
G(r)⊕ s equal 0k1 is therefore 2−k1

• If we are in the second phase, after having received the challenge ciphertext, and C = C∗ and thus
s = s∗ but t 6= t∗, then r 6= r∗ as well. Hence, G(r) is an unknown independent random value and the
probability that the lower bits of G(r)⊕ s are 0k1 is 2−k1 .

• If we are in the second phase and C 6= C∗ and thus s 6= s∗, then the generator’s algorithm TdH returns
this value s. In this case the answer of D is identical to the one of D.

Hence, the probability of event DecErrori in Game0
A,b is negligible and D simulates D correctly with overwhelm-

ing probability.

Behavior in Games One and Two. To analyze the behavior of D in experiment Game1
A,b we note that,

from the adversary’s point of view, the games are identical if A never queries G about r∗. In particular,
conditioning on the fact that A never submits r∗ to G, the substitution procedure D works almost perfectly
in Game1

A,b, too (exploiting the fact that D never queries G).

Assume that the probability that A queries G about r∗ in Game0
A,b was noticeable. Then we claim that this

remains noticeable if we replace G(r∗) in the challenge ciphertext by a random ω∗ and, likewise, substitute
H(s∗) for a random value u∗. Suppose towards contradiction that this was not the case. Then we derive a
contradiction to the non-malleability and pseudorandomness of the generator as follows.

In the first step we show that replacing H(K, s∗) by H(K, s′) for an independent s′ cannot change A’s success
probability significantly due to the non-malleability of H. For this consider the following adversary Bb (with
fixed bit b) against the non-malleability. Let R(s∗, s) be the pre-defined relation which outputs 1 if and only
if the least significant bit of s equals 1. After outputting a description of this relation, Bb gets K, hint(s∗) =
(f, f(s∗)), y∗ for random s∗ as input, where either y∗ = H(K, s∗) or y∗ = H(K, s′) for an independent s′.
Adversary Bb is also allowed to query oracle TdH(K−1, ·) for values different from y∗.

Bb selects some r∗ ← {0, 1}k0 at the beginning. It starts an emulation of A by simulating the random oracle
G as usual and using procedure D to answer decryption queries. If at any point during this simulation A
queries G about r∗ then Bb immediately stops with output s such that lsb1(s) = 1. By this Bb simulates
A’s attack in the first phase up to the step where A outputs M0,M1. Then B1 prepares a ciphertext (C∗, t∗)
as C = f(s∗) and t∗ = y∗ ⊕ r∗. It returns (C∗, t∗) to A and continues the simulation (as before, answering
decryption queries as before and stopping with output s such that lsb1(s) = 1 if A asks G about r∗).

If Bb’s input y∗ equals G(K, s∗), then the probability of A asking G about r∗ is identical to the one in Game0
A,b.

Up to the point where A queries G about r∗ the value G(r∗)⊕Mb||0k1 is random, as is the given s∗. Hence,
the adversary’s view in this simulation is identical to the one in the game. Overall, Bb outputs 1 in this case
with noticeable probability by assumption. If Bb’s input y∗, on the other hand, is for an independent s′, then
the probability of returning 1 drops to negligible by assumption. But then Bb would successfully refute the
non-malleability of the generator.

21

In the next step we replace the value H(K, s′) by a truly random value u∗ and we again show that this
cannot affect A’s probability of querying G about r∗ noticeably. Suppose again that this was not the case
and that the probability would drop to negligible. Then we construct a successful distinguisher Db against
the pseudorandomness of H.

Algorithm Db gets K, y∗ as input, where either y∗ = H(K, s′) or y∗ is truly random. Db chooses (f, f−1 $←
F (1k) and r∗ ← {0, 1}k0 at the beginning. It starts an emulation of A by simulating the random oracle G as
usual and using procedure D to answer decryption queries, with the important difference that it does not use
procedure TdH(K−1, ·) but instead uses f−1 to derive the pre-image and then compares it to the given value.
Analogously to Bb distinguisher Db stops with output 1 if A queries G about r∗ during the simulation. Thus
Db simulates A’s attack in the first phase up to the step where A picks messages M0,M1. Then Db computes
a ciphertext (C∗, t∗) as C = f(s∗) for random s∗ and t∗ = y∗ ⊕ r∗. It returns (C∗, t∗) to A and continues the
simulation (as before, answering decryption queries as before and stopping with output 1 if A asks G about
r∗).

If D’s input y∗ is pseudorandom, then the probability of A asking G about r∗ is identical to the one in Game0
A,b

when we use H(K, s′). Namely, up to the point where A queries G about r∗ the value G(r∗)⊕Mb||0k1 is
random, as is s∗. Hence, the adversary’s view in this simulation is identical to the one in the game. Overall,
D outputs 1 in this case with noticeable probability. If D’s input y∗, on the other hand, is truly random, then
the probability of returning 1 drops to negligible by assumption. But then D would successfully distinguish
the two cases, contradicting the pseudorandomness of H.

We conclude that A’s probability of asking r∗ to G if we replace G(r∗) and H(K, s∗) by random elements ω∗, u∗

must remain noticeable. However, since r∗ in information-theoretically hidden in the challenge ciphertext with
these substitutions, the probability can only be 2−k0 . This yields a contradiction to our initial assumption
about A asking G about r∗ in Game0

A,b with noticeable probability. As discussed, this implies that D also
works in Game1

A,b with overwhelming probability.

Comparing Games Zero, One and Two. By the previous considerations about D’s behavior in Game1
A,b

adversary asks G about r∗ with negligible probability in Game0
A,b only. Given this all three games are identical

from A’s viewpoint.

We conclude that the encryption scheme is IND-CCA2 in the RO model.

E Proof of Theorem 4.1

Let A be an attacker on the $NM-CPA property and RA be a relation. Once more we look at a sequence of
games Gamei

A,b(k) for i = 0, 1, 2, 3 and bit b = 0, 1 where Game0
A,RA,b(k) describes A’s attack in experiment

Exp$nm-cpa-b
AS,A for uniform messages distributions. The games are described formally in Figure E. Informally,

the differences between the games is as follows:

• As mentioned before, Gamei
A,RA,b(k) measures A’s success probability in scenario Exp$nm-cpa-b

AS,A,RA
. That

is, for b = 0 the adversary gets a ciphertext f(s∗)||γ∗||t∗ of message M∗ with γ∗ = lsbk1(G(KG, r∗)) and
t∗ = H(KH, s∗||γ∗)⊕ r∗ and tries to find a ciphertext f(s)||γ||t of a related message M . For b = 1 the
adversary sees a ciphertext of an independent message M ′ instead.

• In the next experiment Game1
A,RA,b(k) we replace the computation of HKH(s∗||γ∗) in the challenge

ciphertext by an evaluation for an independent s′||γ′. That is, the challenge ciphertext is of the form
f(s∗)||γ∗||HKH(s′||γ′)⊕ r∗.

• In Game2
A,RA,b(k) we then substitute the value HKH(s′||y′) by the evaluation of a truly random element

u′ such that the challenge ciphertext equals f(s∗)||γ∗||u′ ⊕ r∗.

• We finally replace the value GKG(r∗) in the challenge ciphertext by a random element v∗.

22

Proceeding from Gamei
A,RA,b(k) to Gamei+1

A,RA,b(k) for fixed bit b we show that A’s success probability cannot
change noticeably. But in the final game the challenge ciphertext is independent of the message and the
experiments Game3

A,RA,0(k) and Game3
A,RA,1(k) generate the same output distribution. We conclude that the

initial games Game0
A,RA,0(k) and Game0

A,RA1(k) must be negligibly close.

Experiment Game0
A,RA,b(k):

(pk, sk) $← K(1k)
Compute ciphertext C∗||γ∗||t∗:

Pick M∗ $←M
if b = 0 then M ′ ←M∗

else M ′ $←M
Pick r∗

$← {0, 1}k0

Set s∗||γ∗ ← GKG(r∗)⊕M ′||0k1

Compute C∗ ← f(s∗)
Compute t∗ ← H(KH, s∗||γ∗)⊕ r∗

C||γ||t $← A(C∗||γ∗||t∗,pk)
M ← D(sk, C||γ||t)
return R(M∗,M)

Experiment Game1
A,b(k):

(pk, sk) $← K(1k)
Compute ciphertext C∗||γ∗||t∗:

Pick M∗ $←M
if b = 0 then M ′ ←M∗

else M ′ $←M
Pick r∗

$← {0, 1}k0

Set s∗||γ∗ ← G(KG, r∗)⊕M ′||0k1

Compute C∗ ← f(s∗)

Pick s′||γ′ $← {0, 1}k

Compute t∗ ← H(KH, s′||γ′) ⊕ r∗

C||γ||t $← A(C∗||γ′||t∗,pk)
M ← D(sk, C||γ||t)
return R(M∗,M)

Experiment Game2
A,b(k):

(pk, sk) $← K(1k)
Compute ciphertext C∗||γ∗||t∗:

Pick M∗ $←M
if b = 0 then M ′ ←M∗

else M ′ $←M
Pick r∗

$← {0, 1}k0

Set s∗||γ∗ ← G(KG, r∗)⊕M ′||0k1

Compute C∗ ← f(s∗)

Pick γ′
$← {0, 1}k1 and u′

$← {0, 1}k0

Compute t∗ ← u′ ⊕ r∗

C||γ||t $← A(C∗||γ′||t∗,pk)
M ← D(sk, C||γ||t)
return R(M∗,M)

Experiment Game3
A,b(k):

(pk, sk) $← K(1k)
Compute ciphertext C∗||γ∗||t∗:

Pick M∗ $←M
if b = 0 then M ′ ←M∗

else M ′ $←M
Pick r∗

$← {0, 1}k0

Pick v∗
$← {0, 1}k−k0

Set s∗||γ∗ ← v∗ ⊕M ′||0k1

Compute C∗ ← f(s∗)
Pick γ′

$← {0, 1}k1 and u′
$← {0, 1}k0

Compute t∗ ← u′ ⊕ r∗

C||γ||t $← A(C∗||γ′||t∗,pk)
M ← D(sk, C||γ||t)
return R(M∗,M)

Figure 4: Games in the Proof of Theorem 4.1: Shaded areas indicate the differences between the games. It is always
assumed that M is the uniform distribution and that A returns a ciphertext different from the challenge ciphertext.

Comparing Games Zero and One. Recall that the difference between experiments Game0
A,b(k) and

Game1
A,b(k) is that we replace the value HKH(s∗||γ∗) by HKH(s′||γ′) for an independent s′||γ′. We show that the

non-malleability of H guarantees that the output of Game0
A,RA,b(k) and Game1

A,RA,b(k) are indistinguishable.
Consider an adversary Bb for fixed bit b attacking the non-malleability property of H, and a relation

RB, based on the pre-defined relation RA. The relation RB is defined as follows. It start by sampling keys
KG,KG−1 and outputs them as part of the description, together with RA. For input s∗||γ∗, s||γ relation RB
first recovers r∗, r from γ∗, γ with the help of KG−1, it then computes M∗||0k1 = s∗||γ∗ ⊕ G(KG, r∗) as well

23

as M ||z = s||γ ⊕ G(KG, r) and outputs 1 iff z = 0k1 and RA(M∗,M) = 1.
Algorithm Bb gets as input a tuple (K, f, f(s∗)||γ∗, y∗) where either y∗ = HKH(s∗||γ∗) or y∗ = HKH(s′||γ′)

for independent s′||γ′. Then Bb runs a black-box simulation of A by supplementing a key KG of the trapdoor
pseudorandom generator G and storing KG−1, taking them from the description of RB, and starting A on
the public key pk = (f,KG,KH). For generating the challenge ciphertext algorithm Bb computes r∗ from
its input γ∗ via the trapdoor procedure TdG of G. This yields a suitable r∗ and Bb returns f(s∗)||γ∗||t∗ for
t∗ = y∗ ⊕ r∗ to A. Note that s∗ here is random as it is in the A’s attack in the game (because there M∗ or
M ′ are uniformly distributed). When A finally outputs a ciphertext f(s)||γ||t then Bb reconstructs r from γ
via TdG (if the ciphertext is valid then this works again). Bb then outputs f(s)||γ, t⊕ r.

For the analysis note that r 6= r∗ implies γ = lsbk1(G(KG, r)) 6= γ∗ = lsbk1(G(KG, r∗)) with overwhelming
probability; else Bb’s values r, r∗ would contradict the near-collision resistance in a straightforward way (where
one would use f−1 to decrypt the adversarial ciphertext such that knowledge of KG−1 is not necessary). But
then the pre-images s||γ and s∗||γ∗ must be different, as required for a success in the non-malleability attack.
Similarly, if r = r∗ then we must have s 6= s∗ else the ciphertext returned by A would be equal to the challenge
ciphertext.

Furthermore, if A’s ciphertext is valid then Bb generates a valid pair f(s)||γ, HKH(s||γ) from A’s output.
Hence, the probability that Bb’s attack returns 1 for given y∗ = HKH(s∗||γ∗) is negligibly close to the probability
that Game0

A,b(k) yields 1. Analogously it follows that B’s attack gives 1 for y∗ = HKH(s′||γ′) is negligibly close
to the one in Game1

A,b(k). Hence, by the non-malleability both probabilities in the games are close.

Comparing Games One and Two. The difference between the two games is now that HKH(s′||γ′) is replaced
by a truly random string u′. We claim again that the output probabilities of the two games are not significantly
affected by this. For this consider (for fixed bit b) a distinguisher Db against the pseudorandomness of H (with
respect to hint(s′||γ′) = γ′). Algorithm Db gets as input a pair (KH, y′, γ′) where γ′ is random and y′ is either
y′ = H(KH, s′||γ′) for random s′, or y′ = u′ is truly random. Algorithm Db generates (f, f−1) ← F and
(KG,KG−1)← KGenG(1k) and starts a black-box simulation of A.

To generate the challenge ciphertext Db first samples a uniform message M∗ $←M and sets M ′ ← M∗ if
b = 0, or samples another M ′ $←M if b = 1. Algorithm Db next computes r∗

$← {0, 1}k0 from its input γ′ via
the generator’s extraction procedure TdG, as well as s∗||γ′ ← G(KG, r∗)⊕M ′||0k1 . It returns f(s∗)||γ′||y′ ⊕ r∗

to A. When A finally outputs a ciphertext f(s)||γ||t then Db uses f−1 to decrypt the ciphertext to M and
returns 1 if and only if RA(M∗,M) = 1.

It is now easy to see that for y′ = H(KH, s′||γ′) algorithm Db returns 1 with the same probability that
Game1

A,b(k) yields 1. On the other hand, for random y′ = u′ distinguisher Db outputs 1 with the same
probability that Game2

A,b(k) = 1. Hence, both games must be indistinguishable.

Comparing Games Two and Three. The indistinguishability of the two games follows again by a distin-
guisher against the pseudorandomness, this time, however, against G. We omit a formal description since the
construction of the algorithm is similar to the previous case and is straightforward noting that the distribution
of t∗ = u′ ⊕ r∗ in Game2

A,b(k) can be replaced by a random u′ instead.
This proves that the scheme is $NM-CPA.

F Proof of Theorem 5.2

Let A be a probabilistic polynomial-time algorithm attacking NM-CPA security of the hybrid scheme AS′.
Below we prove the more general result saying that the scheme is still NM-CPA if the adversary outputs
a vector of ciphertexts C1, C2, For this we consider again a sequence of games, formally described in
Figure F. such that the starting game corresponds to A’s attack scenario in the experiment Expnm-cpa-b

AS′,A (k):

• Game0
A,b describes the attack on the hybrid encryption scheme AS′ when the challenge message M∗

(b = 0) or an independent message M ′ (b = 1) is encrypted.

• Game1
A,b describes the game where we let the random oracle G return the undefined symbol ⊥ if queried

about r∗ encrypted in the challenge ciphertext. We denote this oracle by G− {r∗}.

24

• Game2
A,b describes the game where we set the experiment’s output to 0 if some asymmetric part Casym,i

of adversary’s ciphertext is different from the part C∗
asym in the challenge ciphertext, yet encrypts the

same value ri = r∗.

We show that proceeding from Gamei
A,b(k) to Gamei+1

A,b(k) for fixed bit b the adversary’s success probabil-
ity cannot change noticeably. We finally discuss that the output distribution in Game2

A,0 and Game2
A,1 are

indistinguishable, proving that the initial games Game0
A,0(k) and Game0

A,1(k) must be negligibly close.

Experiment Game0
A,b(k):

(pk, sk) $← K(1k)
(M, state) $← AG(pk)
Pick M∗ $←M
if b = 0 then M ′ ←M∗ else M ′ $←M
Compute ciphertext C∗ = (C∗

asym, C∗
sym):

Pick r∗
$← {0, 1}k

Compute C∗
asym

$← Easym(pk, r∗)
Compute C∗

sym ← Esym(G(r∗),M ′)
(R,C) $← AG(C∗, state)
M← D(sk,C)
return R(M∗,M)

Experiment Game1
A,b(k):

(pk, sk) $← K(1k)

Pick r∗
$← {0, 1}k

(M, state) $← A G − {r∗} (pk)
Pick M∗ $←M
if b = 0 then M ′ ←M∗ else M ′ $←M
Compute ciphertext C∗ = (C∗

asym, C∗
sym):

Compute C∗
asym

$← Easym(pk, r∗)
Compute C∗

sym ← Esym(G(r∗),M ′)

(R,C) $← A G − {r∗} (C∗, state)
M← D(sk,C)
return R(M∗,M)

Experiment Game2
A,b(k):

(pk, sk) $← K(1k)
Pick r∗

$← {0, 1}k

(M, state) $← AG−{r∗}(pk)
Pick M∗ $←M
if b = 0 then M ′ ←M∗ else M ′ $←M
Compute ciphertext C∗ = (C∗

asym, C∗
sym):

Compute C∗
asym

$← Easym(pk, r∗)
Compute C∗

sym ← Esym(G(r∗),M ′)
(R,C) $← AG−{r∗}(C∗, state)
M← D(sk,C) and let ri ← D(sk, Casymi

)

if ∃i : Casym,i 6= C∗
asym and ri = r∗ then

return 0
else

return R(M∗,M)

Figure 5: Games in the Proof of Theorem 5.2: Shaded areas indicate the differences between the games. It is
always assumed that the support of M consists of equal-length messages and that C∗ 6∈ C.

Comparing Games Zero and One. Assume that the probability that A queries G about r∗ in Game0
A,b was

noticeable. Then we construct a successful attacker Bb (for fixed bit b) on the one-wayness of the asymmetric
scheme. That is, Bb is given as input (pk, C∗

asym) where C∗
asym = E(pk, r∗) for an unknown random string r∗,

and the goal is to find r∗. For this, Bb runs a black-box simulation of A of Game0
A,b as described next.

Algorithm Bb first picks a random integer j between 1 and the maximum number of G-oracle queries A
makes. B∗ will stop the simulation when A makes the j-th query r to G and will output r. For the simulation

25

Bb emulates A’s oracle access with standard list techniques during the simulation. At the beginning Bb lets
A for input pk output a distribution M in the first phase. B picks M∗ $←M and sets M ′ ← M∗ if b = 0 or
picks an independent M ′ if b = 1. It selects a random key K∗ $← EKsym(1k), encrypts C∗

sym
$← Esym(K∗,M ′)

and returns C∗ = (C∗
asym, C∗

sym) to A. Algorithm B stops with output r if A makes the j-th query r to G (or
Bb outputs ⊥ if A stops prematurely).

Since the simulation is perfect from A’s viewpoint up to the point where A makes the query r∗ to G, we
conclude that Bb returns the pre-image r∗ of C∗

asym with noticeable probability. This, however, contradicts
the one-wayness of the encryption scheme.

Comparing Games One and Two. Recall that the difference between the two games is that the experiment
in Game2

A,b now returns 0 if there exists an i such that Casym,i 6= C∗
asym but they both encrypt the same value

ri = r∗. Assume that the probability that A outputs such a vector of ciphertexts in Game2
A,b was noticeable. In

particular, we can then consider an adversary Bb against the non-malleability of the asymmetric scheme, i.e.,
given a challenge (pk, C∗

asym) of an unknown random string r∗ this adversary tries to find a ciphertext Casym

of r for the equality relation R(r∗, r) = 1 iff r = r∗. Clearly, R can be defined before seeing the generator’s
key.

The construction of Bb is analogously to the previous case (against the one-wayness) and Bb too builds
the symmetric ciphertext part by picking an independent K∗ and letting C∗

sym
$← Esym(K∗,M ′). When

A finally outputs (Casym,i, Csym,i) for i = 1, 2, . . . we let Bb pick one of these ciphertexts at random, say,
(Casym,j , Csym,j). Algorithm Bb then returns Casym,j .

Since the oracle G− {r∗} leaves the value for r∗ unspecified we can assume that G(r∗) = K∗. Hence the
simulation above is perfect and A outputs some Casym,j 6= C∗

asym with rj = r∗ with noticeable probability
in the simulation, and hence Bb also satisfies the equality relation with noticeable probability. By the non-
malleability of the asymmetric scheme for random strings Bb’s success must remain noticeable if it is given
input (pk, C∗

asym) for an independent string r′ instead of r∗. But then the probability that Bb’s output Casymj

contains a string rj such that R(r∗, rj) = 1 for the information-theoretically hidden string r∗ is at most
#C · 2−k, contradicting our initial assumption about A’s success probability.

Comparing Games Two for b = 0, 1. It remains to show that the output distributions of experiments
Game2

A,b for b = 0, 1 are negligibly close. This follows from the IND-CCA2 security of the symmetric scheme
and the fact that for all i, either Casym,i = C∗

asym or ri 6= r∗.
Suppose that the experiments differ with noticeable probability. Consider the following attacker B on the

IND-CCA2 security of the symmetric scheme. This algorithm is given a ciphertext C∗
sym under an unknown

random key K∗ for known messages M∗ or M ′ (depending on b) and is also allowed to make decryption queries
for different ciphertext. B invokes a black-box simulation of A by selecting the public encryption key and the
secret decryption key of the asymmetric scheme and simulating the random oracle. To prepare the challenge
ciphertext B uses the given C∗

sym and augments the asymmetric part of the challenge ciphertext as in the
game.

When A eventually outputs a value β for the relation R (recall that β can be different from ⊥) and a
vector C of ciphertexts (Casym,i, Csym,i) algorithm B decrypts each symmetric ciphertext part as follows:

• If Casym,i = C∗
asym then we must have Csym,i 6= C∗

sym and B decrypts to some (possibly invalid) message
Mi by submitting Csym,i to the decryption oracle of the symmetric scheme.

• If Casym,i 6= C∗
asym then we must have ri 6= r∗ by exclusion of the case in Game2

A,b. This means that B
first decrypts the value ri in A’s asymmetric ciphertext part and then looks up the value Ki = G(ri)
in the list for simulating the random oracle G (or B picks a new random value if unspecified so far). B
finally uses this key Ki to decrypt Csym,i to Mi.

Algorithm B outputs R(M∗,M). Since the simulation is perfect this yields a noticeable advantage in predicting
b by assumption. Hence, for this case the two experiments differ only insignificantly.

The claim of the theorem now follows.

26

