
Learning Whom to Trust in a Privacy-Friendly Way

Sebastian Ries, Marc Fischlin, Leonardo A. Martucci, Max Mühlhäuser
Center for Advanced Security Research Darmstadt (CASED)

Telecooperation Group (TK) — Technische Universität Darmstadt
{firstname.lastname}@cased.de

Abstract—The topics of trust and privacy are more
relevant to users of online communities than ever be-
fore. Trust models provide excellent means for sup-
porting users in their decision making process. How-
ever, those models require an exchange of information
between users, which can pose a threat to the users’
privacy. In this paper, we present a novel approach for
a privacy preserving computation of trust. Besides pre-
serving the privacy of the recommenders by exchanging
and aggregating recommendations under encryption,
the proposed approach is the first that enables the
trusting entities to learn about the trustworthiness of
their recommenders at the same time. This is achieved
by linking the minimum amount of information that
is required for the learning process to the actual rec-
ommendation and by using zero-knowledge proofs for
assuring the correctness of this additional information.

I. Introduction

Trust and reputation systems support users’ in making
decisions whether and with whom to interact in online
environments: “Reputation is a summary of one’s past ac-
tions within the context of a specific community, presented
in a manner that can help other community members
make decisions with respect to whether and how to relate
to that individual.” [1] Those systems became more and
more important and ubiquitous in eCommerce, virtual
communities, virtual organizations, and in Internet of
Services. For example, a recent study shows that eBay’s
data center, which manages all transactions and revenue
from eBay.com and PayPal.com, processed a total of $60
billion in 2009, i.e. around $2,000 per second.1

On the other hand, privacy is of fundamental impor-
tance in computer-based environments. Privacy can be
defined in terms of a person’s right to determine when,
how and to what extent information about him or her is
communicated to the others [2]. The principle of necessity
of data collection and processing determines that the
collection and processing of personal data should only
be allowed if it is necessary for the tasks falling within
the responsibility of the data processing agency. Hence,
personal information should not be collected or used for
identification purposes when not absolutely necessary. The
best strategy to enforce such requirement is the avoidance
or minimization of personal data [3], [4].

1http://www.informationweek.com/blog/global-cio/229202763

There is a conflict between mechanisms for trust estab-
lishment and for privacy protection. While trust mecha-
nisms require information exchange and long-term iden-
tifiers, privacy enhancing technologies aim to limit usage
of personal data using properties like anonymity or short-
term (transaction) pseudonyms. This inherent conflict is
the result of opposing interests derived from the afore-
mentioned principle of necessity of data collection and
processing, and the principle of data minimization [5].

The exchange of recommendations poses a special threat
to privacy. In particular, if recipients can link recom-
mendations across multiple service contexts, then they
can learn about the past interactions and preferences
of the recommenders. Hence, the problem between trust
establishment and privacy protection.

In this paper, we address this problem by proposing a
novel approach for exchanging information that is based
on a pre-agreed set of recommenders and homomorphic
encryption. We extend the current state of the art with
means to compute trust while preserving the users’ pri-
vacy. Our proposal updates trust in recommenders based
on the accuracy of their recommendations and without
offering a full-knowledge of the recommendation. This
aspect has not been addressed before to the best of our
knowledge. Our solution is based on the idea to extend a
recommendation with an additional piece of information.
This additional information states the “tendency” of the
recommendation and also proves the link between them
using zero knowledge proofs.

All in all, the paper presents a privacy-preserving trust
mechanisms that supports the following:

• Learning about the trustworthiness of one’s recom-
menders – without knowing the details of the recom-
mendations.

• Allowing members of the set of recommenders to say
“I don’t know” without skewing the calculated trust
value or the need to adjust the set of recommenders.

• Distribution of negative evidence. Negative evidences
are fundamental in reputation systems. They allow
reputation values to fluctuate according to the user’s
behavior. Without negative evidences, malicious users
that build a good reputation could misbehave freely,
with no damaging effect on their reputation.

The remainder of the paper is structured as follows.
Section II summarizes the related work. An approach

for computing trust values is presented in Section III
and the objectives of the paper are then formalized in
Section IV. Section V describes our protocol for a privacy-
preserving computation of trust. The proofs and properties
are presented in Section VI and the cryptographic tools are
detailed in Section VII.Section VIII concludes the paper.

II. Related Work

In this section we introduce the relevant related work.
This section is divided into four parts. First, we reca-
pitulate evidence based trust models. Second, we discuss
how privacy is treated according to the trust model used.
Third, we organize possible solutions according to their
underlying theoretical fundamentals. Finally, we briefly
discuss the cryptographic tools that we used in this paper
and mention other works that are relevant to the field.

A. Evidence based trust models

Evidence-based trust and reputation models try to es-
timate the trustworthiness (or reputation) of a service
provider based on the evidence that reflects the outcome of
previous interactions of a customer with the service. One
of the most prominent examples of such an approach is the
feedback score that supports buyers when selecting sellers
on eBay (www.eBay.com). Furthermore, there has been a
number of proposals of trust and reputation models in
research, e.g., centralized models [6]–[8], and distributed
models [9]–[13].

Considering the representation and computation of
trust, Bayesian trust models [7], [9], [10], [12], [14] provide
a couple of advantages compared to ad hoc developed
approaches: (i) they provide sound mathematical basis
and simple mechanism to update trust values whenever
new evidence is available, and (ii) they allow to consider
the amount of information at trust value is based on,
especially, they allow to explicitly express that one does
not have any information,2 (iii) they allow to interpret
trust as a subjective probability which fits the definition
of trust provided in [15].

B. Dealing with privacy in trust models

In the following we like to discuss the privacy issues of
trust models considering the location where trust values
are stored and computed:

• Centralized Models: In trust models like eBay
or the Bayesian trust models presented in [7], [16]
the evidence that is used for calculating the trust
value of another party is stored and processed by a
reputation centre. In centralized models, it is possible
to protect the users privacy by showing the users
only an aggregated trust value or reputation value,
without revealing who contributed what rating to the

2In non-Bayesian models, an unknown entity usually has an initial
trust value, which is arbitrarily assigned, e.g., 0 or 0.5. However, as
for the entity receiving this value, it is not possible to decide whether
it is based on experience or whether this value is just the initial trust
value, those values would skew the computed trust value.

overall result. However, this requires a fully trusted
centralized authority. Furthermore, this approach has
the disadvantage is that the centralized authority can
hardly decide whether a rating for an interaction is
justified or not.

• Distributed Models: In trust models as provided
in [9], [10], [14], [17] each entity collects its direct
evidence, i.e. the outcomes of its past interactions lo-
cally. In order to overcome the lack of direct evidence
between entities, the models support the exchange of
recommendations. The trust value of an interaction
partner, is then computed locally by the entity that
is interested in evaluating the trustworthiness of an
interaction partner taking into account the entity’s
direct evidence and the recommendations from other
parties, which are weighted according to the trust-
worthiness of the recommenders. The advantages of
the distributed approach are: (i) it does not require a
trusted third party per se, and (ii) the recommenders
can decide based on the requesting entity, whether
they are willing to provide a recommendation, and
(iii) the parties who are evaluating the recommen-
dations can weight those recommendations based on
the subjective trustworthiness that they assigns to the
recommenders. However, this leads to the situation
that in current approaches, the parties who receives a
recommendation can learn about the previous inter-
actions and the preferences of their recommenders.

C. Privacy in distributed systems

We see two basic approaches to preserve the users’
privacy in distributed systems:

• Identity- /Pseudonym-based approach: Follow-
ing this approach, one tries to decouple the real-world
identity of a user from his history in the trust system
by introducing pseudonyms [5], [18].

• Encryption-based approach: Following this ap-
proach, one tries to encrypt recommendations using
a homomorphic crypto-system. Thus, the party who
evaluates the trustworthiness of an entity, can still
perform computation on the encrypted recommenda-
tions, but is not able to learn about the individual
recommendations [19].

D. Using encryption to preserve privacy

In this paper, we use an encryption-based approach3. In
the rest of this section we introduce some state of the art
proposals and show why they are not fitting for the stated
problem.

The approach presented in [19] uses homomorphic en-
cryption. It does not allow an entity that receives a
recommendation to be able to learn about the trustwor-
thiness of the recommenders. Furthermore, the approach
does not take into account on how much knowledge a

3The approach could be used complementary to the identity-based
approach proposed in [5].

recommendation is based upon. Especially, in case that
a recommender has not interacted with the interaction
partner under evaluation before, it would answer with an
initial trust value, which would skew the calculation of the
trust value in the end.4

Another approach in this class was presented in [20].
This approach is, like ours, based on homomorphic en-
cryption and zero-knowledge proofs. However, it does not
support negative ratings.

There are several other approaches tackling the field
of trust and privacy, e.g., [21], [22], but the approaches
mentioned before are the closest to our solution.

III. Assessing Trust While Preserving Privacy

In the following, we propose a novel approach for calcu-
lating a trust value in a privacy preserving manner. The
approach is based on a Bayesian trust model, homomor-
phic encryption, and zero-knowledge proofs. We introduce
the basic mechanism for the evidence-based computation
of trust, and afterwards, two protocols that support a
privacy-friendly computation of trust.

A. Bayesian Representation

This section starts with a short introduction of a rep-
resentation of trust which is based on the trust and
reputation models presented in [7], [9], [10], [12], [14].

The main parameters used to derive the trustworthiness
of an entity in the Bayesian representation are the numbers
of positive r and negative s evidence that have been col-
lected based on direct experience and recommendations.
Furthermore, r0 and s0 indicate the prior knowledge (as in
[7], [9], [10], [12], [23]). The corresponding Beta probability
density function f(p | α, β) is defined as:

f(p | α, β) =
Γ(α+ β)

Γ(α) · Γ(β)
· pα−1 · (1− p)β−1 ,

where 0 ≤ p ≤ 1, α > 0, β > 0 .

(1)

Given the parameters r0 and s0, which may be chosen
context-dependent as proposed in [12] or set to r0 = s0 = 1
as in [7], [9], [10]. The opinion about the trustworthiness
of an entity is denoted as o = (r, s). The expectation value
of an opinion is referred to as E(o) or E((r, s)). It can be
calculated as:

E(o) = E((r, s)) =
r + r0

r + s+ r0 + s0
(2)

B. Computational Model of Trust

In the following, we refer to the consumers of recommen-
dations and service providers as entities. The computa-
tional trust model provides means for combining the direct
evidence of the initiator, i.e., the consumer that wants to
select a service, and indirect evidence (recommendations)

4A possible way around would require the redefinition of the
recommenders set. However, such a change would heavily increase
the computational costs of this proposal.

Figure 1. Trust network

from third parties. This can also be referred to as trust
propagation. The basic ideas for trust propagation in the
proposed approach are similar to the ones presented in [7],
[23]. Therefore, the operators for the trust propagation are
given the same names. The consensus operator combines
several opinions to a single one, and the discounting
operator allows to weight recommendations based on the
reputation of, or opinion about, the recommender.

For the explanation of the trust propagation a simple
network is illustrated in Figure 1. Here, entity A is in
the role of the initiator of an interaction, i.e., entity A
has to select a service provider from a set of available
service providers. As a basis for the selection, the ini-
tiator evaluates the trustworthiness of the candidates. In
order to evaluate the trustworthiness of a candidate C,
entity A uses its direct evidence and indirect evidence,
which are also referred to as recommendations. In the
example, entity A does not have any direct evidence,
but it receives recommendations from the recommenders
B1, B2, . . . , B100.

It is necessary to distinguish between the different con-
texts in which an entity gained trust. An entity may be
trustworthy in the context of providing a service or in
the context of providing recommendations about certain
classes of service, as illustrated in Figure 1. The first is
important for the selection of a candidate, the latter is
important when deriving trust based on recommendations.
An entity gains trust as service provider, when it provides
a service that meets the expectation of the service con-
sumer, and loses trust when it does not. Yet, the behavior
of an entity when providing a service does not necessarily
convey information about its behavior as recommender –
and vice versa – as both contexts refer to different services
offered by an entity. Therefore, trust is derived differently
in both contexts. In the context of service provision, an
entity obtains trust based on the fulfillment of consumers’
expectations. In the context of providing recommendations
an entity increments its trust when it provides accurate
recommendations. In the following, we will assume that
the trustworthiness of an entity in the context of pro-
viding recommendations is already given. For approaches
to derive this information from the accuracy of previous
recommendations see [10], [14].

Additionally, it is worth mentioning that the trustwor-

thiness in the context of providing recommendations as
well as in the context of providing a service also depends on
the considered class of service, e.g., file sharing or weather
forecast. Yet, in the following we assume there is only one
class of service, in order to keep the notation simple.

C. Notation

In the rest of the paper the following notation is used. A
denotes initiators of interactions, i.e., service consumers.
B denotes recommenders of services. C denotes service
providers.

The opinion of an service consumer A about a service
provider C is denoted as oAc (with a lowercase c). The
opinion of a service consumer A about a recommender B
is denoted as oAB (with an uppercase B).

The expectation value E(oAc) express the trustwor-
thiness that A assigns to C in the context of service
provisioning. The expectation value E(oAB) express the
trustworthiness of A in B in the context of providing
accurate recommendations.

D. Trust Propagation

For trust propagation, we define two basic operators:
consensus and discounting.

Definition 3.1 (Consensus): Let oB1
c = (rB1

c , sB1
c) and

oB2
c = (rB2

c , sB2
c) be the opinions of B1 and B2 about

the trustworthiness of entity c. The opinion oB1,B2
c =

(rB1,B2
c , sB1,B2

c) is modeled as the opinion of an imaginary
entity which made the experiences of B1 and B2, and is
defined as:

oB1,B2
c = oB1

c ⊕̂oB2
c = (rB1

c + rB2
c , sB1

c + sB2
c) (3)

Where the ‘⊕̂’ symbol denotes the consensus operator.
The operator can easily be extended for the consensus of
multiple opinions (see Eq. 6).

Definition 3.2 (Discounting): Let oAB = (rAB , s
A
B) and

oBc = (rBc , s
B
c). We denote the opinion of A about c based

on the recommendation of B as oA:B
c = (rA:B

c , sA:B
c) and

define it as:

oA:B
c = oAB⊗̂oBc = (d(oAB) · rBc , d(oAB) · sBc) (4)

The discounting factor d(oAB) can be defined as:

d(oAB) = E(oAB) =
rAB + r0

rAB + sAB + r0 + s0
(5)

Where the ‘⊗̂’ symbol denotes the discounting operator.
The aggregation of recommendations is done using the
operators consensus and discounting. Assuming that A
receives recommendations about C from a set of recom-
menders B, where B = {B1, . . . , Bn}. The trustworthiness
that A assigns to B (in the context of providing recommen-
dations) is given by oAB1

, . . . , oABn
. The recommendations

are given as oB1
c , . . . , oBn

c . The aggregation of the opinions
using the operators defined above is calculated as follows:

oA:B
c = (oAB1

⊗̂oB1
c)⊕̂...⊕̂(oABn

⊗̂oBn
c)

= (

n∑
i=1

d(oABi
) · rBi

c ,

n∑
i=1

d(oABi
) · sBi

c)
(6)

Whenever entity A has additional direct evidence oAc ,
this evidence needs also be to considered, e.g., by adding
this evidence after aggregating the recommendations or
by considering oneself as recommender with a discounting
factor d = 1.

E. Learning whom to trust

Assume that fc ∈ {0, 1} is A’s feedback for the inter-
action – where ‘0’ means “not satisfying” and ‘1’ means
“satisfying”.A updates his direct evidence about C, oAc =
(rAc , s

A
c), after the interaction to oAc = (rAc +fc, s

A
c +1−fc)

– which means that fc = 1 leads to an increase of rAc by
1 (while sAc remains unchanged) and fc = 0 leads to an
increase of sAc by 1 (while rAc remains unchanged).

After receiving recommendations from Bi, the update
of the trustworthiness of the recommenders can be carried
out based on the accuracy of the recommendation [24].
A recommendation is supposed to be accurate if the
recommendation and the feedback fc for outcome of an
interaction have the same tendency. This can formalized
as follows (fhi characterizes whether A rates the h-th
recommendation by Bi as accurate):

• positive update fhi = 1: If feedback fc is positive
and the recommender provided more positive than
negative evidence, i.e., rBi

c > sBi
c .

• negative update fhi = 0: If feedback fc is negative
and the recommender provided more negative than
positive evidence, i.e., rBi

c < sBi
c .

• no update: If the recommender has no previous ex-
perience with C, i.e., (rBi

c , sBi
c) = (0, 0). Or if the

recommender provided as much negative as positive
evidence, i.e., rBi

c = sBi
c .

Finally, the update will be calculated similar to the up-
date of the trustworthiness of an interaction partner: If the
trustworthiness of the recommender was oABi

= (rABi
, sABi

)
before the update, it will be (rABi

+ fhi , s
A
Bi

+ 1− fhi) after
the interaction.

IV. Goals for the privacy-friendly computation

Our approach for a privacy-friendly computation of
trust has three goals:

1) Support A in evaluating the trustworthiness of his
potential interaction partners C using recommenda-
tions. There is no need that A knows the individual
recommendations as long as A can use them in calcu-
lations and compute the result. This goal is achieved
using homomorphic encryption and a trusted third
party that is trusted to perform a decryption.

2) Support A in evaluating the trustworthiness of his
recommenders Bi. For A to update the trust in rec-
ommenders Bi (see Section III-E), A does not need

to know each individual recommendation (rBi
c , sBi

c),
but one only needs to know whether the recommen-
dation was accurate or not (thus, individual recom-
mendations can be encrypted). For this evaluation
it is sufficient to know if rBi

c > sBi
c , rBi

c < sBi
c ,

or rBi
c = sBi

c . However, A has to make sure that
this information is reliably linked to the provided
(encrypted) recommendation. This is achieved using
zero-knowledge proofs.

3) Prevent A from learning unnecessary details about
the recommendations from his recommenders Bi. Our
evaluation shows that a curious, non-malicious, A
will not be able to learn the values of a recommen-
dation (rBi

c , sBi
c). Furthermore, we increase the costs

for malicious attacker to learn unnecessary details
about the recommendations when comparing our
proposal against the state of the art.

V. Privacy-preserving Computation of Trust

In this section we introduce our novel protocol for
a privacy-preserving computation of trust. For a better
understanding, we divided the protocol into two parts.
The first part introduces a preliminary protocol that can
achieve the first two objectives stated in Section IV. The
second part extends the preliminary protocol to achieve
the final objective listed in Section IV. Details regarding
homomorphic encryption and the used zero-knowledge
proofs (ZKP) are presented in Section VII.

The protocol has the following parties and roles, which
extends the notation presented in Section III-C.

• A is the initiator of interactions. A evaluates the
trustworthiness of a service provider C based on the
recommendations from recommenders Bi.

• Z is a trusted third party (TTP). Z’s role is to decrypt
data that is sent to it. Z is trusted by all protocol
participants not to collude with A or Bi.

The protocol is divided into the following 4 phases:

1) Phase 0. The setup phase initializes the protocol
parameters and define the set of participants.

2) Phase 1. A calculates the trustworthiness of service
providers C.

3) Phase 2. For A to select the best service provider C.
4) Phase 3. For A to update the trust values regarding

the service provider C and the recommenders Bi.

Each phase can be divided into one or more steps,
where steps are named according to the following notation:
<Entity>-<Step Number for this Entity>, where entity is
either A, B or Z, and the step number ∈ N∗.

A. Preliminary Protocol (Part 1)

The overview of the preliminary protocol is depicted in
Figure 2.

Figure 2. Overview: Preliminary Protocol – Part 1

0) Setup: The setup phase initializes protocol parame-
ters, and define the set of participants.

• A defines a Sybil-free set B = {B1, . . . , Bi, . . . , Bn} of
entities that have agreed to provide recommendation
regarding a service provider C. Additionally, the ele-
ments of B must agree that |B| is sufficiently large to
be used as an anonymity set.5

• A initializes the opinions oABi
about the trustworthi-

ness of his recommenders using the parameters r0 > 0
and s0 > 0, e.g., r0 = s0 = 1.

• A and all recommenders Bi in the recommender set
agree on a trusted third party Z.

• A informs all recommenders Bi about N ,6 which is
the maximum number of evidence A accepts from
each recommender.

5A Sybil-free set of pseudonyms can be achieved as in [25], [26].
6N is necessary to prevent that an entity attacks the computation

of trust by providing an arbitrary high number of pieces of evidence.

• Z creates a key pair with a public key (sk, pk) (see
Section VII) and distributes the public key pk to A
and all Bi. Z is trusted to keep sk secret.

1) Calculate Trustworthiness of Service Providers:
When A has to evaluate the trustworthiness of a set of
candidates for an interaction, then A initiates the following
protocol for each candidate C.
Step A–I: Initiating a request for recommendations.

01 : A sends a reques t f o r recommendation
about C to a l l Bi .

Step B-I: Answering a request.

01 : Each Bi responds with (Encpk(r
Bi
c),Encpk(s

Bi
c))

and the in fo rmat ion needed to proo f
(us ing ZKPs) (∗) :

a) 0 ≤ rBi
c + sBi

c ≤ N and
b) the t rue statement out o f :

b1) rBi
c = sBi

c

b2) rBi
c < sBi

c

b3) rBi
c > sBi

c

Step A–II: Processing recommendations (discounting).

01 : For each rep ly by Bi

02 : A v e r i f i e s that the recommendation i s
va l i d (ZKP) , i . e . ,
0 ≤ rBi

c , sBi
c ≤ N (us ing ZKPs) (∗)

03 : A c a l c u l a t e s Encpk(r
A:Bi
c) =

= Encpk(d(o
A
Bi

) · rBi
c) = d(oABi

)⊗ Encpk(r
Bi
c) (∗∗)

04 : A c a l c u l a t e s Encpk(s
A:Bi
c) =

= Encpk(d(o
A
Bi

) · sBi
c) = d(oABi

)⊗ Encpk(s
Bi
c) (∗∗)

05 : End f o r

Step A–III: Recommendation aggregation (consensus).

01 : A computes (∗∗) :
Encpk(

∑|B|
i=1 r

A:Bi
c) = Encpk(r

A:B1
c)⊕ . . .⊕ Encpk(r

A:B|B|
c)

02 : A computes (∗∗) :
Encpk(

∑|B|
i=1 s

A:Bi
c) = Encpk(s

A:B1
c)⊕ . . .⊕Encpk(s

A:B|B|
c)

Step A–IV: Request for decryption.

01 : A sends to Z (∗∗∗) :
((Encpk(

∑|B|
i=1 r

A:Bi
c),Encpk(

∑|B|
i=1 s

A:Bi
c))

Step Z–I: Decryption of message from A.

01 : When Z r e c e i v e s a tup l e (Encpk(
∑|B|

i=1 r
A:Bi
c) ,

Encpk(
∑|B|

i=1 s
A:Bi
c)) from A , then

02 : Z decrypts the tup l e :

rAagg = Decsk(Encpk(
∑|B|

i=1 r
A:Bi
c)) , and

sAagg = Decsk(Encpk(
∑|B|

i=1 s
A:Bi
c))

Step Z–II: Send result to A.

01 : Z sends (rAagg, s
A
agg) to A

Important notes:
(∗)ZKP techniques are explained in Section VII.
(∗∗)Assuming a homomorphic encryption scheme as intro-
duced in Section VII. We use the following short nota-
tion for operations when exploiting the homomorphism:
Encpk(c · m) = c ⊗ Encpk(m) and Encpk(m + m′) =
Encpk(m)⊕ Encpk(m′)

(∗∗∗)A can add his own experience to (Encpk(
∑|B|
i=1 r

A:Bi
c),

Encpk(
∑|B|
i=1 s

A:Bi
c)) by encrypting Encpk(rAc , s

A
c) and

treating it as another recommendation.
2) Selection of the Best Service Provider & Interaction:

If there is only one candidate, A can use the collected
information to decide whether this candidate is trustwor-
thy enough for the interaction. If A can choose between
multiple candidates, A runs the first part of the protocol
per interaction partner. Afterwards, A can decide whether
to interact with a certain interaction partner (e.g., the best
one) or not. In case A decides not to interact, the protocol
will stop without any further steps.

3) Update Trust Values: The update will only be carried
out if A has interacted and rated the interaction with C
and if Bi provided a (positive or negative) recommenda-
tion about C.
Step A–V: Determine fhi .
Assume that fc ∈ {0, 1} is A’s feedback for the interac-
tion. Having received a recommendation from Bi, A rates
the accuracy of Bi’s recommendation either positive or
negative, i.e., fhi = 1 or fhi = 0 (where h denotes that A
updates his trust in the recommender Bi for the hth time).

01 : For each Bi

02 : A c a l c u l a t e s the accuracy fh
i o f the

recommendation as
(Knowledge about r e l a t i o n between rBi

c

and sBi
c was provided in Phase B−I .)

fh
i =


1 if fc = 1 and rBi

c > sBi
c ,

1 if fc = 0 and rBi
c < sBi

c ,

undef if rBi
c = sBi

c ,

0 else.
03 : End f o r

Step A–VII: Update oABi
.

01 : For each Bi

02 : I f fh
i 6= undef , then A updates

oABi
= (rABi

, sABi
) to

oABi
= (rABi

+ fh
i , s

A
Bi

+ 1− fh
i)

03 : End f o r

Step A–VIII: Update oAc .
Assume that fc ∈ {0, 1} is A’s feedback for the interac-

tion.

01 : A updates oAc = (rAc , s
A
c) to

oAc = (rAc + fc, s
A
c + 1− fc)

4) Properties of the preliminary protocol: Assuming
that all entities follow the protocol, we have that:

• A can calculate the trust value for C as described in
Section III-B.

• A does not have direct access to the recommendations
of Bi, as A gets only encrypted data from Bi.

• A can learn about the trustworthiness of Bi based on
the information provided by the ZKP.

• Z does not have access to the individual recommenda-
tions, as it does not receive them, but only aggregated
values.

5) Vulnerabilities of the preliminary protocol: A curious
attacker could exploit the preliminary protocol using two
different strategies, which require no preparation:

1) A can send any tuple to Z for decryption, e.g.,
(rBi
c , sBi

c) in step A–IV: As Z could not distinguish
those from the correctly computed values, Z would
decrypt those values and send them back to A.

2) A can select the values for d0, . . . , dn without any
control. If A selects di = 1 and ∀j 6= i.dj = 0, then
it holds that (ragg, sagg) = (rBi

c , sBi
c) and A can get

knowledge about an arbitrary recommendation.

There exists a number of options to overcome the first
attack. However, the second attack is harder to handle,
as it is inherent of the trust updating process that entity
A controls the values of d(oABi

). The full protocol, which
extends of the preliminary protocol handles both attacks.
The full protocol is presented next.

B. Full Protocol (Part 2)

To overcome the vulnerabilities presented in the prelim-
inary protocol, we extended it. This extended version, i.e.,
the full protocol, prevents A from manipulating the values
of d(oABi

).

The full protocol has the same phases, but additional
steps to phases 1 (for calculating the trustworthiness of
service providers) and 3 (for updating trust values), and
one suppressed step in phase 1 (step Z–II). Phase 0 (setup)
has additional requirements as well. The full protocol is
depicted in Figure 3.

The building blocks that differ from preliminary proto-
col are highlighted in gray in Figure 3.

0) Setup: The setup phase initializes protocol parame-
ters, and define the set of participants. The first five items
are common with the preliminary protocol, while the other
items are added to support the extra functionalities of the
full protocol.

• A defines a Sybil-free set B = {B1, . . . , Bi, . . . , Bn} of
entities that have agreed to provide recommendation
regarding a service provider C. Additionally, the ele-
ments of B must agree that |B| is sufficiently large to
be used as an anonymity set.

• A initializes the opinions oABi
about the trustworthi-

ness of his recommenders, and sends Encpk(r0) and
Encpk(s0) to Bi together with the information for a
ZKP for: r0 + s0 = 2 and r0 > 0 and s0 > 0.

• A and all recommenders Bi in the recommender set
agree on a trusted third party Z.

• A informs all recommenders Bi about N , that is the
maximum number of evidence A would take from each
recommender.

• Z distributes its public key pk to A and all Bi.
• A and all recommenders agree on a value for r0 + s0

for the opinions on the trustworthiness of the recom-
menders. For simplicity, we assume they agreed on

Figure 3. Overview: Full Protocol – Part 2

r0 + s0 = 2.7

• All recommenders in the recommender set of A agree
on two random functions rand1(a, b) and rand2(a, b),
where rand1(a, b) = −rand1(b, a) and rand2(a, b) =
−rand2(b, a).8

• The recommenders agree on a function partner which
assigns each recommender exactly one partner. For
simplicity, we assume that we have a even number of
recommenders, and the function partner is defined in
a way that it holds partner(i) = j ⇔ partner(j) = i.

• A initializes oABi
= (0, 0) for all Bi.

1) Calculate trustworthiness of candidates: When A has
to evaluate the trustworthiness of a set of candidates for

7It would also be possible to choose another value for the sum
of r0 + s0. The selection of the individual parameters r0 > 0 and
s0 > 0 allows A to personalize the individual trustworthiness of his
recommenders.

8The functions rand1 and rand2 have to be chosen in compliance
with the parameters of the crypto-system introduced in Section VII.

interaction, A initiates the protocol shown in Figure 3.

Step B–II: Bi initializes, calculates and obfuscates its
discounted recommendation and sends it to Z.

01 : Whenever Bi r e c e i v e s (Encpk(f
h
i)) , then

02 : I f Bi has never run t h i s p ro to co l with A
before , then Bi d e f i n e s

Encpk(r
A
Bi

) = Encpk(0) and counterA = 0
03 : End I f
04 : Bi c a l c u l a t e s Encpk(r

A:Bi
c) = Encpk(d(o

A
Bi

) · rBi
c) =

= 1
counterA+2

⊗ (Encpk(r
A
Bi

)⊕ Encpk(r0))⊗ rBi
c

05 : Bi c a l c u l a t e s Encpk(s
A:Bi
c) = Encpk(d(o

A
Bi

) · sBi
c) =

= 1
counterA+2

⊗ (Encpk(r
A
Bi

)⊕ Encpk(r0))⊗ sBi
c

06 : Bi sends the f o l l ow i ng va lue s to Z :
Encpk(r

A:Bi
c)⊕ Encpk(rand1(i, partner(i))) and

Encpk(s
A:Bi
c)⊕ Encpk(rand2(i, partner(i)))

Step Z–III: Aggregation and decryption of messages by
all Bi.

01 : When Z has r e c e i v ed the d i scounted
recommendations by a l l recommenders Bi in
the s e t o f recommenders , then

02 : Z c a l c u l a t e s∑|B|
i=1 Encpk(r

A:Bi
c)⊕ Encpk(rand1(i, partner(i)))

03 : Z c a l c u l a t e s∑|B|
i=1 Encpk(s

A:Bi
c)⊕ Encpk(rand2(i, partner(i)))

04 : Z decrypts the r e s u l t s :

rBagg = Decsk(
∑|B|

i=1 Encpk(r
A:Bi
c)⊕

⊕Encpk(rand1(i, partner(i))) and

sBagg = Decsk(
∑|B|

i=1 Encpk(s
A:Bi
c)⊕

⊕Encpk(rand2(i, partner(i)))

Step Z–IV: Comparison and reply.

01 : I f rAagg = rBagg and sAagg = sBagg Z sends
(rAagg, s

A
agg) to A , e l s e Z sends error to A .

2) Selection of the best recommender & Interaction::
This phase remains the same, as described in the prelimi-
nary protocol.

3) Update trust values: The following steps are added
to this phase:

Step A–VI: A sends update to Bi.

01 : For each Bi

02 : I f fh
i 6= undef

03 : A c a l c u l a t e s Encpk(f
h
i)

04 : A gene ra t e s the in fo rmat ion f o r a
ZKP showing Encpk(f

h
i) encrypts e i t h e r

0 or 1 .
05 : A sends the in fo rmat ion from 03

and 04 to Bi

06 : End i f
07 : End f o r

Step B–III: Bi updates oABi
.

01 : Whenever Bi r e c e i v e s (Encpk(f
h
i)) , then

02 : Bi v e r i f i e s that (Encpk(f
h
i)) i s v a l i d

(ZKP) (∗)
03 : Bi updates Encpk(r

A
Bi

) us ing
Encpk(r

A
Bi

) = Encpk(r
A
Bi

)⊕ Encpk(f
h
i)

04 : Bi updates counterA = counterA + 1

In case A wants to add its direct experience, A can
also participate in the protocol as a recommender (with
a discount value of 1, as mentioned in Section III-D).

VI. Proofs and Properties

A. Proving the functionality

Proof for d(oABi
) computed by A is equivalent to d(oABi

)
computed by B:

If the protocol was executed correctly, the following
statements Initialization and Update are true:

1) Initialization: In the Setup phase, A initializes
oABi

= (0, 0). Furthermore, A and Bi agree on r0 + s0 = 2,
and A sends Enc(r0) and Enc(s0) to B.

• Thus, A would calculate d(oABi
) =

rABi
+r0

rABi
+sABi

+r0+s0
=

rABi
+r0

rABi
+sABi

+2
. During the initialization, A calculates

d(oABi
) = r0

2 .
• On the other hand (see step B–II), B initializes

Encpk(rABi
) = Encpk(0) and counterA = 0. Thus, B

calculates Encpk(d(oABi
)) = 1

counterA+2⊗(Encpk(rABi
)⊕

Encpk(r0)) = Encpk(r02).

2) Update: When A and Bi run the protocol correctly,
they will always update the parameters for the calculation
of d(oABi

) in a synchronized manner (see steps A–VI, A–VII
and B–III in Fig. 3). In the case that fhi = undef nothing
will happen. In the other cases, i.e. fhi = 0 or fhi = 1, it
can be shown that A would either increase rABi

or sABi
by

1. Furthermore, if fhi 6= undef B would increase counterA
by 1, and in the case that fhi = 1 B would also increase
rABi

by 1, i.e., Encpk(rABi
⊕ Encpk(1).

Given that A and Bi use the same initialization as shown
above, we assume at a certain point in time it holds that

A would calculate d(oABi
) =

rABi
+r0

rABi
+sABi

+r0+s0
and B would

calculate Encpk(d(oABi
)) = 1

counterA+2 ⊗ (Encpk(rABi
) ⊕

Encpk(r0)) = Encpk(
rABi

+r0

counterA+2), with counterA = rABi
+

sABi
. Without a loss of generality, we assume there is an

update with fhi = 1.

• Thus, the next time, A would calculate d(oABi
) =

rABi
+1+r0

rABi
+1+sABi

+r0+s0
=

rABi
+1+r0

rABi
+1+sABi

+2
.

• On the other hand, B would calculate
Encpk(d(oABi

)) = 1
counterA+1+2 ⊗ (Encpk(rABi

+

1) ⊕ Encpk(r0)) = Encpk(
rABi

+1+r0

counterA+1+2) =

Encpk(
rABi

+1+r0

rABi
+sABi

+1+2
)

Proof for rAagg = rBagg and sAagg = sBagg:

We show just the equivalence of rAagg = rBagg; the proof
for sAagg = sBagg could be done analogously. If the protocol
was executed correctly, the following statements are true:

1) From steps A–IV and Z–I: We have

rAagg = Decsk(Encpk(

|B|∑
i=1

rA:Bi
c))

=

|B|∑
i=1

rA:Bi
c =

|B|∑
i=1

d(oABi
) · rBi

c

2) From steps B–II and Z–III: We have

rBagg = Decsk(

|B|∑
i=1

Encpk(r
A:Bi
c)⊕ Encpk(rand1(i, partner(i)))

=

|B|∑
i=1

rA:Bi
c + rand1(i, partner(i)) =

|B|∑
i=1

rA:Bi
c

=

|B|∑
i=1

d(oABi
) · rBi

c

Based on the assumptions that

• j = partner(i)⇔ i = partner(j),
• rand1(i, partner(i)) = −rand1(partner(i), i), and
• each recommender Ri has exactly one partner,

one can conclude that
∑|B|
i=1 rand1(i, partner(i)) = 0, and

thus it holds rBagg =
∑|B|
i=1 r

A:Bi
c .

B. Properties of this protocol

Assuming all entities follow the protocol:

• A can calculate the trust value for C.
• A does not have direct access to the recommendations

of the Bi’s.
• A can learn about the trustworthiness of its recom-

menders using the information whether r > s, r < s,
r = s, which was verified based using ZKPs.

• Z cannot learn the values of the opinion oABi
of A

about its recommenders Bi nor the corresponding
discounting factor d(oABi

) (as Z only receives the
aggregated (and encrypted) values Encpk(rAagg, s

A
agg)

from A and the values Z receives from Bi are ob-
fuscated by random numbers). Especially, Z could
not get this information by decrypting the received
information from A or any / all Bi.

• Z cannot learn the values of the individual recommen-
dations oBi

c (as the recommendations are obfuscated
by random numbers).

• A cannot adjust the values for oABi
as free as in the

basic version of the protocol. Especially, the protocol
enforces that A can only incrementally update the
values of d(ABi

) after A received a recommendation
by Bi as part of the protocol. Furthermore, the
protocol assures that the update will be either 0
or 1 (using ZKPs). This prevents a curious attacker
from learning the values (rBi

c , sBi
c) in “a single shot”,

without preparation. However, a “long run-attack” is
still possible, as A can tailor the incremental updates
in the way that he pushes the trustworthiness of
one recommender towards 1 and the trustworthiness
of the other recommenders towards 0. Compared to

the state-of-the-art approaches the extended version
provides an advantage nevertheless, as it severely
increased the costs of this type of attack.

C. Attack based on linear equations

If A gets the values ragg and sagg, then A can try to
calculate the values for rBi

c and sBi
c based on repeated

interactions. For example, for ragg holds that ragg =∑n
i=1 d(oABi

) · rBi
c . As A knows the values for d(oABi

) (and
how they changed over time), A could learn all the values
rBi
c after n interactions, in the case that the values of rBi

c

have not changed over time.
In order, to overcome this problem, there are multiple

solutions: (i) the recommenders Bi could introduce noise
on the values rBi

c and sBi
c , or (ii) Z could introduce noise

the result ragg and sagg. Z can introduce imprecision in the
following way: instead of ragg and sagg Z sends to A the
value of

ragg+r0
ragg+sagg+2 and an additional level of certainty

lc, e.g., lc = 1 if ragg + sagg ∈ [0; |B| · N/3], lc = 2 if
ragg + sagg ∈ [|B| · N/3 + 1; |B| · 2N/3], and lc = 3 if
ragg + sagg ∈ [|B| ·N2/3 + 1; |B| ·N].

Finally, we can state that one could overcome the need
for a central trusted third party, by distributing the key
for the decryption to multiple entities and using threshold
cryptography.

VII. Computing Trust Levels Privately

In the following section, we show how homomorhic
encryption and zero-knowledge proofs that are used in the
previously presented protocols can be realized.9

A public-key encryption scheme E = (KGen,Enc,Dec)
consists of three efficient algorithms where KGen on input
the security parameter 1n (in unary) outputs a pair of
private and public key (sk, pk)← KGen(1n), the encryption
algorithm Enc on input pk and a message m (from some
message spaceMpk determined by pk) returns a ciphertext
C ← Enc(pk,m), and the decryption algorithm Dec on
input sk and C returns a message or a special symbol
⊥ to indicate a decryption error. We assume that for
any (sk, pk) ← KGen(1n) and any message m ∈ Mpk we
have Dec(sk,Enc(pk,m)) = m, i.e., encrypted messages
can be correctly decrypted. We occasionally specify the
randomness ρ from the space Rpk used to derive the
ciphertext and write C = Enc(pk,m; ρ) for this (now
deterministic) process.

An encryption scheme E is homomorphic if there exists
an operation ⊗ such that for any (sk, pk)← KGen(1n), any
m,m′ in the message space Mpk forming a group under
operation ⊕, any randomness ρ, ρ′ from Rpk forming a
group under � we have

Enc(pk,m; ρ)⊗ Enc(pk,m′; ρ′) = Enc(pk,m⊕m′; ρ� ρ′).

9The application of the cryptographic primitives requires a dis-
cretization of the trust values; it should be sufficient to consider 2
digits.

Note that we assume that ciphertext operation simultane-
ously complies with the group operations for messages and
randomness; this will ensure that we can prove properties
about encrypted values in zero-knowledge. We also assume
that all group operations and inverse computations can
be performed efficiently. Examples of such homomorphic
encryption schemes include the ElGamal scheme [27],
being homomorphic for messages over the underlying
multiplicative group, and Paillier’s scheme [28] which is
homomorphic over (ZN ,+) for messages and (Z∗N , ·) for
randomness for RSA modulus N .

For Paillier’s scheme a ciphertext is given by C =
gmρN mod N2 for pk = (g,N) and randomness ρ ∈ Z∗N ,
and multiplication of ciphertexts C = gmρN mod N2 and
C ′ = gm

′
(ρ′)N mod N2 over Z∗N2 yields

C · C ′ = gmρN · gm
′
(ρ′)N = gm+m′(ρρ′)N mod N2

and thus an encryption of m+m′ mod N for randomness
ρρ′ ∈ Z∗N . One can also raise a ciphertext C = gmρN mod
N2 to a constant power α ∈ ZN , yielding a ciphertext
Cα = gαmραN mod N2 of αm mod ZN for ρα ∈ Z∗N .
Hence, this scheme is well suited for our purpose since
we are interested in sums of evidences.

We also assume that the homomorphic encryption
scheme is indistinguishable under chosen-plaintext attacks
(IND-CPA) [29] which roughly means that no efficient
adversary can distinguish between encryptions of (known)
messages m and m′ under pk. We again note that Pail-
lier’s scheme is IND-CPA under the decisional composite
residuosity assumption [28].

For simplicity we assume a trusted entity to hold the
secret key sk and to provide decryptions when necessary.
Using a threshold version of Paillier’s scheme [30] we can
distribute the secret key among several entities. To decrypt
a ciphertext each entity then provides a partial decryption
which the receiver can verify and from which the receiver
can reconstruct the message. A system parameter deter-
mines how many corrupt decryption entities the scheme
can tolerate such that security and robustness (i.e., the
ability to decrypt correctly even if some parties provide
malicious partial decryptions) are still guaranteed.

We note that in both cases, single authority and thresh-
old version, the ability to submit arbitrary ciphertexts
to the authorities enables malicious parties in principle
to mount chosen-ciphertext attacks (akin to the vulnera-
bilities described in Section V-A). This is inherent when
using the homomorphic encryption property to ensure
private computations among parties (see also [31]), and
is somewhat countered by the augmented protocol.

A. Proving Relationships

Using encrypted data introduces the problem of robust-
ness in the sense that malicious parties may now unnotice-
ably enter, say, out-of-range values into the computation
which would then dominate the sum over all values. To
prevent such misbehavior we have the parties provide

correctness proofs of their encrypted values. Such proofs
on one hand protect an honest verifier against malicious
provers, trying to convince the verifier about the validity
of a false statement (soundness), and on the other hand
ensures that a malicious verifier cannot learn anything
about the evidence value of an honest prover beyond the
values’ validity (zero-knowledge).

We assume that all evidence values are bounded such
that the sums remain smaller than the message space.
This is justified by the aging of evidence, which typically
keeps the values in the range of a few bits only, and vice
versa justifies the deployment of aging. More formally, we
assume that each party holds encryptions R = Enc(pk, r; ρ)
and S = Enc(pk, s;σ) of the positive and of the negative
evidence (for known randomness ρ and σ). We assume
that r and s can be represented with k bits each and that
2k � N for the underlying additive group of public order
N .

There are essentially four cases:

1) If r = s = 0, i.e., the recommender cannot provide
any evidence, then the recommender should be able
to prove that the encrypted values are both 0. How-
ever, since such a correctness proof reveals r and s
anyway, the recommender may simply communicate
this in clear and let the receiver act accordingly.

2) For r = s 6= 0 the recommender should be able to
prove equality of the values and to show that they
are unequal to 0, but without revealing the actual
values of r and s.

3) For r > s the recommender should be able to
prove that r, s are in the admissible range and that
one exceeds the other (but without revealing the
difference for example).

4) The case s > r is analogous to the previous case.

a) Fundamental Proof Techniques.: We discuss some
basic proof techniques. All proofs starts from the assump-
tion that the prover holds an encryption X = Enc(pk, x; ξ)
for some x, ξ. Then prover and verifier engage in a three-
move (honest-verifier zero-knowledge) proof about some
property about x. All these proofs share the same struc-
ture: the prover in the first encrypts some random value
and sends the ciphertext to the verifier who replies with
a random challenge c from a set C ⊆ ZN . The prover
finally sends a reply to the challenge which the verifier
checks. The proof can be made non-interactive via the
Fiat-Shamir transformation [32], [33] by hashing the com-
mitment locally to derive the challenge; the proof is then
zero-knowledge (even against malicious verifiers) in the
random oracle model.

As an example to prove in zero-knowledge that x = 0
the prover first computes C = Enc(pk, 0; γ) and sends it
to the verifier, the verifier sends c, and the prover replies
with δ = γ ·ξc. The verifier accepts iff CXc = Enc(pk, 0; δ).
The proof is honest-verifier zero-knowledge because given
X (but not x, ξ) the simulator picks c, γ at random, sets
C = Enc(pk, 0; γ) · X−c, and outputs C, c, δ = γ as the

transcript. Note that the simulated transcript is identically
distributed to the one of an actual execution (with an
honest verifier picking the challenge randomly), and could
also be carried out if the random challenge is given to
the simulator. We denote such an elementary proof by
ZK (pk,Enc(pk, x; ξ) : x = 0).

Given the basic proof for showing that x = 0 we can
derive more complex proofs. For example, we can prove the
logical AND of all proofs easily. Namely, the prover sends
the first message for all proofs simultaneously and the
verifier sends a single random challenge which the prover
uses in all proofs to compute the replies. We can interpret
this as a “big” proof ZK (pk, X1 ∧X2 ∧ · · · : P1 ∧ P2 ∧ . . .)
for the AND that all ciphertexts Xi satisfy properties
Pj simultaneously (but where some property Pj may not
depend on all Xi). The effort is linear in the number of
underlying elementary proofs.

Another important logical statement is the OR of two
statements [34], letting ZK (pk, X : P1 ∨ P2 ∨ . . .) denote
the proof that X satisfies at least on of the properties
P1, P2, Proving for example that x ∈ {0, 1} for the
ciphertext X, i.e., that x = 0 or that x = 1, boils
down to show that X or X · Enc(pk,−1; 1) for constant
Enc(pk,−1; 1) encrypts 0. To this end the prover pre-
selects a random challenge c1−x ← Cpk and runs the
zero-knowledge simulator (for challenge c1−x) to create
a simulated proof (C1−x, c1−x, δ1−x) that the part X ·
Enc(pk,−1; 1) (for x = 0) resp. the part X (for x = 1)
encrypts 0. For the other part X (for x = 0) resp. the part
X ·Enc(pk,−1; 1) (for x = 1) it simply runs the prover for
showing that the value indeed encrypts 0 where the chal-
lenge cx is computed as cx = c− c1−x mod N for the pre-
selected challenge c1−x and the verifier’s random challenge
c. For transcript (C0, C1, c, c0, δ0, c1, δ1) the verifier checks
that both proofs (C0, c0, δ0) and (C1, c1, δ1) are valid and
that c = c0 + c1 mod N . Hence, the proof for showing
x ∈ {0, 1} roughly consists of two elementary proofs.

Given the proofs for logical statements AND and OR we
can devise an (honest-verifier) zero-knowledge proof that
x ∈ [0, 2k−1]. The proof is carried out by having the prover
compute encryptions Xi = Enc(pk, xi; ξi) of the individual
bits xi of x =

∑k−1
i=0 xi2

i. Then the prover shows that

each Xi encrypts a bit and that X ·
∏k−1
i=0 X

2−i

i encrypts
0. Formally, the prover shows

ZK
(

pk, X,X0, . . . , Xk−1 : x =

k−1∑
i=0

xi2
i ∧

k−1∧
i=0

(xi = 0 ∨ xi = 1)

)
.

The overall effort corresponds to k encryptions and 2k +
1 elementary proofs. We can now also prove easily that
x ∈ [B,B + 2k − 1] for any constant B by proving that
X · Enc(pk,−B; 1) encrypts a value in [0, 2k − 1].

b) Proving relationships of evidence values.: The rec-
ommender, each time when passing on recommendation-
sproves that the ciphertexts of R and S encrypt values r,
s such that

• r = s by running

ZK
(
pk, RS

−1
, R, S : r − s = 0 ∧ r ∈ [0, 2

k − 1]
)
∧ s ∈ [0, 2

k − 1];

• r > s by running

ZK
(
pk, RS

−1
, R, S : r − s ∈ [1, 2

k
] ∧ r ∈ [0, 2

k − 1] ∧ s ∈ [0, 2
k − 1]

)
;

• r < s by running

ZK
(
pk, SR

−1
, R, S : s− r ∈ [1, 2

k
] ∧ r ∈ [0, 2

k − 1] ∧ s ∈ [0, 2
k − 1]

)
.

Computationally, the most expensive cases are the ones for
r > s resp. s > r, requiring approximately 3k encryptions
and 6k+3 elementary proofs. Recall that k is small, usually
in the order of 5, such that for Paillier’s scheme the proofs
can be performed with a few modular exponentiations
only.

VIII. Conclusion

In this paper, we presented a novel, privacy-friendly ap-
proach of computing trust. To the best of our knowledge,
this approach is the first one to combine the following
features:

1) It supports entities in evaluating the trustworthiness
of his potential interaction partners using recommen-
dations.

2) It supports entities in evaluating the trustworthiness
of his recommenders.

3) It prevents the curious initiators from learning un-
necessary details about the preferences of his recom-
menders and it increases the costs of the attack by
malicious attackers compared to the state of the art
models.

4) It is able to handle negative evidence and absence of
evidence.

Additionally, the privacy of the recommenders could
be further strengthened if the recommender hide their
identities using (Sybil-free) pseudonyms as proposed in
[5].

References

[1] C. Dellarocas, “Online reputation systems: How to design one
that does what you need.” Sloan Management Review, vol. 51
(3), pp. 33–38, 2010.

[2] A. F. Westin, Privacy and Freedom. New York, NY, USA:
Atheneum, 1967.

[3] S. Fischer-Hübner, IT-Security and Privacy – Design and Use
of Privacy-Enhancing Security Mechanisms, ser. Lecture Notes
in Computer Science. Springer-Verlag Berlin/Heidelberg, 2001,
vol. 1958.

[4] L. A. Martucci, “Identity and anonymity in ad hoc networks,”
Ph.D. dissertation, Karlstad University, Jun 2009.

[5] L. Martucci, S. Ries, and M. Mühlhäuser, “Identifiers, privacy
and trust in the internet of services,” in Proceedings of the 4th
IFIP International Conference on Trust Management (IFIPTM
2010), 2010.

[6] G. Zacharia, A. Moukas, and P. Maes, “Collaborative repu-
tation mechanisms in electronic marketplaces,” in HICSS ’99:
Proceedings of the Thirty-second Annual Hawaii International
Conference on System Sciences-Volume 8. Washington, DC,
USA: IEEE Computer Society, 1999, p. 8026.

[7] A. Jøsang and R. Ismail, “The beta reputation system,” in Pro-
ceedings of the 15th Bled Conference on Electronic Commerce,
2002.

[8] A. Jøsang, X. Luo, and X. Chen, “Continuous ratings in dis-
crete bayesian reputation systems,” in 2nd Joint iTrust and
PST Conference on Privacy, Trust Management and Security,
Y. Karabulut, J. C. Mitchell, P. Herrmann, and C. D. Jensen,
Eds. Springer Boston, 2008, pp. 151–166.

[9] S. Buchegger and J.-Y. Le Boudec, “A Robust Reputation Sys-
tem for Peer-to-Peer and Mobile Ad-hoc Networks,” in P2PEcon
2004, 2004.

[10] W. T. L. Teacy, J. Patel, N. R. Jennings, and M. Luck, “Travos:
Trust and reputation in the context of inaccurate information
sources,” Autonomous Agents and Multi-Agent Systems, vol. 12,
no. 2, pp. 183–198, 2006.

[11] S. Ries, “CertainTrust: A trust model for users and agents,” in
Proceedings of the 2007 ACM Symposium on Applied Comput-
ing. ACM Press, 2007, pp. 1599 – 1604.

[12] S. Ries, “Extending bayesian trust models regarding context-
dependence and user friendly representation,” in Proceedings of
the 2009 ACM Symposium on Applied Computing. New York,
NY, USA: ACM, 2009, pp. 1294–1301.

[13] Z. Despotovic and K. Aberer, “Probabilistic Prediction of Peers’
Performances in P2P Networks,” Engineering Applications of
Artificial Intelligence, vol. 18, no. 7, pp. 771–780, 2005, elsevier,
2005.

[14] S. Ries and A. Heinemann, “Analyzing the robustness of Cer-
tainTrust,” in 2nd Joint iTrust and PST Conference on Privacy,
Trust Management and Security, Y. Karabulut, J. C. Mitchell,
P. Herrmann, and C. D. Jensen, Eds. Springer, 2008, pp. 51 –
67.

[15] D. Gambetta, “Can we trust trust?” in Trust: Making and
Breaking Cooperative Relations, D. Gambetta, Ed. New
York: Basil Blackwell, 1990, pp. 213–237. [Online]. Available:
http://www.sociology.ox.ac.uk/papers/gambetta213-237.pdf

[16] A. Whitby, A. Jøsang, and J. Indulska., “Filtering out unfair
ratings in bayesian reputation systems,” The ICFAIN Journal
of Management Research, vol. 4(2), pp. 48 – 64, 2005.

[17] D. Quercia, S. Hailes, and L. Capra, “B-Trust: Bayesian trust
framework for pervasive computing.” in 4th International Con-
ference on Trust Management (iTrust), ser. Lecture Notes in
Computer Science, K. Stølen, W. H. Winsborough, F. Mar-
tinelli, and F. Massacci, Eds., vol. 3986. Springer, 2006, pp.
298–312.

[18] L. A. Martucci, S. Ries, , and M. Mühlhäuser, “Sybil-free
pseudonyms, privacy and trust: Identity management in the
internet of services,” Journal of Information Processing, vol. 19,
Jun 2011.

[19] N. Gal-Oz, N. Gilboa, and E. Gudes, “Schemes for privately
computing trust and reputation,” in Proceedings of 4th IFIP In-
ternational Conference on Trust Management (IFIPTM 2010),
ser. IFIP Advances in Information and Communication Tech-
nology, M. Nishigaki, A. Jøsang, Y. Murayama, and S. Marsh,
Eds., vol. 321. Springer Boston, 2010, pp. 1–16.

[20] J. Bethencourt, E. Shi, and D. Song, “Signatures of reputation:
Towards trust without identity (extended abstract),” in Finan-
cial Cryptography, 2010.

[21] M. Kinateder and S. Pearson, “A privacy-enhanced
peer-to-peer reputation system,” in Proceedings of the
4th International Conference on Electronic Commerce
and Web Technologies (EC-Web 2003), ser. LNCS,
K. Bauknecht, A. M. Tjoa, and G. Quirchmayr,
Eds., vol. 2738. Prague, Czech Republic: Springer-
Verlag, September 2003, pp. 206–215. [Online]. Available:
http://citeseer.ist.psu.edu/kinateder03privacyenhanced.html

[22] S. Steinbrecher, “Design options for privacy-respecting rep-
utation systems within centralised internet communities,” in
Security and Privacy in Dynamic Environments, Proceedings
of the IFIP TC-11 21st International Information Security
Conference (SEC 2006), 22-24 May 2006, Karlstad, Sweden,
ser. IFIP, S. Fischer-Hübner, K. Rannenberg, L. Yngström, and
S. Lindskog, Eds., vol. 201. Springer, 2006, pp. 123–134.

[23] A. Jøsang, “A logic for uncertain probabilities.” International

Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems, vol. 9, no. 3, pp. 279–212, 2001.

[24] S. Ries, “Trust in ubiquitous computing,” Ph.D. dissertation,
Technische Universität Darmstadt, 2009.

[25] C. Andersson, M. Kohlweiss, L. A. Martucci, and A. Panchenko,
“A Self-Certified and Sybil-Free Framework for Secure Digital
Identity Domain Buildup,” in Information Security Theory and
Practices: Smart Devices, Convergence and Next Generation
Networks, Proceedings of the 2nd IFIP WG 11.2 International
Workshop (WISTP 2008), ser. Lecture Notes in Computer
Science, LNCS 5019. Springer, 13–16 May 2008, pp. 64–77.

[26] L. A. Martucci, M. Kohlweiss, C. Andersson, and A. Panchenko,
“Self-Certified Sybil-Free Pseudonyms,” in Proceedings of the
1st ACM Conference on Wireless Network Security (WiSec’08).
ACM Press, Mar 31 – Apr 2 2008, pp. 154–159.

[27] T. E. Gamal, “A public key cryptosystem and a signature
scheme based on discrete logarithms,” in CRYPTO’84, ser.
Lecture Notes in Computer Science, vol. 196. Springer-Verlag,
1985, pp. 10–18.

[28] P. Paillier, “Public-key cryptosystems based on composite de-
gree residuosity classes,” in EUROCRYPT’99, ser. Lecture
Notes in Computer Science, vol. 1592. Springer-Verlag, 1999,
pp. 223–238.

[29] S. Goldwasser and S. Micali,“Probabilistic encryption.”J. Com-
put. Syst. Sci., pp. 270–299, 1984.

[30] P.-A. Fouque, G. Poupard, and J. Stern, “Sharing decryption
in the context of voting or lotteries,” in Financial Cryptogra-
phy 2000, ser. Lecture Notes in Computer Science, vol. 1962.
Springer-Verlag, 2001, pp. 90–104.

[31] P.-A. Fouque and D. Pointcheval, “Threshold cryptosystems
secure against chosen-ciphertext attacks,” in ASIACRYPT, ser.
Lecture Notes in Computer Science, vol. 2248. Springer-Verlag,
2001, pp. 351–368.

[32] A. Fiat and A. Shamir, “How to prove yourself: Practical solu-
tions to identification and signature problems,” in CRYPTO’86,
ser. Lecture Notes in Computer Science, vol. 263. Springer-
Verlag, 1987, pp. 186–194.

[33] M. Bellare and P. Rogaway, “Random oracles are practical: A
paradigm for designing efficient protocols,” in ACM Conference
on Computer and Communications Security, 1993, pp. 62–73.

[34] R. Cramer, I. Damg̊ard, and B. Schoenmakers,“Proofs of partial
knowledge and simplified design of witness hiding protocols,” in
CRYPTO, ser. Lecture Notes in Computer Science, vol. 839.
Springer-Verlag, 1994, pp. 174–187.

