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Abstract. The extended access control protocol has been used for the German identity card

since November 2010, primarily to establish a cryptographic key between a card and a service

provider and to authenticate the partners. The protocol is also referenced by the International

Civil Aviation Organization for machine readable travel documents (Document 9303) as an

option, and it is a candidate for the future European eIDAS identity system. Here we show

that the system can be used to build a secure access system which operates in various settings

(e.g., integrated, distributed, or authentication-service based architectures), and where access

can be granted based on card’s attributes. In particular we prove the protocols to provide

strong cryptographic guarantees, including privacy of the attributes against outsiders.

1 Introduction

The extended access control (EAC) protocol has originally been proposed by the German Federal
Office for Information Security (BSI) for identity cards and machine readable travel documents [1].
Indeed, it is listed as an option in Document 9303 of the International Civil Aviation Organization
for protecting machine readable travel documents [20]. In the latest version of the BSI document
[2] it has also been proposed as a part of the candidate for the European electronic identities,
authentication, and trust services (eIDAS) system. Technically, the protocol establishes a cryp-
tographic key between an eID card, connected to a local reader, and a remote service provider,
via the so-called terminal authentication (TA) step and the chip authentication (CA) step. The
protocol also mutually authenticates the parties. See Figure 1.

1.1 EAC for Attribute-based Access Control

Here we discuss how the EAC protocol can be adapted for more general (physical) access system
architectures. Furthermore, using the established cryptographic key in the EAC protocol one can
use its channel protocol, called secure messaging, to have the card send further attributes on which
the access decision can be based, too. The advantage is that only mild changes to the existing
infrastructure of the German identity card and candidate eIDAS system are necessary.

Ample architecture scenarios. The first extension refers to broader architectures in which
the verifying party can be distributed across various entities. The common settings, also displayed
in Figure 2, include:

• In the integrated terminal architecture, as in the border control scenario for travel documents,
the reader implements the service provider functionality, and only forwards the attributes
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Figure 1: Extended Access Control (EAC), consisting of the terminal authentication (TA) step
and the chip authentication (CA) step.

(sent over the secure messaging channel) for verification to the back-end management (via
a secure connection like TLS). The reader then potentially grants access.

• In the distributed terminal architecture, as in the eID service scenario, the reader mainly
connects the card to a controller which executes the EAC protocol with the card. The
controller again calls the back-end management about the attributes.

• In the eID-service architecture an external service provider takes care of the cryptographic
operations and forwards the attributes to the controller.

• In the authentication-service architecture the signature generation in the TA step of the
EAC protocol is outsourced to a dedicated authentication server which holds the long-term
signing key. The other steps are carried out again by the controller.

Restoring Sessions. Another extension concerns the possibility to authenticate faster through
recognition. Here we can rely on the session contexts provided by the EAC protocol, version 2.
Roughly, the EAC protocol offers the possibility to store the derived keys for secure messaging
(and the send sequence counter) and to re-establish a connection with these keys. In EAC this
allows to switch session contexts when changing communication partners.

By using the session context switching mechanism we can add a recognition step to our au-
thentication procedure (for any setting). That is, the responding party checks if it has already
successfully authenticated the card (and stored the session context under some identifier) and tries
to re-establish the session with the card. If the card is responsive then both parties re-start the
secure channel under the stored keys and the card transmits its attributes. By this the parties do
not have to perform the more expensive public-key operations again.

1.2 Security of the Architectures

Our main result is to show that the proposed protocols provide strong security guarantees in
a cryptographic sense. This boils down to two important security properties: impersonation
resistance, preventing the adversary to trick the responding party into falsely accepting a card,
and attribute-privacy, preventing the adversary from learning the attributes transmitted by genuine
cards. The latter may be necessary in cases where the attributes carry confidential data, such as
general access information or data facilitating the identification of the person using the card.

We envision very strong adversarial capabilities in attacks against either property, such that
showing infeasiblity of attacks gives strong security guarantees. The adversary in our security
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(a) Integrated Architecture (b) Distributed Architecture

(c) eID-Service Architecture (d) Authentication-Service Architecture

Figure 2: Architectures for attribute-based access control.

model corresponds to similar attackers on key exchange protocols (such as in the Bellare-Rogaway
model [8]), giving the adversary full control over the network, and allowing it to modify or inject
messages in communications, and to corrupt parties.

For impersonation resistance the adversary wins except in the trivial case that the identified
card has been corrupted, or that the adversary has only relayed communication between the reader
and the genuine card. Relying on previous results about EAC [17, 23] we show that all architectures
achieve this strong notion. Analogously, we argue that all architectures satisfy our strong privacy
notion which postulates indistinguishability of used attributes, except for the case of corrupt cards
or corrupt responders. We also discuss security peculiarities of the different architectures.

1.3 Related Work

Some of the aforementioned architectures and the idea of using session contexts have already
been discussed in the master thesis of one of the authors [6]. Our contribution here is to define
appropriate models and argue security according to cryptographic standards.

The different versions of the access architectures should not be confused with the Enhanced
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Role Authentication (ERA) protocol for the eIDAS token [2]. There, an attribute provider connects
to the card by establishing another channel via the EAC protocol and can then access attribute
requests stored by the terminal on the card. For this the card uses the switching operation for
session contexts to communicate securely with the corresponding party.

The difference of ERA to our setting here is that we assume that access attributes are stored on
the card and not provided by an external service provider. In particular, the card in our setting
only communicates with a single responder and executes the EAC protocol only once. This is
accomplished in our setting by letting the responding party read out the attributes and having it
forward them to the management system. The protocol here also uses the session contexts to re-
establish connections, instead of switching channels between the various communication partners.
This also means that the session contexts are stored persistently here, whereas eIDAS tokens use
them transiently only.

In a related proposal, Bundesdruckerei [5] introduces the possibility to secure transactions
data, such as mobile phone numbers, on top of the EAC protocol and its existing eID architecture
(requiring only minor modifications to the reader). The proposed transaction system has been
analyzed cryptographically in [23]. This idea is orthogonal to our setting here where we discuss
different access architectures including attributes. Yet, due to the resemblance with the EAC
protocol we can partly use their results in order to show that the various access systems provide
the common authentication guaranteed, even if the responding party cannot communicate with
the management system for checking the attributes.

The EAC protocol (and its related protocols for the German identity card resp. the eIDAS
tokens) has been analyzed in [12, 17, 22, 16, 10, 11, 19, 13, 18]. We merely rely on the EAC
analysis in [17] and results related to secure composition of key exchange (like EAC) with secure
channels (such as secure messaging).

2 The EAC Protocol and Adaptations

Since the access system strongly relies on the EAC protocol we first recall that protocol and then
discuss the modifications.

2.1 The EAC Protocol

The Extended Access Control (EAC) protocol is a two-party key agreement protocol between a chip
card and a terminal. It consists of a terminal authentication (TA) step and a chip authentication
(CA) step. We omit explicit mentioning of the passive authentication step in between, in which
the chip forwards passively authenticated data to the terminal, since the details of this step is
irrelevant to our security concerns here.

At the outset both parties each hold a certified long-term key pair, on the card’s side for
generating a Diffie-Hellman key, and on the terminal’s side for signing. Both parties also hold
a card identifier idC which in the execution of the German identity card equals the compressed
version of the public-key of the preceding PACE protocol with which the card connects securely
to the local reader (see Section 2.3). The PACE step is omitted in our setting. One may for now
simply assume that idC is empty.

In the TA step the terminal authenticates to the chip card. For this it chooses a session-specific
ephemeral key pair (eskT , epkT ), sends over its certificate for the long-term key pkT (which is also
included in its certificate certT ) and a compressed version Compr(epkT ) of the ephemeral public
key. The compression function can be for example the projection onto the x-coordinate of the
elliptic curve point. The card returns a random nonce rC which the terminal signs, together with
Compr(epkT ) and idC (if present). The terminal sends the signature to the card and the card
accepts only if verification succeeds.
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Upon successful completion of the TA phase, the card then executes the Chip Authentication
(CA) step. For this the chip sends its certificate certC and public key pkC , and the terminal replies
with its (uncompressed) ephemeral public key epkT . The card checks that this value matches the
previously sent compressed version. Both parties then compute the Diffie-Hellman key of pkC and
epkT with the corresponding secret key they hold, and derive an encryption key Kenc and the
MAC key Kmac. This step requires the card to pick another random nonce r′C and include it in
the key derivation process. The chip computes the MAC over epkT and sends it together with the
nonce r′C to the terminal.

In the protocol description in Figure 3 we also include the so-called session identifiers sid
for compatibility with previous analyses [17, 23]. These session identifiers can be roughly seen
as unique session-specific labels. These cryptographic identifiers, determined by the protocol
communication and used in the proof, should not be confused with the integer-valued session
context identifiers used by the parties of the EAC protocol. Similarly, we include the partner
identifiers pid which refer to the designated partner and are taken from the unique identifier in
the certificate.

2.2 Restoring Session Context

A session context in the domain of the German identity card consists mainly of some (session
context) identifier, the cryptographic keys for secure messaging, the send sequence counter (and
possibly additional entries like the auxiliary data which can be used in the EAC protocol) [2].
A new session context is usually stored after successful reception of the first secure messaging
transmission. The card is usually restricted to store at most 127 session contexts (or even less).
To restore a session the terminal is supposed to send the context identifier to the card, encapsulated
into a corresponding protocol message.

When storing the sequence counter it must be ensured that this value does not interfere with
the actual counter value used for secure messaging. The suggested method is to round the current
value up to the next multiple of 16 and store this value. Only if the current value reaches this
bound then one again needs to update the stored value to the next multiple of 16. For us here
the details are irrelevant as long it is guaranteed that sequence counters are used only once in the
context of a session.

We note that the card is supposed to immediately delete a session context if an erroneous secure
messaging transmission arrives. Similarly, if a terminal tries to re-initialize a session context but
receives an error (say, if some other terminal has overwritten the context under the identifier
meanwhile) then the terminal should start from scratch running the EAC protocol.

2.3 Modifications

In this part we describe the modifications of the EAC protocoland the eID scenario for our setting.

Omitting the PACE step. First, we do not assume that the password-authenticated connec-
tion establishment (PACE) protocol between the card and the reader is executed before initializing
the EAC protocol. The PACE protocol requires the card holder to type in the PIN at the reader
and then establishes a secure channel between card and reader for the wireless data exchange.

As pointed out in [17] the EAC protocol itself already provides a secure key exchange protocol
between card and terminal whose security does not rely on the strength of the PACE protocol. We
therefore start with the assumption that card and reader have not executed the PACE protocol.
This, however, also means that the card identifier value idC has not been set yet, because it usually
corresponds to data derived during the run of PACE. We simply assume that idC is empty.
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Chip : Terminal :
key pair skC , pkC key pair skT , pkT
certificate certC for pkC certificate certT for pkT
card identifier idC card identifier idC

Setup: domain parameters DC , certification key pkCVCA

Terminal Authentication (TA)

certT←−−−−−−−−−−−−−−
check certT with pkCVCA

abort if certT invalid
extract pkT from certT generate (eskT , epkT ) for domain DC

Compr(epkT )
←−−−−−−−−−−−−−−

pick rC ← {0, 1}n
rC−−−−−−−−−−−−−−→ sT ← Sig(skT , idC ||rC ||Compr(epkT ))
sT←−−−−−−−−−−−−−−

abort if SVf(pkT , sT , idC ||rC ||Compr(epkT ))

sid = (Compr(epkT ), rC)

Chip Authentication (CA)

pkC , certC , DC−−−−−−−−−−−−−−→ check pkC , certC with pkCVCA

abort if invalid
epkT←−−−−−−−−−−−−−−

check pkT against Compr(epkT )
abort if invalid
pick r′C ← {0, 1}n
K = DHDC

(skC , epkT )
Kenc = KDFEnc(K, r

′
C)

Kmac = KDFMAC(K, r′C)

τ = MAC(Kmac, epkT )
τ, r′C−−−−−−−−−−−−−−→ K = DHDC

(pkC , eskT )
Kenc = KDFEnc(K, r

′
C)

Kmac = KDFMAC(K, r′C)
abort if MVf(Kmac, τ, epkT ) = 0

sid = (Compr(epkT ), rC)
pid = id in certT pid = id in certC
accept accept

Figure 3: Terminal Authentication (TA) and Chip Authentication (CA). All number-theoretic
operations are modulo q resp. over the elliptic curve.

Adding attributes. Besides completing the (modified) EAC protocol access permission may
depend on the attributes a card can provide. We assume that the responder may request to see
the attributes and then the card sends the stored data. Note that these steps are carried out
over the secure-messaging channel. If the terminal requests to see the attributes then we set on
the card’s side, upon successful completion of this step, the cryptographic session identifier to be
(sid, C) for the transmitted ciphertext C of the attributes.

We stress again that, if the management system is unreachable, the ordinary authentication
process of the EAC protocol is still in effect such that reading the attributes after executing the
EAC protocol may be optional. For restored sessions, however, reading out attributes over the
secure channel is the only mechanism to ensure that the card actually holds the secret keys.

Persistent session contexts. Session contexts for the German identity card are supposed to
be deleted when the card becomes unpowered or is being reset. In contrast we may assume that
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session contexts are stored over longer periods of time. One may even continuously use a stored
context for “cascaded” executions. Furthermore, we do not make any restrictions on the number
of stored contexts; the number may depend on the card’s architecture.

In addition, we do not pose any stipulations on the choice of the identifiers of session contexts
but advise some “collision-free” choice. For example, important responders may be assigned a
fixed identifier whereas other terminals may select identifiers at random. Since the choice only
affects efficiency but not security we do not discuss possible strategies here further.

We let the cryptographic session identifier sid monotonously grow with the number of restored
contexts, because we append the card’s latest authenticated ciphertext of the attributes, sent via
secure messaging, to the current identifier value sidContold of the context upon acceptance. Partner
identifiers and attributes remain unaltered. An execution example of a restored session of the
distributed architecture is given in Figure 4.

Chip : Terminal :
session context Cont session context Cont

with identifier i with identifier i
attributes A

Restoring Session

“restore session” i←−−−−−−−−−−−−−−
search for context i
recover data for secure messaging recover data for secure messaging

{”read att”}
←−−−−−−−−−−−−−−

C = {A}
−−−−−−−−−−−−−−→

sidContnew = (sidContold , C)

pidContnew = pidContold pidContnew = pidContold

Figure 4: Restoring sessions and reading out attributes in the case of the distributed architecture
(with the controller acting as the terminal). Here, {. . . } denotes protocol messages sent via secure
messaging. Note that the updated cryptographic session identifier is augmented by the ciphertexts
of the attributes.

3 Access Systems and their Security

Before discussing the security of our (modified) EAC protocol we first abstractly introduce access
systems and their desired security features.

3.1 Access Systems

An access system AS consists of efficient algorithm (KGC ,KGR,ΠS ,ΠR) for generating keys (and
attributes) for the card, (pkC , skC , certC) ← KGC(1n). We note that we will later add attributes
to cards but in a session-specific way. More formally, we assume that the attributes A are pro-
vided “from the outside” and all attributes are stored externally in some list AT T and given to
the managing party. Similarly, the system comprises a key generator for the responding party,
(pkR, skR, certR) ← KGR(1n), and stateful algorithms ΠC , ΠR for the party’s protocol messages.
We sometimes omit mentioning certificates for the public keys explicitly, and that there must be
a certification authority; all the details are relevant when taking an in-depth look at EAC, but we
are mainly concerned with the fact that EAC provides a secure key exchange protocol.
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We assume the usual completeness property, saying that for genuine keys, the card holding
attribute A ∈ AT T , and faithful execution of the algorithms ΠS ,ΠR the responder eventually
accepts the card. Here, to cover restored sessions we assume that the responder may accept
multiple times within a session. Formally, this is captured by running ΠS and ΠR in modes init
and restore, and we assume that at the end of the first execution of init on genuine data (involving
A ∈ AT T ) the responder accepts, as well at the end of each execution in mode restore. Note
that every time the session continues, triggered via a restore command, the party goes from an
accepting state to an unaccepting one.

3.2 Security Model

In all versions of the access system we assume a powerful adversary controlling the network.

Attack Model. We assume that all parties, divided exclusively into cards from set C and re-
sponders from a set R, receive their (certified) key pairs as initial input at the outset of the attack.
Since we do not want to make any assumptions about the structure of card attributes we leave it
up to the adversary to assign attributes to cards upon initialization of a new session.

The adversary has full control over the network and can, in particular, initiate new sessions
of parties and decide when to deliver protocol messages (and potentially to modify such messages
or even inject new ones). Formally, this is modeled by giving the adversary the following oracle
access:

• Init: The adversary can initiate a new card or responder session by calling Init(id) for
some identity id ∈ C ∪R. We assume that the identifier id uniquely determines a certificate
and vice versa. In case of a card the adversary also has to provide some attribute A. The
adversary may thus choose to hand out the same attribute to each card or change attributes
depending on the concrete session. This attribute is immediately stored in a list AT T .
Upon such a call we spawn a new session of the party for attribute A and assign it a unique
label ` for administrative purposes. The label ` is returned to the adversary and we write
`← Init(id, [A]).

• Send: The adversary can send any protocol message m to a session with label ` via the
Send(`,m) command. If the session has not been initialized before, then the oracle immedi-
ately returns ⊥. Else, it makes the corresponding party compute the next protocol message
and this message is returned to the adversary (potentially also returning ⊥ to express rejec-
tion).

In particular, we assume that the adversary may make the party switch to modes, from
init to restore or starting a new restore session, if receiving Send(`, restore). If the party
has not finished successfully the previous mode yet, it may reject. In case the execution is
successfully completed, the adversary is informed that the party has accepted.

• Corrupt: The adversary can corrupt a party with identity id by using the Corrupt(id)
command. It receives the party’s long-term keys and internal state in return, and we put
id in the (initially empty) set Corrupt of corrupt parties. From now on, we assume that the
adversary does not send further commands to that session.

To facilitate the notation we use the following mappings. We write ACC(`) for the (current)
acceptance status of the (responder) session (true or false), and ID(`) for the identity id of the
session owner, and PID(`) for the intended partner pid, possibly pid = ⊥ at this point. Similarly,
SID(`) denotes the current value of the session identifier. We also denote by ATT(`) for a session
the attribute A the card has been initialized with resp. the attribute the responder it has received
(if at all).
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Experiment ImpResASA (n)

1 : foreach i ∈ C ∪ S do

2 : if i ∈ C then (ski, pki, certi)← KGC(1
n) fi

3 : if i ∈ R then (ski, pki, certi)← KGR(1
n) fi

4 : endforeach

5 : pks← {(pki, certi) | i ∈ C ∪R}
6 : AInit(··· ),Send(··· ),Corrupt(·)(1n, pks)

7 : b← ImpResPred // evaluate predicate ImpResPred on execution state

8 : return b

Figure 5: Security of an access system.

Impersonation Resistance. Impersonation resistance of the access system now says that the
adversary cannot make the responder accept, unless in the trivial case that a card with attribute A
is accepted and the adversary has corrupted a card with these attributes (in which it could easily
access the system by using that card), or if the adversary has merely relayed the communication
between an honest card and the reader. This is formalized in Figure 5.

While Figure 5 describes the flow of the attack, the predicate ImpResPred in Figure 6, which
is evaluated at the end of the attack, determines when the adversary wins. There are two cases
when we declare the adversary to win. The first case is when the adversary has managed to make
an honest responder accept an honest card which has not participated in the execution (or with
different attributes). This corresponds to the foreach loop in Line 3 in Figure 6. The second case,
covering replay resistance, is that partnered sessions are unique between cards and responders, or
else the adversary wins, too. In particular, there cannot be two honest cards with the same session
identifiers. This is checked in the foreach loop in Line 9 in Figure 6.

Note that, in the predicate ImpResPred, if the responding party accepts and outputs some
session identifier, then the card must have already accepted before, i.e., we assume that the
responder receives the last message. This ensures that there is always a card with the same
identifier sid at this point, unless the aversary has managed to break security. This holds in our
setting here as the card sends the attributes or acknowledges the storage of the session context.

Definition 3.1 (Impersonation Resistance) An access system AS is impersonation resistant
if for any efficient adversary A we have that

Prob
[
ImpResASA (n) = 1

]
≈ 0

is negligible.

Note that we let the adversary A decide when to stop the execution and to start evaluating
the predicate. Hence, if it is advantageous and the adversary already detects a winning situation,
it may end the execution immediately (instead of messing up the winning state by, say, corrupting
another party). In our case this is easy to detect since all the data required to evaluate the predicate
are known to the adversary. In general, if the predicate relies on some information unavailable to
the adversary, then the adversary may just guess the point in time for such a state.

3.3 Privacy of Attributes

Privacy of attributes ensures that no adversary can learn the card’s attributes (unless it is the
responder and controls that party’s long-term key). We use an indistinguishability-based approach
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Predicate ImpResPred on execution state

1 : p← true

2 : // accepting responder session must have honest partner with same sid (or corrupt partner)

3 : foreach ` ∈ {` | ID(`) ∈ R \ Corrupt ∧ ACC(`) = true} do

4 : p← p ∧ [PID(`) ∈ C ∩ Corrupt

5 : ∨ ∃`′ 6= ` : (SID(`′) = SID(`) 6= ⊥ ∧ PID(`) = ID(`′)

6 : ∧ ATT(`′) = ATT(`))]

7 : endforeach

8 : // Collisions among identifiers only between opposite partners

9 : foreach

10 : (`, `′) ∈
{
(`, `′)

∣∣ ` 6= `′ ∧ ID(`), ID(`′) /∈ Corrupt ∧ SID(`) = SID(`′) 6= ⊥
}

11 : do

12 : p← p ∧ [(ID(`), ID(`′)) ∈ C × S ∪ S × C]
13 : endforeach

14 : return p

Figure 6: Security predicate ImpResPred for impersonation resistance.

here in which a privacy-adversary can, besides regular sessions, also initiate (multiple) executions
on a random choice of one of two adversarially chosen attributes A0, A1.

The attack model is the same as for impersonation resistance. The only difference is that the
adversary now also gets a challenge oracle Chall, which is initialized with a secret bit b← {0, 1}.
When called about identity id ∈ C and two attributes A0, A1, the challenge oracle executes ` ←
Init(id, Ab) to initialize an execution with the card. It returns the session label ` to the adversary.
From then on the adversary can communicate with the card’s sessions via the Send oracle for the
corresponding label. The adversary eventually should predict the bit b.

To rule out trivial attacks, say, in which the adversary controls the corrupt responder, we
require that the adversary has only asked the challenge oracle for identities of honest cards which
refer to an honest partner. For this we check that for each query (id, A0, A1) to Chall we neither
have id ∈ Corrupt nor PID(`) ∈ Corrupt, where a yet unset partner identifier PID(`) = ⊥ does not
belong to Corrupt by definition.

We can now define privacy with the experiment in Figure 7.

Definition 3.2 (Attribute-Privacy) An attribute-based access system AS provides attribute-
privacy private if for any efficient adversary A we have that

Prob
[
APrivASA (n) = 1

]
≤ 1

2 + negl(n)

is negligibly close to 1
2 .

4 On the Security of EAC with Secure Messaging

Before discussing our analyses let us motivate the setting by the general idea behind the security
argument.

Outline. Our general proof strategy is roughly as follows. Dagdelen and Fischlin [17] have basi-
cally shown that the EAC protocol is a Bellare-Rogaway secure key exchange protocol. Assuming
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Experiment APrivASA (n)

1 : b← {0, 1}
2 : foreach i ∈ C ∪ S do

3 : if i ∈ C then (ski, pki)← KGC(1
n) fi

4 : if i ∈ S then (ski, pki)← KGS(1
n) fi

5 : endforeach

6 : pks← {(i, pki) | i ∈ C ∪ S }

7 : a← AInit(·,·),Send(·,·),Corrupt(·),Chall(b,··· )(1n, pks)

8 : // check for trivial attacks where card or responder corrupt

9 : p← true

10 : foreach ` returned by Chall do

11 : p← p ∧ [ID(`) /∈ Corrupt ∧ PID(`) /∈ Corrupt]

12 : endforeach

13 : return p ∧ (a = b)

Figure 7: Attribute privacy experiment

that secure messaging of the eID system, which follows ISO/IEC 9791-1 resp. ISO/IEC 10116,
provides a secure channel for fresh keys, we can then apply the composition theorem of Brzuska
et al. [14] to conclude that the combined protocol (where the channel keys are now determined
by the EAC key exchange protocol) also provides a secure channel. In particular, it follows that
the transmissions of the card’s attributes via secure messaging can only be carried out by the
corresponding party, and that any attack will lead the partner to reject. Let us elaborate on these
steps in more detail.

Security of EAC. The result by Dagdelen and Fischlin [17] shows that EAC is a secure key
exchange protocol in the Bellare-Rogaway sense. This means that EAC provides keys which
are indistinguishable from random, even in presence of active adversaries.1 In particular, and
omitting some negligible terms for collisions among group elements and nonces, they show that
the advantage of distinguishing actual keys from random is bounded by the terms to break the
used MAC, signature and certification algorithms, to find second pre-images in the compression
function, and to solve the Diffie-Hellman problem when given a decisional Diffie-Hellman oracle
as help. All formal security notions of these primitives are given in Appendix A:

AdvAKE
A,EAC(n) ≤ qe ·

(
Advforge

B1,MAC(n) + Advforge
B2,Sig(n) + AdvSecPre

B3,Compr(n)
)

+ Advforge
B4,Cert(n) + 2q2

e ·AdvGapDH
B5,DH (n)

Here, qe is the number of executions in the attack, and B1, . . . ,B5 are adversaries with a comparable
run time as the attacker A on the EAC protocol. Since all advantages for the underlying primitives
are assumed to be negligible, this shows security of the EAC protocol as an authenticated key
exchange. The authors of [17] also discuss that security holds in case of a projection of the curve
point onto the x-coordinate, making the compression function two-to-one.

1Dagdelen and Fischlin actually show a slight modification of EAC (with an independent authentication key) to
be a BR-secure protocol; without this modification such a proof cannot go though. We also adopt this approach
here, but as pointed out in [17] one can in principle use the strategy in [15, 14] to lift this to a security for the
original protocol, at the cost of a more complicated proof.
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Secure Channel

(k, stS , stR)← KG(n)

b← {0, 1}
Q ← ()

a← ASend(··· ),Rcv(··· )

return a = b

Oracle Send(m0,m1)

(C0, st
′
S,0)← Send(k,m0, stS)

(C1, st
′
S,1)← Send(k,m1, stS)

if C0, C1 6= ⊥ then

stS ← st′S,b

Q.enqueue(Cb)

return Cb

else

return ⊥
fi

Oracle Rcv(C)

(m, stR)← Rcv(k, C, stR)

if b = 1 and

Q.dequeue() 6= C then

return m

else

return ⊥
fi

Figure 8: Security Experiment of (single instance of) channel protocol (KG,Send,Rcv).

Security of Secure Messaging. The proposed channel protocol is secure messaging [3], which
either uses 3DES in CBC mode with IV = 0 according to ISO/IEC 10116 for encryption, and in
retail mode (MAC algorithm 3 with DES as block cipher) with IV = 0 according to ISO/IEC 9797-
1 for authentication, with the data prepended by send sequence counter SSC which is incremented
for each operation. The other option is to use AES in CBC mode according to ISO/IEC 10116
with IV = AES(Kenc,SSC) and to use AES in CMAC for authentication with 8 bytes of output
according to SP 800-38B, where, again, the data is prepended by SSC before authentication.

In [25] Rogaway analyzes the encryption modes proposed in SP 800-38A resp. ISO/IEC 10116,
including the CBC mode used in secure messaging with the IV = AES(Kenc,SSC) computed by
applying the block cipher to the current send sequence counter SSC. Rogaway proposes an attack
if the adversary has full control over the value SSC. The attack does not carry over to the setting
used in secure messaging, where the encrypting party increments the value for each operation.
This version can be actually shown to be secure [7]. Rogaway [25] confirms the authentication
properties of the proposed MAC algorithms in ISO/IEC 9791-1 which are proposed here for secure
messaging.

We thus assume that secure messaging provides a secure channel (in the sense of [14, Section
6.3] which in turn is based on the the notion of stateful authenticated encryption [24, 21]). The
experiment lets an adversary call a challenge oracle to enqueue one of two message blocks m0,m1

into the channel, the choice made according to a secret but then fixed bit b, and to dequeue
arbitrary ciphertexts on the receiver’s side. The adversary wins if it manages to predict b or to
make the receiver accept a decryption of an out-of-order sent ciphertext. See Figure 8. The
advantage AdvSecCh

A,Ch (n) of the adversary A is then defined to be the probability of predicting b

beyond the pure guessing probability of 1
2 (in the multi-instance setting).

Note that a secure channel in our scenario here comprises both confidentiality of the attributes,
as well as authenticity. The latter suffices if the goal is to ensure that only the designated card can
send the attributes, whereas the former also guarantees privacy of the attributes. If authentication
suffices may be application dependent.

Compositional Security. Next we apply the compositional result in [14, Section 4] The theo-
rem says that the combined protocol EAC;SM (where the channel keys for secure messaging in the
multiple instances are determined by executing the EAC key exchange protocol first) also provides
a secure channel, as if the keys have been chosen freshly. In particular we apply the composition
theorem for so-called single-restricted games. This is a property which basically says that multiple
concurrently running instances of a game correspond to several independent sessions, as in case of
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secure channels. For such games, it is shown that:

AdvSecCh
A,EAC;SM(n) ≤ qe ·AdvAKE

B1,EAC(n) + AdvSecCh
B2,SM(n).

Note that this also requires for EAC to provide match-security, a property about collision-freeness
of session identifiers, and to have public session matching, the ability to determine partnered
sessions from the public transcript. Neither property has been discussed in [17] but it is easy to
show them to hold for EAC.

EAC and Impersonation Resistance. The EAC protocol not only provides a secure key
exchange protocol but it also ensures impersonation resistance. This roughly means that, at the
end of the EAC protocol, no adversary can make the responder accept a card, unless the card
has been corrupted before or if the adversary merely relayed the communication between the card
and the reader. Based on the results in [17] this has been proven formally in [23] for EAC with
auxiliary data, when the system is viewed as a transaction system. For “empty” transaction data
their protocol is identical to the EAC protocol here, including also the choice for session identifiers,
and their security guarantee of session-definite unforgeability is stronger than the requirement of
impersonation resistance here. (It has also been shown there that session identifiers collide with
negligible probability only.)

More precisely, Morgner et al. [23] show that for any efficient adversary A (against their un-
forgeability notion and thus our impersonation resistance notion of the EAC protocol without
attributes) there exists efficient adversaries B1,B2,B3 against the underlying cryptographic prim-
itives for forging signatures on behalf of terminals, forging MACs on behalf of cards, and solving
the computational Diffie-Hellman problem in the presence of a decisional DH oracle. Concretely,
the probability of forging transaction resp. impersonating here is bounded from above by:

Prob
[
ImpResEAC−AS

A (n) = 1
]
≤

(
s

2

)
·
(

2−n + R
q

)
+ S ·Advunf

B1,SIG(n)

+S ·Advunf
B2,MAC(n) + C · S ·AdvGapDH

B3,DC
(n)

where it is assumed that Compr is a R-regular function, i.e., every image has exactly R pre-images,
q is the group size specified by DC , the adversary initiates at most s sessions, and there are at
most C cards and S terminals.

5 Security of the Architectures

Here we discuss the cryptographic strength of the various settings of the access system. For the
analysis we assume that the other channels between parties, e.g., connecting the controller with the
management system, are strongly secure. This is modeled by disallowing the adversary to tamper
with, or even read the data, sent over these secured channels. We first treat the cases of the
integrated, distributed, and eID-service architecture. By the assumption about secure connection
between the various parties, we can view the reader, controller, server and management as a single
entity in these settings. Only the authentication-service architecture with the split cryptographic
operations requires a special treatment.

5.1 The Integrated, Distributed and eID-Service Architectures

We give the security statements for the integrated architecture only. Recall that the integrated
terminal architecture, for example, assumes all eID operations are carried out by the reader itself.
After completion of the TA and CA phase, the reader gets the attributes of the card (where the
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communication is secured via the secure messaging), and forwards the attributes of the card to the
management system for approval. The communication with the management system is secured
via a TLS channel. Upon approval, the reader grants access. Analogously, if restoring a session,
then the reader only accepts if the securely sent attributes are approved.

Theorem 5.1 (Impersonation Resistance) The integrated terminal architecture provides an
impersonation-resistant access system, such that for any efficient adversary A there exists efficient
adversaries B1,B2 such that

Prob
[
ImpResASA (n) = 1

]
≤ Prob

[
ImpResEAC−AS

B1
(n) = 1

]
+ 2 ·AdvSecCh

B2,EAC;SM(n)

Moreover, adversaries B1,B2 have roughly the same running time A plus the time to carry out
the other steps in the experiment. Note that since the terms on the right hand side are assumed
to be negligible, as discussed in Section 4, it follows that the system is impersonation resistance

Proof. We consider three cases: (a) either the adversary manages to create collisions in two honest
card sessions or in two honest reader sessions; or (b) an honest reader accepts at the end of the
EAC protocol but such that the identified card is neither corrupt and there is no genuine session
of the card with the same session identifier; or (c) an honest reader accepts some encrypted and
authenticated attributes in a secure-messaging protocol where this ciphertext has not been sent
by an honest card.

The first two cases are covered by the impersonation resistance of the EAC protocol. It is
straightforward to build an adversary B1 simulating the environment for A through its own attack
and by adding the extra steps for the secure messaging. If A breaks the impersonation resistance
of the combined protocol then B1 breaks the security of the EAC protocol. This in particular also
implies that the continuously growing session identifiers in restored sessions stay distinct among
card sessions as well as among responder sessions, i.e., a subsequent collisions cannot happen
anymore.

It remains to argue that case (c) cannot occur. In order to violate the predicate in the im-
personation experiment, an honest reader accepts a ciphertext C∗i in some session with identifier
sid = (Compr(epkT ), rC , C1, C2, . . . , Ci−1) for previously sent ciphertexts C1, C2, . . . in the restored
sessions before. Since we quantify over all adversaries we can assume that C∗i is the first ciphertext
which deviates from a session of an honest card, i.e., there exists a session of a card with sid =
(Compr(epkT ), rC , C1, C2, . . . , Ci−1) or already with sid = (Compr(epkT ), rC , C1, C2, . . . , Ci). But
then we must have that C∗i is new or that C∗i 6= Ci, and yet C∗i decrypts to some attribute which
the reader accepts. This can be straightforwardly used in a reduction against the authenticity of
the composed channel protocol such that the probability of this event is bounded by the security
of the secure messaging channel.

More formally, construct algorithm B2 against the combined protocol EAC;SM from A as
follows. Recall that in this combined protocol the keys for the channel are generated by the EAC
protocol, such that this perfectly simulates A’s environment up to this step. We also assume, by
the above discussion, that session identifiers are unique between cards and responders, and that
each honest responder has a unique partnered honest card.

For simulating the channel transmission of an honest card, algorithm B2 calls the Send oracle
for the pair (A,A) for the card’s attribute A to get a (valid) ciphertext. For simulating the
receipt of a ciphertext at the responder’s side, for an honest responder, there are two cases. If
the intended partner is a corrupt card, then we can assume that B2 already knows the shared key
(via a reveal query at the end of the key exchange protocol) and can simply act as the original
responder. Otherwise, algorithm B2 forwards the ciphertext to its Rcv oracle. If this oracle
returns a message m 6= ⊥, then B2 immediately outputs 1. Else, B2 lets the responder in the
simulation for A accept if and only if the ciphertext has been created by a partnered card before,
complying with the “queue property” of the channel protocol.
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If, at the end, B2 has not returned 1 yet, then it outputs a random guess. This completes the
description of the perfect simulation (up to the point where an honest responder can correctly
decrypt a new ciphertext sent through the channel protocol). If the above now happens in an
actual attack, that C∗i is new or that C∗i 6= Ci but the original responder would accept but we
reject, then we would break the authenticity of the channel protoocl with the same probability.
That is, we then have

Prob[ case (c)] ≤ 2 ·AdvSecCh
B2,EAC;SM(n)

where the factor of 2 is due to the fact that we have b = 1 and can thus see an output by the Rcv
oracle with probability 1

2 only.
Note that this argument about the channel is independent of whether restored sessions have

been overwritten or not. �

Attribute privacy follows analogously, using again the fact that secure messaging provides a
secure channel:

Theorem 5.2 (Privacy) The integrated terminal architecture provides an attribute-private ac-
cess system, such that for any efficient adversary A there exists an efficient adversary B such
that

Prob
[
APrivASA (n) = 1

]
≤ 1

2 + AdvSecCh
B,EAC;SM(n)

Proof. Note that the adversary A against privacy can only win in the experiment if it does not
query the challenge oracle about a card identity such that the card or its partner is corrupt. This in
particular means that the derived key for secure messaging must still be secure, and the adversary
here can only distinguish the attributes if it breaks confidentiality of the channel protocol. This
can again be formalized easily via a reduction to the corresponding game.

More formally, construct adversary B as in the previous theorem, running the combined pro-
tocol EAC;SM to simulate A’s attack. For every call of A about attributes A0, A1 to the challenge
oracle Chall to start a new session in this attack, adversary B simply initiates a new session and
stores A0, A1 for later use. If the card is later supposed to send its attributes in this session, then
B calls its Send oracle about A0, A1 to get a ciphertext. The (honest) responder of that ciphertext
in the simulation simply accepts.

Eventually, if A outputs a bit b, then B copies this bit to its output and stops. Since the
simulation is perfect, it follows that A’s advantage is at most the one of B. �

5.2 The Authentication-Service Architecture

In principle one can show the same results as for the other architectures to the case of the
authentication-service scenario. Recall that there an authentication server signs the TA data
forwarded by the controller, and the controller continues the execution with that signature. The
other steps are as in the other cases.

Note that the signature and the (ephemeral) DH key in the EAC protocol serve different
cryptographic purposes. The signature only binds the ephemeral key to the terminal’s identity
and prevents the adversary to inject its own key. The DH key is used to establish the session key
and, as long as the adversary does not get to learn the ephemeral secret key, the adversary is not
able to compute the joint DH key with the card. This has been discussed in [17] in the context of
key-compromise impersonation (KCI) resistance.

For us this means that even corruption of the authentication service’s signing key does not
allow to complete the EAC protocol and to learn the channel keys, for sessions in which an honest
reader picks the ephemeral key. In particular, knowledge of the signing key does not allow to
break security of previously completed sessions (forward security). Formally, we can augment
both attack model by granting the adversary another SigKey oracle which, when queried about
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a responder’s identity, returns the party’s secret signing key. The party may still act as an honest
party in sessions, with the internal choices hidden from the adversary.

The conditions for impersonation resistance remain unchanged, except for giving the adversary
access to the SigKey oracle. Since a responder party only completes a session (and accepts with
a session identifier) if it executes the protocol steps itself, any such session in question uses an
honestly chosen ephemeral key epkT on the responder’s side. Hence, the security of session keys
for such honestly ephemeral keys argued in [23] still holds.2

For attribute privacy we need to change the non-triviality check in Line 11 of the experiment
in Figure 7. There, we checked for each card session ` returned by the challenge oracle that the
card nor its intended partner is corrupt:

[ID(`) /∈ Corrupt ∧ PID(`) /∈ Corrupt]

Here, we need to check that the responder’s party has contributed the ephemeral key honestly:

[ID(`) /∈ Corrupt ∧ ∃`′ 6= ` : (SID(`) = SID(`) 6= ⊥ ∧ PID(`) = ID(`′))]

Given this, attribute privacy follows as before, because session keys are still fresh for such sessions.

6 On Achieving Forward Security

While the EAC protocol has been shown to provide forward security (against leakage of the
terminal’s long-term secrets) [17], learning a card’s long-term secret key or the secure-messaging
keys for restored sessions allows both to impersonate towards readers and to learn the attributes in
past executions. Since any protocol with fixed symmetric keys is amenable to a-posteriori leakage
we briefly discuss here a version which allows to protect attributes sent before. This, however,
comes at the price of keeping state and synchronization issues.

We only describe here one way to update the symmetric keys securely. Assume that a party
has sent (or received) the attributes over secure messaging and goes into an accepting state again.
Then, instead of storing the same keys Kenc,Kmac and (incremented) counter SSC, the party
updates its keys as (K ′enc,K

′
mac) ← KDF(AES(Kenc,SSC)) for some pseudorandom generator

KDF, and re-sets the counter to SSC′ ← 1. It stores (K ′enc,K
′
mac,SSC′) in the session context.

The reason that this method of updating the keys is secure is based on the observation that
AES(Kenc,SSC) yields a secure random initialization vector for the channel encryption. It can
hence also been used as a seed for the pseudorandom generator KDF to generate quasi fresh keys
K ′enc,K

′
mac. In other words, if the adversary corrupts the party holding the session context we

may as well hand over fresh random keys K ′enc,K
′
mac. This follows as, without knowledge of Kenc,

the value AES(Kenc,SSC) is indistinguishable from random, and so is then the output of KDF.
We note that any other forward-secure pseudorandom generators [9] may be used. In general,

if we cannot rely on the properties of encryption with counters and AES, it is then safe to augment
the state by another key Kprg which is used to update keys via (K ′enc,K

′
mac,K

′
prg)← KDF(Kprg).

7 Conclusion

The access system based on EAC with session restoring provides an impersonation resistant and
attribute-hiding solution. Here, both security properties hold in a very strong sense, thwarting
active adversaries with strong control over the network, and leaving the adversary essentially only
trivial attacks from a cryptographic viewpoint. On top, the system is very similar to the existing

2The proof relies on the unforgeability of signatures only to ensure that the adversary cannot inject its own
ephemeral key, which is guaranteed by construction here.
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EAC system and may thus be easy to implement on existing infrastructures for the German
identity card (or the future eIDAS system).
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Message Authentication Codes. A message authentication codeM consists of three efficient
algorithms (MKGen,MAC,MVf) where MAC(k,m) maps any key k generated by key generation
algorithm MKGen and any message m to a MAC (resp. tag) T which is verifiable with the help of
MVf(k,m, T ) with binary output. Completeness demands again that for any valid key k and any
message m the value T ← MAC(k,m) makes MVf(k,m, T ) return 1.

We require that the message authentication code M is unforgeable under adaptively chosen-
message attacks. That is, the adversary is granted oracle access to MAC(k, ·) and MVf(k, ·, ·) for
random key k generated by MKGen and wins if it, at some point, makes a verification query (m,T )
about a message m which has not been sent previously to MAC, and such that MVf returns 1 for
this message. We denote by Advforge

M (t, qm, qv) a (bound on the) value ε for which no attacker in
time t can win (making at most qm MACs queries and qv verification queries) with probability

more than ε. For a concrete attacker A we write Advforge
A,M(n) to denote the fact that A attacks

the scheme in the above sense (for security parameter n).

Signatures and Certificates. A signature scheme S = (SKGen,Sig,SVf) consists of efficient
algorithms for creating key pairs (sk, pk), signing messages s← Sig(sk,m), and verifying signatures,
d← SVf(pk,m, s) with d ∈ {0, 1}. It must be that for signatures created under valid key pairs SVf
always returns 1 (correctness). Unforgeability says that no algorithm should be able to forge the
signer’s signature. That is, a signature scheme S = (SKGen,Sig,SVf) is (t, qs, ε)-unforgeable if for
any algorithm A running in time t the probability that A outputs a signature to a fresh message
under a public key is Advforge

S (t, qs) (which should be negligible small) while A has access (at

most qs times) to a singing oracle. As before, for a concrete attacker A we write Advforge
A,S (n) to

denote the fact that A attacks the scheme in the above sense (for security parameter n).
We also assume a certification authority CA, modeled like the signature scheme through al-

gorithms CA = (CKGen,Certify,CVf), but where we call the “signing” algorithm Certify. This is
in order to indicate that certification may be done by other means than signatures. We assume
that the keys (skCA, pkCA) of the CA are generated at the outset and that pkCA is distributed
securely to all parties (including the adversary). We also often assume that the certified data
is part of the certificate. We define unforgeability for a certification scheme CA analogously to
signatures, and denote the advantage bound of outputting a certificate of a new value in time
t after seeing qc certificates by Advforge

CA (t, qc). We assume that the certification authority only
issues unique certificates in the sense that for distinct parties the certificates are also distinct; we
besides assume that the authority checks whether the keys are well-formed group elements. For a
concrete attacker A we again write Advforge

A,CA(n) to denote the fact that A attacks the scheme in
the above sense (for security parameter n).

Second Preimage Resistance. We say that the compression function Compr is (t, ε)-second
preimage resistant if the probability AdvSecPre

Compr(t) of finding to a random ephemeral public key
epkT another key epk∗T with the same compressed value is bounded by ε. For a concrete attacker
A we again write AdvSecPre

Compr(t) to denote the fact that A finds a second preimage in the above
sense (for security parameter n).

Gap Diffie-Hellman Problem. We need the following gap Diffie-Hellman problem [4]. For
a group G generated by g let DH(X,Y ) be the Diffie-Hellman value Xy for y = logg Y (with
g being an implicit parameter for the function). Then the gap Diffie-Hellman assumption says
that solving the computational DH problem for (ga, gb), i.e., computing DH(ga, gb) given only the
random elements (ga, gb) and G, g, is still hard, even when one has access to a decisional oracle
DDH(X,Y, Z) which returns 1 iff DH(X,Y ) = Z, and 0 otherwise. We say that the GDH problem
is (t, qDDH, ε)-hard if no algorithm can in time t compute the DH value with probability larger
than ε, if making at most qDDH queries. We let AdvGDH

G (t, qDDH) denote (a bound on) the value ε
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for which the GDH problem is (t, qDDH , ε)-hard. For a concrete attacker A we write AdvGDH
A,G (n)

to denote the fact that A attacks the problem in the above sense (for security parameter n).
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