
Breaking reCAPTCHA: A Holistic Approach via
Shape Recognition

Paul Baecher, Niklas Büscher, Marc Fischlin, and Benjamin Milde

Darmstadt University of Technology, Germany
www.minicrypt.de

Abstract. CAPTCHAs are small puzzles which should be easily solv-
able by human beings but hard to solve for computers. They build a
security cornerstone of the modern Internet service landscape, deployed
in essentially any kind of login service, allowing to distinguish autho-
rized human beings from automated attacks. One of the most popular
and successful systems today is reCAPTCHA. As many other systems,
reCAPTCHA is based on distorted images of words, where the distortion
system evolves over time and determines different generations of the sys-
tem. In this work, we analyze three recent generations of reCAPTCHA
and present an algorithm that is capable of solving at least 5% of the
challenges generated by these versions. We achieve this by applying a spe-
cialized variant of shape contexts proposed by Belongie et al. to match
entire words at once. In order to handle the ellipse shaped distortions
employed in one of the generations, we propose a machine learning algo-
rithm that virtually eliminates the distortion. Finally, an improved shape
matching strategy allows us to use word dictionaries of a reasonable size
(with approximately 20,000 entries).

1 Introduction

CAPTCHAs—Completely Automated Public Turing tests to tell Computers and
Humans Apart—are used to prevent automated use of online services. Typically,
this is a challenge/response protocol where the user is, for example, required to
read and submit a heavily distorted image of a word. While there exists an
unmanageable number of such systems, upon closer examination most of them
turn out to be insecure against automated solvers. This usually happens as soon
as the system is used on a popular website and exposed to many users. Since
CAPTCHAs are omnipresent and constitute an integral security mechanism in
today’s Internet services, this situation is highly unsatisfying. It is thus even more
important to investigate promising systems and determine the level of security
they provide.

The reCAPTCHA System. In contrast to the vast number of broken schemes,
one particular implementation, reCAPTCHA [1], has been successfully in use for
several years now. Two distinct key features are seemingly responsible for this
comparatively long lifespan. First, the generation algorithm of reCAPTCHA



challenges is proprietary and not public, meaning that challenges are provided
via a centralized infrastructure. This allows reCAPTCHA to adjust their system
at any given time, for example in the event of a successful attack on the system.
Since such adjustments immediately affect all users of reCAPTCHA, no legacy
installations exist that could still be prone to the attack. Moreover, since the
algorithm is kept secret, it is tedious to analyze the variance of the challenges.
Second, every challenge is guaranteed to have a minimum level of resistance
against common OCR techniques. This is due to the way challenges are gen-
erated: instead of artificially rendered and distorted characters, reCAPTCHA
uses words on which two OCR systems failed; a by-product of digitizing huge
amounts of text.

The answer to such challenges is thus inherently unknown to the system. In
order to verify the user’s response, reCAPTCHA follows a statistic approach
and presents two words in each challenge. One word is the unknown scan word,
the other word is a known verification word. As long as the user provides the
correct answer for the verification word, the response is considered correct and
the given solution to the scan word is recorded. It is important to observe that
the solution to the scan word, when viewed separately, is not relevant to pass the
test. This is a critical detail when it comes to estimating success rates. Ideally,
both classes of words should be indistinguishable, but this is not the case. For
instance, it is entirely possible to have an algorithm that reliably recognizes scan
words but performs poorly on verification words. Clearly, such an algorithm will
not be suitable to break the system.

The centralized system makes it also hard to analyze the security of re-
CAPTCHA, since there are no public distinct and explicit versions of the gener-
ation algorithm. Hence, subtle modifications and revisions of the algorithm are
not necessarily visible to the user. It is, however, possible to identify a set of
major generations as shown in Figure 1. In the first generation, for example,
words are struck through with a horizontal line; the third generation adds in-
verted ellipse-shaped blobs. Although the challenges of the second and fourth
generation look similar, the distortion of the latter is more regular and exhibits a
compact mathematical description. Furthermore, it seems that the fourth gener-
ation also uses less common words which tend to be excluded from dictionaries.

In this work, we focus on the security of the third and fourth1 generations of
reCAPTCHA.

Our Contributions. We present an implementation to break the latest generation
of reCAPTCHA using shape contexts [2]. As opposed to previous work in this
area, our algorithm is quite efficient with reasonably sized dictionaries of 20,000
words (i.e., shapes). To our best knowledge, this is also the first attempt to break
reCAPTCHA using shape contexts and, in particular, to do this in a holistic
fashion where entire words are matched atomically at once. Since reCAPTCHA
is based upon the hardness of character recognition our results may therefore
also stimulate new approaches for OCR.

1 This is the latest version of reCAPTCHA as of November 2010.



(a) (b)

(c) (d)

Fig. 1: Major generations of reCAPTCHA, in chronological order.

In order to attack the third generation of reCAPTCHA, which includes an
ellipse-shaped distortion object, we propose a machine learning framework that
is able to detect and remove this distortion almost entirely. This allows us to
treat challenges from the second to the fourth generation uniformly with one
algorithm since the challenges of these generations are then sufficiently similar.
Finally, we employ a novel method to quickly match a given query shape against
a large list of dictionary words. This is done by taking the first and last character
of the challenge word into account (which are considerably easier to segment)
and then subsequently reducing the search space logarithmically.

2 Related Work

Attacks on reCAPTCHA. As mentioned before, reCAPTCHA has been immune
against major attacks for a long time. Wilkins [16] announced in 2009 to have
broken the first generation in Figure 1 of the reCAPTCHA system with a success
rate of 5% (conservative estimate) to 17.5% (optimistic estimate) in early 2008.
The two types of estimates stem from the fact that reCAPTCHA offers two
classes of words for which it only knows the solution to the verification words.
In 5% of the cases Wilkins got both words on his 200 test data right, in another
25% he got only one word correctly. Making the optimistic assumption that in
half of these cases this is indeed the verification word yields the bound of 17.5%.

Wilkins essentially uses three techniques for his attack: the distortion line is
removed by applying some combination of erode/dilate matrices, then he runs an
OCR program, and finally he uses a dictionary to make a guess for the word. This
is iterated for several matrices and the most likely answer about all these runs
is output. Wilkins also ran tests again the second generation of reCAPTCHA
(without the distortion line). Here, he was able to solve in a data set of 40 about
5% of the puzzles, simply running an OCR program. He concluded that the new
system should be even weaker than the previous generation but this claim seems
to be hard to formally back up by the restricted experiments.

At DefCon 2010, and independently of our work, Houck [7] announced suc-
cessful attacks on the third generation reCAPTCHA (with the ellipse). He esti-
mates to achieve a success rate of about 10%, based on experiments on about



5, 000 CAPTCHAs. However, this optimistic estimate is again based on the as-
sumption that, in about 75% of the cases, the solution for one word only is indeed
for the verification word. Houck’s approach is based on removing the ellipse, seg-
menting the word into characters via “dips” in the upper margin—making this
attack fundamentally different from our holistic approach—and running an OCR
program.

Soon after these attacks became public, reCAPTCHA changed to the fourth
generation. Houck also briefly discussed extensions of his attack to this gener-
ation, yielding an estimated success rate of 30%. In this sense, reCATPCHA
became actually weaker.

Segmentation vs. Recognition. Text-based CAPTCHAs—the overwhelming ma-
jority of today’s systems—present strings of letters and digits, possibly forming
words of a natural language. These strings are rendered onto a rastered image
and presented to the user. The exact process of how strings are rendered is crucial
to the security of the system. Specifically, it is vital that subsequent characters
overlap not only by their bounding box, but also touch each other such that the
string forms one large connected component. This is absolutely necessary for
security because, as Chellapilla et al. discuss in [5], recognizing single characters
is a solved problem where computers even outperform humans. The task of seg-
mentation on the other hand, where one is interested in partitioning a string in
terms of a connected component into its individual characters, is still considered
fairly resistant against automated attacks [4].

Shape Contexts. Recognition and comparison of shapes is a recurring problem in
computer vision. Typically, shapes are transformed to a compact feature vector
or descriptor which allows for fast comparison under slight variations of shapes.
Belongie et al. propose a descriptor called shape contexts in [2] and efficient
retrieval methods in [12]. A shape is described by a set of histograms, where each
histogram corresponds to the distribution of vectors from one contour point to
all other contour points. Shape matching against the database is then done by
matching the sets of histograms of two shapes, where histograms are compared
with a χ2-metric. Clearly, this technique can be used to match characters and
digits in a CAPTCHA. In [14] Mori and Malik successfully attack the EZ-Gimpy
CAPTCHA using shape contexts; their approach is able to match the correct
word in 93% of the time. Lladós et al. investigate this technique to spot words
in historical documents from a predefined set of keywords in [9]. Although this
can be viewed as a direct application to the OCR task, it is not designed to
digitize entire documents. Rather, they are interested in metadata extraction by
looking for specific words. Unfortunately, they do not mention the size or order
of magnitude of their reference dictionary.

3 Our Techniques

In this section, we present our framework to break the recent reCAPTCHA
generations 2–4. Our system can be divided roughly into two phases. In an



offline “learning” phase, we create synthetic challenges based on a dictionary of
English words. Each challenge is transformed to a descriptor that consists of a
set of shape context histograms. We then create a database that contains all
histograms for all words in the dictionary. A given (real) challenge in the online
phase is transformed exactly the same way and the resulting histograms are
matched against the database; the closest match is the output of our algorithm.

Note that this basic version of our attack operates on entire words only, thus
circumventing the task of segmentation. This technique is commonly known as
holistic word recognition [6,10,11,8]. One can interpret this as a recognition task
on a large alphabet, i.e., where entire words are the letters.

Figure 2 gives an overview of the transformation process from challenge im-
ages to descriptors.

scale 200% Canny Edge remove ellipse histograms

(no ellipse)

Fig. 2: High-level overview of the descriptor creation.

3.1 Database Creation

In order to create the database of reference shapes, we would ideally use actual
challenges generated by reCAPTCHA. However, since reCAPTCHA is propri-
etary, we neither have access to this data nor to the underlying dictionary2. To
overcome this limitation, we select a reasonably sized dictionary of frequently
used words and create our own reference shapes. In order to mimic the real chal-
lenges which originate from printed text, our system uses a standard serif font
face to render synthetic challenges. Even though this is only a rough and imper-
fect approximation, its resemblance is sufficient to be covered by the shape con-
text variance. Note that these synthetic challenges are only used for the database;
the final performance measurements are derived from real reCAPTCHA chal-
lenges.

3.2 Preprocessing

Verbatim challenge images generated by reCAPTCHA contain too much noise
and redundancy for shape contexts. This includes JPEG compression artifacts
(noise) and the inner area of the stems of characters (redundancy). Therefore we
apply a sequence of preprocess steps as depicted in Figure 2. The first step scales

2 In fact, since the words originate from scanned text where OCR failed, the exact
dictionary is not even known to the reCAPTCHA system.



(a) (b) (c) (d)

Fig. 3: Ellipse center estimation. After 7 iterations of erosion only one connected
component is left 3b. After 58 iterations of dilation only a few pixels close to the
center are left over 3c. Figure 3d shows these pixels in relation to the original
image.

the image to 200% of its original size. A subsequent binarization operation then
eliminates compression artifacts. Since only the contour of characters is relevant
to their shape, we run the Canny edge detector [3] to obtain a contour image.
At this point the third generation of reCAPTCHA needs another step to remove
the ellipse shaped distortion object which we describe in the next section.

An observant reader may argue that the initial scaling step is technically
not necessary since it cannot increase the information available in the image.
However, since this is followed by a highly lossy binarization operation, we reduce
the loss by this measure. Experimental evaluations confirm this by exhibiting
higher success rates if the scaling step is performed.

3.3 Ellipse Elimination

Third generation reCAPTCHA challenges (see Figure 1c for an example) con-
tain an ellipse-shaped object under which the colors are inverted. It seems that
this object is first drawn as a perfect ellipse and then, along with the challenge
word, transformed. Sometimes it is also cut off, apparently because the ellipse
extends—or extended prior to the transformation—over the border of the im-
age. Nevertheless, the area still resembles roughly an ellipse. As mentioned in
Section 2, precisely this property has been exploited successfully in [7]. We take
a slightly different approach here. Instead of trying to directly fit an ellipse onto
a set of points, we run a machine learning algorithm that classifies pixels as
“ellipse” and “not ellipse.” We now describe this mechanism in greater detail.

Ellipse Center Approximation. In order to classify pixels we first require a ref-
erence point relative to the ellipse. We use the center of the ellipse for that
and present an algorithm to estimate this point. Our algorithm stems from the
observation that wherever the ellipse is located, a huge number of black pixels
concentrate. It operates as follows. First, repeat the morphological erode op-
eration until only one single connected component of black pixels is left over.
Now repeat the dilate operation until the entire image consists of white pixels
only. Undo one dilate iteration and finally calculate the center of the remaining
black pixels; this is the output of the estimation algorithm. See Figure 3 for an
example of the algorithm’s operation.



Features. Once the ellipse center has been estimated, a number of features rela-
tive to this center p is calculated for every black pixel qi in the original contour
image. These features, arranged in a vector, include amongst others

– the distance and angle from p to qi,
– the tangent of the edge in qi,
– pixel density on a line from p to the center point,
– pixel density in the neighborhood of p,

and a number of variations of these features.

Classification Training. Once these features have been calculated, we are inter-
ested in learning the mapping that maps each feature vector to its correct class
(“ellipse”, “not ellipse”). For this we use standard machine learning techniques.
To obtain labeled training data, we classified a set of preprocessed challenges
manually by removing the ellipse contour in an image editor. Using OpenCV’s
boosting algorithm with weak decision tree classifiers on this data then yields a
strong classifier.

While this already gives a solid classification result (see Figure 4, left column),
there is still room for improvement. For example, each classification decision is
made only locally and independently of spatially surrounding classifications. This
gives away prior knowledge such as the geometric shape of an ellipse. In order to
take this into account, we employ a cascade of classifiers where the ith iteration
makes use of knowledge obtained from the (i− 1)th iteration. Moreover, in each
iteration, we calculate a feature that measures the distance to a fitted ellipse for
all ellipse-classified pixels.

Fig. 4: Cascaded ellipse pixel classification. First row: pixels classified as “not
ellipse,” second row: pixels classified as “ellipse.” From left to right: Classification
after iteration 1, 4, and 9.

Accuracy The fraction of pixels that are classified correctly is denoted by ac-
curacy. We estimate this value with a 10-fold cross validation using 150 weak
classifiers and reach a total accuracy of 91.5% after 9 cascade iterations. It takes
roughly two hours to train this classifier and less than 300 milliseconds to classify
a new example on standard off-the-shelf hardware. Figure 4 presents a classifi-
cation instance after different iterations of the cascade.



3.4 Shape Contexts

Once the challenge images are preprocessed, possibly including the ellipse re-
moval step, we are ready to obtain a compact description of the word. As men-
tioned earlier, our attack uses shape contexts to represent the rendered words.

Fig. 5: Histogram bins and the corresponding angle/distance histogram for the
center point of the contour line of the word “cosiest.”

The key idea of shape contexts is as follows. Let p1, . . . , pn ∈ R2 be the points
that form the contour line of a shape. For an arbitrary point pi, called reference
point, there are n− 1 vectors vi,j that describe the location of the other points
relative to pi. Consider now a histogram of the distribution of these vectors vi,j
in a polar system3 centered at pi. This two dimensional histogram—consisting
of angle/distance bins—constitutes a compact but lossy description of the shape
with respect to reference point pi and is called its shape context. Figure 5 visu-
alizes the histogram bins and the resulting histogram when this transformation
is applied to a rendered word. Note that there are n such histograms per shape,
one histogram for each contour line point.

To measure the similarity between two shapes, one could simply match their
corresponding sets of histograms, i.e., find a one-to-one mapping between both
sets such that the sum of the distances between each two histograms is minimal
with respect to some distance metric. However, it is inefficient and highly redun-
dant to do this on the full set of contour line points. Thus, it makes sense to work
with a randomly selected fixed-size subset consisting of, say, 100 histograms. Fur-
thermore, it is not strictly necessary to require a one-to-one mapping between
two sets of histograms. Simply selecting the closest match is an acceptable strat-
egy if additional constraints are introduced. One such constraint is the location
of the corresponding reference points; requiring a maximal distance here ensures
that no points in completely different locations are matched.

In order to further improve the descriptive quality of shape contexts, we use
an extended concept called generalized shape contexts as proposed in [13] that
allows for arbitrary features. Here, Mori et al. additionally record the average

3 We note that shape contexts are usually associated with log-polar systems (as op-
posed to polar-linear systems). In our experiments however, we were able to obtain
better results with linear distance.



tangent of shape points in each histogram bin. This results in a richer description
of the shape at the cost of a second set of histograms.

3.5 Efficient Word Matching

We now turn to the online phase of our attack. Given a database of associated
shape contexts for each word, our goal is to find the most similar shape for a
new query shape. A naive approach comes to mind immediately: compare the
query shape with each database shape and output the closest database shape in
terms of the distance function. This, however, results in enormous computational
cost. Recall that each shape description consists of a set of histograms and that
shapes are dictionary words in our case. Matching the histograms of two shapes
results in quadratic complexity; a reasonable dictionary size is 20, 000 words. In
order to distinguish the many similar words from such a dictionary, the number
of reference points/histograms needs to be accordingly high.

To manage this complexity, we propose a search algorithm along the lines of
“fast pruning” described in [13]. The general strategy of our algorithm is to start
with the full set of database shapes and perform a crude, but fast, comparison
against the query shape. Then, the algorithm prunes the most dissimilar shapes
from the working set and increases the exactness of the search. Repeated appli-
cation of this step results in a logarithmic search space reduction. As the shapes
become more similar, more time is invested in the comparison. Finally, as soon
as the number of shapes in the working set drops below a certain threshold, the
algorithm switches to the naive search strategy and outputs the closest match.

The exactness of the search is controlled by the number of reference points
used for comparison. For a given number of reference points, the algorithm draws
a random subset from all available reference points. A noteworthy consequence
is that the algorithm is probabilistic, but this is not so bad because the closest
match is not always the correct solution.

Another CAPTCHA-specific pruning strategy which greatly reduces the search
space makes use of the fact that the first character and last character are con-
siderably easier to segment. It is immediately clear where the first character
starts and the last character ends. A simple and basic approach is to consider an
averaged fixed-width section from the start/end of the word. If a character can
be detected within this area, a huge portion of the search space is superfluous
and thus pruned. In fact, it is already helpful to be able to restrict these key
characters to a small set. This is done by employing the shape context matching
framework for single characters and selecting the best k matches.

4 Results

Data acquisition. Recall that reCAPTCHA is a proprietary and closed system.
This complicates the acquisition of (labeled) challenge/response pairs that are
needed for the performance evaluation. One of our methods to collect data is to
have humans solve a number of reCAPTCHA challenges and, in the background,



record the solution. The advantage of this tedious method is that a human
can quickly learn the difference between verification and scan words by close
observation. This means that we can deliberately provide a wrong solution for the
suspected scan word. If reCAPTCHA confirms this hypothesis by accepting the
response, we can be certain that the other word was indeed the verification word.
Consequently, we obtain a data set that is not only labeled, but consists also of
verification words only, allowing us to derive true performance measurements. In
contrast, many reported figures on reCAPTCHA attacks are in fact estimations
where the—possibly hidden—underlying assumption is that the attack works
equally well on scan and verification words.

Database creation. To build the database of reference words we use a word list
prepared by Keith Vertanen [15] which is the intersection of 10 popular word
lists. This list contains 22,282 words from the English language. The artificial
challenges are then rendered using the Times typeface with negative inter char-
acter distance to reflect the overlap situation of real challenges. Shape contexts
are created for a 6× 6 histogram, i.e., 6 angle bins times 6 distance bins.

Final Results. We stress that our results have been collected from verification
words only and thus reflect precisely the success rate of a real attack. See Figure
6 for detailed results. The dictionary success rate in this figure is the (ideal)
success rate of our attack if the challenge word is present in our dictionary. We
are also able to obtain substantially shorter run times in exchange for slightly
lower recognition rates.

reCAPTCHA generation 2 3 4

Test set size 496 1005 301

Total success rate 12.7% 5.9% 11.6%

Run time 24.5s 17.5s 15.4s

Dictionary success rate 22% 10.43% 23.5%

First character detected 90.2% 73.2% 84.6%

Fig. 6: Experimental results of our implementation.

5 Conclusions

The reCAPTCHA system has been one of the few systems achieving the right
balance between usability and security. So far. With its increasing popularity
reCAPTCHA has become a major target and the recent attacks reveal significant
cracks. Still, because of the centralized system reCAPTCHA allows to switch to
a new generation instantaneously. While the concrete attacks may then become
ineffective the attack techniques nonetheless improve.



Our attacks for example, achieving a success rate of 5%, show that holistic
approaches are feasible, whereas most other attacks are based on segmentation.
This is interesting because many systems and techniques so far have been de-
signed to thwart segmentation, e.g., striking out the word. We note that our
attacks have not been optimized and thus leave space for improvements. An
example is the combination of our holistic approach with partial segmentation,
which is—in its current version—only a crude proof of concept of the general
technique.

However, we also stress that resistance against automated attacks is not the
only concern for CAPTCHAs. Two other dimensions are usability, the ability of
humans to solve the CAPTCHA easily, as well as practicality, describing the abil-
ity to realize the CAPTCHAs efficiently. For instance, from the security perspec-
tive, dictionary-based CAPTCHAs should be used cautiously as they facilitate
attacks significantly. It must be said, though, that using dictionaries supports
humans in recognizing words. Another worthwhile point is that reCAPTCHA is
based on the idea that solving a CAPTCHA helps digitizing books. This idea
may incite users to solve such otherwise unpopular puzzles, thus improving the
overall acceptance of CAPTCHAs.

Overall, the recent attacks on reCAPTCHA somehow leave us in a vague
state. It remains an open problem if there exist CAPTCHAs which are simulta-
neously secure, usable, and practical. Given the status of CAPTCHAs in modern
login services, a CAPTCHA system meeting all these requirements is of great
demand.

On a slightly positive note, however, even though our results indicate that the
security of yet another CAPTCHA system has become dubious, there is also an
upside in the particular case of reCAPTCHA. By design, any system that breaks
reCAPTCHA is a step towards better OCR software.4 Our results indicate that
Shape Contexts could be a valuable fallback solution in the domain of character
recognition.

Acknowledgements

We thank the anonymous reviewers for valuable comments. Paul Baecher and
Marc Fischlin are supported by the Emmy Noether Grant Fi 940/2-1 of the
German Research Foundation (DFG).

References

1. von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: reCAPTCHA:
Human-based character recognition via web security measures. Science 321(5895),
1465–1468 (2008) Cited on page 1.

4 It must be said, though, that a successful attack may only achieve a recognition rate
of say, 10% of the challenges, which is too low for a full-fledged OCR program.



2. Belongie, S., Malik, J., Puzicha, J.: Shape context: A new descriptor for shape
matching and object recognition. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.)
NIPS. pp. 831–837. MIT Press (2000) Cited on pages 2 and 4.

3. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal.
Mach. Intell. 8, 679–698 (November 1986), http://portal.acm.org/citation.

cfm?id=11274.11275 Cited on page 6.
4. Chellapilla, K., Larson, K., Simard, P.Y., Czerwinski, M.: Building segmentation

based human-friendly human interaction proofs (HIPs). In: HIP. Lecture Notes in
Computer Science, vol. 3517, pp. 1–26. Springer-Verlag (2005) Cited on page 4.

5. Chellapilla, K., Larson, K., Simard, P.Y., Czerwinski, M.: Computers beat humans
at single character recognition in reading based human interaction proofs (HIPs).
In: CEAS (2005) Cited on page 4.

6. Govindaraju, V., Krishnamurthy, R.K.: Holistic handwritten word recognition us-
ing temporal features derived from off-line images. Pattern Recognition Letters
17(5), 537–540 (1996) Cited on page 5.

7. Houck, C.W.: Decoding recaptcha. http://www.n3on.org/projects/reCAPTCHA/
docs/reCAPTCHA.docx (2010) Cited on pages 3 and 6.

8. Lavrenko, V., Rath, T.M., Manmatha, R.: Holistic word recognition for handwrit-
ten historical documents. In: DIAL. pp. 278–287. IEEE Computer Society Press
(2004) Cited on page 5.

9. Lladós, J., Roy, P.P., Rodŕıguez, J.A., Sánchez, G.: Word spotting in archive doc-
uments using shape contexts. In: Mart́ı, J., Bened́ı, J.M., Mendonça, A.M., Serrat,
J. (eds.) IbPRIA (2). Lecture Notes in Computer Science, vol. 4478, pp. 290–297.
Springer-Verlag (2007) Cited on page 4.

10. Madhvanath, S., Govindaraju, V.: Contour-based image preprocessing for holistic
handwritten word recognition. In: ICDAR. pp. 536–539. IEEE Computer Society
Press (1997) Cited on page 5.

11. Madhvanath, S., Govindaraju, V.: The role of holistic paradigms in handwritten
word recognition. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 149–164 (2001)
Cited on page 5.

12. Mori, G., Belongie, S., Malik, J.: Shape contexts enable efficient retrieval of similar
shapes. In: CVPR (1). pp. 723–730. IEEE Computer Society Press (2001) Cited
on page 4.

13. Mori, G., Belongie, S.J., Malik, J.: Efficient shape matching using shape contexts.
IEEE Trans. Pattern Anal. Mach. Intell. 27(11), 1832–1837 (2005) Cited on pages
8 and 9.

14. Mori, G., Malik, J.: Recognizing objects in adversarial clutter: Breaking a visual
CAPTCHA. In: CVPR (1). pp. 134–144. IEEE Computer Society Press (2003)
Cited on page 4.

15. Vertanen, K.: Words in 10 lists. http://www.keithv.com/software/ (2010) Cited
on page 10.

16. Wilkins, J.: Strong CAPTCHA guidelines v1.2. http://www.bitland.net/ (2009)
Cited on page 3.

http://portal.acm.org/citation.cfm?id=11274.11275
http://portal.acm.org/citation.cfm?id=11274.11275
http://www.n3on.org/projects/reCAPTCHA/docs/reCAPTCHA.docx
http://www.n3on.org/projects/reCAPTCHA/docs/reCAPTCHA.docx
http://www.keithv.com/software/
http://www.bitland.net/

	Breaking reCAPTCHA: A Holistic Approach via Shape Recognition

