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ABSTRACT
Deniable message authentication has drawn significant at-
tention since it was first formalized by Dwork, Naor, and
Sahai (STOC 1998). Since then, multiple notions of de-
niability have been introduced that vary in the considered
adversary model and the required level of deniability. Most
of the previous works concentrate on fairly strong notions
of deniability, allowing the prover to even dispute that an
interaction took place. In practice, however, weaker forms
of deniability may suffice, such as being able to deny that a
certain message has been transmitted at a certain point in
time. Our work here thus introduces alternative notions of
deniable message authentication, including for example con-
tent deniability (where one can deny the actual message) and
context deniability (where one can claim that the allegedly
transmitted message is taken out of context). We then ana-
lyze existing approaches, carving out the deniability proper-
ties these protocols achieve. In particular, we investigate the
off-the-record messaging protocol (OTR) of Borisov, Gold-
berg, and Brewer (WPES 2004), which lists deniability of
authentication as one of its explicit goals, but escapes the
strong notions of deniability in the literature.

Categories and Subject Descriptors
K.4.1 [COMPUTERS AND SOCIETY]: Public Pol-
icy Issues—Privacy; K.6.5 [MANAGEMENT OF COM-
PUTING AND INFORMATION SYSTEMS]: Secu-
rity and Protection—Authentication
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1. INTRODUCTION
Message authentication enables us to verify the origin and

the integrity of messages that we receive and to assure our
communication partners of the authenticity of messages that
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we send. Over the years, cryptography has offered many so-
lutions for message authentication. Many of these, including
classical digital signatures, combine message authentication
with the non-repudiation property, which means that au-
thenticators are not able to subsequently deny having au-
thenticated messages. While non-repudiation is essential in
certain applications such as commerce transactions and con-
ducting contracts, in various other scenarios it is not only
unnecessary, but also undesired. In order to prevent mali-
cious verifiers, or anyone who witnesses authenticated inter-
actions, from provably disclosing them to others, it is essen-
tial that the whole authentication process or at least certain
aspects, such as the authenticated message, its context, or
the authentication time can later be denied.

1.1 Deniable Message Authentication
Deniable message authentication [10] is a significant step

towards solving the conflict between authenticity and pri-
vacy. The formalization of this notion is based on the com-
mon simulation paradigm, saying that an ideal-model sim-
ulator could have produced the communication transcript
between the actual sender (often called prover) and the re-
cipient (often called verifier). The simulator’s output should
be indistinguishable from a real transcript to any distin-
guisher, often called judge in this context. The idea is that
the existence of such a simulator allows the prover to claim
that the transcript could have been produced by someone
else, even hiding the fact that an interaction took place. As
such, the notion for instance prohibits any usage of common,
non-repudiable digital signature schemes in such protocols.
While the above notion of deniability provides strong se-

curity guarantees, it may sometimes be overly restrictive,
labeling otherwise sound approaches to be insecure. As
a concrete example consider the off-the-record messaging
protocol (OTR) [3], in which users initially sign ephemeral
Diffie-Hellman public keys, such that this protocol certainly
cannot provide full deniability. Yet, since the signed keys are
self-chosen random values, a malicious party does not seem
to be able to extract more proof than the fact that the user
has been involved in some interaction. In particular, the
adversary cannot slip any “semantic” into the signed value
such as a newspaper headline for fixing some date. Simi-
larly, the recent technological standard of the International
Civil Aviation Organization for machine-readable travel doc-
uments [17] touches the question of avoiding so-called chal-
lenge semantics, but only those.
Whereas many previous works on deniable message au-

thentication (see Section 1.3) aim at introducing strong no-
tions, or on constructions achieving such notions, one can



easily identify several alternative intuitive notions for deni-
able message authentication, which all provide some mean
of dispute for the prover:

• Content deniability: Allowing the prover to deny hav-
ing sent a certain message, but not necessarily hiding
the fact that an interaction occurred.

• Context deniability: The ability to deny that a message
has been transmitted in a certain context.

• Time deniability: The ability to dispute that a message
has been authenticated at a certain point in time.

• Source deniability: The possibility of the prover to
blame another party as the origin.

• Destination deniability: Allowing the prover to claim
that a message has been sent to another recipient.

We note that in the scenario of file or disk encryption one
already encounters different forms of deniability, usually all
subsumed under the term plausible deniability. To some ex-
tent these notions resemble the ideas for deniable authenti-
cation above. Namely, deniable encryption can for example
either mean the inability to distinguish encrypted data from
random noise without the key, or it can refer to the ability to
present some key enabling decryption to an arbitrary mes-
sage. The former roughly corresponds to full deniability,
whereas the latter can be interpreted as some kind of con-
tent deniability. Since our focus is message authentication
we do not further investigate notions for encryption.

1.2 Contributions
Our starting point for defining deniable message authen-

tication are the above five intuitive notions, serving as al-
ternatives to full deniability. We give precise definitions of
all notions via the simulation-based approach, where a sim-
ulator should be able to produce a transcript which is in-
distinguishable from a real interaction to a judge. It turns
out that the differences in the notions above can be cap-
tured by the support the simulator gets, for instance, being
allowed to interact with different provers and verifiers on
certain messages.
In our definitions we consider so-called offline judges which

have to decide for a transcript after completion. In princi-
ple, we could also consider online judges [7], who cannot be
rewound and can actively interfere with the running execu-
tions, e.g., providing data which the malicious verifier should
use in the execution. But since achieving security against
such online judges is significantly harder, and our goal is
to provide relaxed notions of deniability covering broader
classes of protocols, we refrain from doing so.
Nonetheless, we take into account different attack possibil-

ities for the verifier. We allow both malicious and honest ver-
ifiers, where in the first case the adversary controls the veri-
fier from the beginning (and knows its secret keys), whereas
in the latter case the adversary is merely an outsider, trying
to assemble some convincing proof for the judge from the ob-
served communication. Outsider adversaries are, however,
easy to thwart by simply encrypting the network communi-
cation. We therefore consider an intermediate form, called
a spy or trojan, where the adversary gets to see the unen-
crypted network communication. The scenario we have in
mind here is that the message authentication scheme may

be immune, e.g., runs on a trusted platform module (TPM),
but the network encryption is vulnerable to virus or trojan
attacks on the verifier’s computer.1
We then discuss the relationship between our notions of

deniability and how they can be combined. Afterwards,
we exemplify our notions by analyzing several protocols in-
cluding classical digital signatures, chameleon signatures,
ring signatures, and designated verifier signatures. For each
scheme we specify which of our relaxed notions (or full de-
niability) it achieves. We then revisit the OTR protocol [3]
with respect to our definitions, showing that it is directly
context, content, and time deniable, as well as destination
deniable against malicious verifiers.

1.3 Related Work
Although first mentioned in 1991 [8], deniable message au-

thentication was not formalized until 1998 by Dwork, Naor,
and Sahai [10]. Since then, it has been extensively studied.
Most previous works concentrate on a fairly strong notion
of deniability, which allows provers to even dispute that an
interaction took place. We refer to this notion as full denia-
bility, as also suggested in several related works [4,14,20,21].
It is also often simply referred to as deniability [9,10,16,25].
Some previous works have already identified that a weaker

level of deniability would be required to evaluate proto-
cols. An example is the work of Raimondo, Gennaro, and
Krawczyk [20] about the OTR protocol, where they discuss a
weaker but intuitively sufficient notion of deniability, which
they later formally introduced as partial deniability in the
context of key exchange for analyzing SIGMA protocols [21].
Other relaxed notions are peer and peer-and-time deniabil-
ity for key exchange, defined by Cremers and Feltz [5] to
analyze their one-round protocol. To allow for an indepen-
dent evaluation of deniability levels, instead of notions such
as peer-and-time deniability, we define, among others, sepa-
rate notions for time deniability (inspired by peer-and-time
deniability), source deniability, and destination deniability
(both inspired by partial deniability and peer deniability).
Regarding the adversary model, in addition to malicious

verifiers, considered in most previous work [10, 14, 15, 21,
27], and outsiders [3, 6, 7, 19], we also consider spies as an
intermediate form. We outline the capabilities of all three
adversary types in order to simplify the deniability analysis
of concrete message authentication protocols.
The issues caused when concurrently executing protocols

involving zero-knowledge proofs were first discussed in [10]
and motivated the investigation of deniable message authen-
tication. Similar to some other work [7, 10, 21], we also
consider deniability in a concurrent setting, where provers
are willing to concurrently authenticate polynomially many
messages for verifiers.
Deniable message authentication is mostly deployed to

protect provers, since in most applications, the risk of being
disclosed and incriminated is more critical for provers than
for verifiers. There is, nonetheless, some work on protecting
verifiers against malicious provers, such as forward deniabil-
ity [19], and a general notion for protecting provers as well
as verifiers in [7].

1We note that formalizing this idea is delicate, as it would
require to precisely rule out that the authentication scheme
encrypts itself; we thus formally still allow this form of inter-
nal encryption and leave it to the common sense to identify
such solutions as trivially secure against spies.



We revisit the OTR protocol introduced in 2004 by Borisov,
Goldberg, and Brewer [3] with respect to our relaxed denia-
bility notions. A general security analysis including some
improvement suggestion can be found in [20]. The cur-
rent improved version of OTR, OTRv3, was introduced in
2007 [1].

2. SECURE INTERACTIVE MESSAGE AU-
THENTICATION

In this section we discuss the notion of interactive message
authentication protocols and their unforgeability notions.

2.1 Interactive Message Authentication
Our definition of interactive message authentication pro-

tocols is similar to the one introduced by Raimondo et al.
[21], but modified to cover more general protocols where
both the prover and the verifier can have key pairs. Prover
and verifier instances can have an internal state used for au-
thenticating multiple messages. For instance, in a protocol
consisting of a key exchange and a MAC computation phase
the key exchange does not have to be repeated every time a
new message is being authenticated. This is also important
for our notion of context deniability, where the authenti-
cation order and completeness of messages can change the
context. Below we do not mention the states explicitly, but
assume that each party stores its state internally.

Definition 2.1 (Interactive Message Authentication Proto-
col). An interactive message authentication protocol Π con-
sists of a triple (KGen,P,V), where:

• KGen is a probabilistic polynomial time (PPT) key gen-
eration algorithm. On input (1n,P) it outputs a key
pair (skP, pkP) for the prover, and on input (1n,V) it
outputs a key pair (skV, pkV) for the verifier.

• P is an interactive, stateful PPT Turing machine, called
the prover algorithm, which runs on inputs skP, pkV,
and a message m.

• V is an interactive, stateful PPT Turing machine, called
the verifier algorithm, running on inputs skV and pkP.

• The output of the interaction between P and V on a
messagem is denoted by 〈P(skP, pkV,m),V(skV, pkP)〉.
This output is returned by V and is either the message
m, indicating a successful verification of authenticity,
or it is ⊥, indicating a failed verification. Both parties
may update their state after or during the interaction.

Completeness.
Intuitively, completeness requires that honest provers can

always successfully authenticate messages for verifiers. For
this we call the pair consisting of the prover’s state and the
verifier’s state genuine if it has been derived through a se-
quence of genuine executions of the two parties on genuine
data, including the initial states, genuine keys, and admis-
sible messages. Then for all messages m and every genuine
state pair, we have:

Pr[〈P(skP, pkV,m),V(skV, pkP)〉 = m] = 1,

where the probability is over the random coin tosses of P,
V, and KGen.

2.2 Unforgeability
Existential unforgeability under chosen-message attacks

may come in various flavors. The main idea in all cases
is that the adversary, called forger F here, simultaneously
interacts with multiple instances of a prover and a verifier,
and tries to make some verifier instance output a message m
such that this message is “fresh”. We refer to the two main
branches as global unforgeability, in which case an adversary
succeeds already if the verifier with public key pkV outputs
m such that no prover instance has been queried about the
pair (pkV,m), and local unforgeability, where the adversary
succeeds only if m has not been queried to the prover for
any pkV′ . That is, in local unforgeability the adversary is
for example disallowed to redirect a prover’s message sent
to some other verifier V′ now to V in order to win. Jumping
ahead we note that one can usually turn locally unforge-
able schemes into globally unforgeable ones by adding the
verifier’s identity like its public key to the message. This,
however, may conflict with destination deniability.
Additionally, in the interactive setting one may only charge

“queries” to the prover oracle if the execution is completed,
or even if it has started. We opt for the latter for the sake
of simplicity. As for notation, we write FP(skP,·,·),V(skV,pkP)

to denote that F can spawn multiple instances of the inter-
active machines of the prover and the verifier, where each
instance uses fresh randomness and keeps its current state.

Definition 2.2 (Unforgeability). An interactive message
authentication scheme Π = (KGen,P,V) is called (globally
or locally) unforgeable if for every interactive PPT Turing
machine F, called forger, the probability that some verifier
instance outputs m 6= ⊥ in the run FP(skP,·,·),V(skV,pkP)(pkP,
pkV), such that no prover instance has started an interaction
for (pkV,m) (in case of global unforgeability) resp. m (in
case of local unforgeability) before, is negligible. Here the
probability is taken over the random choices of the keys and
the internal randomness of the algorithms resp. instances.

3. NOTIONS OF DENIABILITY
In this section, we formally introduce the attack model

and our notions of deniability. Afterwards, we discuss the
relationship between these notions and the possibility of
combining them. We note that for our definition of time
deniability we need a notion of time in our model. For
this we assume that there is a trusted party which main-
tains some (discrete) notion of time, initialized to 0 when
the real or ideal experiment starts, and which clocks all the
parties by scheduling computational steps to each party in
a round-robin fashion and providing the parties with the
current time.2 We omit mentioning this part explicitly and
instead refer to an abstract notion of time.

3.1 Attack Model
Real-world attacks.
We follow the classical simulation-based approach to de-

fine our notions of deniability. That is, we assume an ad-
versary A which can interact with multiple instances of the
prover algorithm P, all initialized with the same key skP,

2The offline judge does not receive the actual time each ex-
periment ran, else it would most likely be trivial to distin-
guish the two worlds.



and multiple instances of the verifier algorithm V, all ini-
tialized with the same key skV. The adversary receives the
corresponding public keys pkP and pkV, and also a message
vector m for which it tries to create some evidence that the
prover authenticated these messages to the verifier.
The adversary can start a polynomial number of new in-

stances of the prover and the verifier algorithms with fresh
randomness, and concurrently interact with these instances
to authenticate a given message vector m. In particular, the
adversary may interact with a prover instance to authenti-
cate messages m in this order, sequentially with respect to
this instance, of course. We note that the adversary has
full control over the order of transmissions, i.e., can decide
to which instance it delivers the next message for which it
then immediately obtains a reply.
We assume that the adversary can statically decide to

corrupt the verifier, at the outset of the attack, in which
case it also receives the secret key skV and from there on
controls the party. We then speak of deniability against
malicious verifiers. If the verifier remains honest, and the
secret key remains hidden from A, then we call this form de-
niability against honest verifiers or outsider deniability. As
explained in the introduction, outsider deniability is usu-
ally easy to achieve via network encryption, such that we
often rather refer to deniability against spies (or trojans)
where the adversary gets to learn the unencrypted commu-
nication. As mentioned before, formalizing the notion of
unencrypted communication is intricate, even though the
intuition is that the adversary then holds the secret decryp-
tion key. For most of the schemes we discuss, deniability
against spies and honest-verifier deniability coincide such
that we do not define the notion formally here. We simply
denote by ks the corresponding set of input keys A receives
at the beginning, depending on the choice of corruption.
We finally note that we do not consider the corruption

of the prover, as knowledge of the prover’s secret key in all
known solutions allows to trivially authenticate any message
to any verifier. Even for time deniability, where the corrup-
tion time may matter, one cannot guarantee that an adap-
tive corruption cannot be used in authenticating a message
for an earlier time (unless one uses a forward-secure solution
with key updates). Hence, the interesting case appears to
be the setting in which the prover’s secret key is still intact.

Ideal-world attacks.
We compare the output behavior of our adversary, observ-

ing genuine protocol executions, with the one of a simulator
S who gets the public keys of the parties (and the verifier’s
secret key in case of malicious-verifier deniability) and input
messages m, which was also given to the adversary. If the
simulator’s task is to provide an indistinguishable output to
an efficient judge, J , given only the keys and messages as
input, then we are in the setting of full deniability.
To cover the other notions, we provide S with a set of

“helper” prover and verifier oracles Hδ which, depending on
the aspired deniability notion δ, provides some limited form
of help. For various choices of Hδ we thus obtain the general
notion of δ-deniability as follows:

Definition 3.1 (δ-deniability). An interactive message au-
thentication protocol Π := (KGen,P,V) is δ-deniable if for
every adversary A, there exists a PPT simulator S, such
that for every PPT judge J and every message vector m

there is a negligible function negl such that:∣∣Pr
[
J (1n, ks,m,SHδ (1n, ks,m)) = 1

]
− Pr

[
J (1n, ks,m,AP(skP,pkV,·),V(skV,pkP)(1n, ks,m)) = 1

]∣∣
≤ negl(n),

where the probability is over the random coin tosses of KGen,
P, V, J , and A resp. S. The set of auxiliary oracles Hδ is
given in Definition 3.2.
If we work in the random oracle model, then we assume

that all parties, including the adversary, the simulator, and
the judge, get access to a given random oracle. We empha-
size that in the context of deniability it is important that the
simulator does not get to program the random oracle [18].

3.2 Capturing Different Notions
The above definition can be applied to different sets of

auxiliary oracles to derive concrete notions of deniability.
In the definition below, oracles that are defined with a con-
straint intuitively do not respond whenever their constraint
is not fulfilled. For instance if the queried messages must
not be equal to the messages for which an evidence is be-
ing simulated (i.e., different from mi for any mi in m), no
prover oracle instance can be started on mi. We give an
intuitive description of our deniability notions followed by a
formal definition of their set of auxiliary oracles Hδ.

• Full deniability: Evidences can be simulated using only
the known keys.

• Content deniability: Evidences for a message vector
m can be simulated using the known keys and with
oracle access for interactions on messages mi that are
not contained in m.

• Context deniability: Evidences of interactions between
P and V on a message vector m can be simulated
using the known keys, and with the help of interactions
with P and V on different messages, more precisely,
by querying the prover oracle on a sequence MS of
messages that differ from m in at least one message
entry, as well as with interactions with P for different
verifiers, described through different keys pkV′ 6= pkV.
This may, or may not, implicitly assume an underlying
PKI where such keys pkV′ need to be registered.
Note that MS is already considered to be different
from m if it contains an additional entry, as this final
entry could invalidate all the previous messages in the
sequence and the prover could claim of having sent this
final message. It is convenient to define the sequence
containing those messages that are queried to a prover
instance for the verifier public key pkV byMpkV

S , and
the set of such queries over all instances by {MpkV

S }.

• Time deniability in [τ, τ ′]: Let τ and τ ′ be two points
in time, and [τ, τ ′] be a time window spanning from
τ to τ ′. Evidences can be simulated using the known
keys and interactions with P and V, where P has only
been active at points in time different than [τ, τ ′]. We
usually say a scheme is time deniable if it is time de-
niable for arbitrary time intervals.3

3Note, however, that the simulator may still depend on the
specific interval; this is necessary to allow the simulator to
call the prover at all, outside of the interval.



The notion of time has some interesting side effect,
due to the entanglement with other events outside of
our model. Assume for example that in the protocol
the prover signs some data with a regular signature
scheme. If the signed data is, say, a self-chosen ran-
dom value (as in case of OTR), then this signature
intuitively cannot violate time deniability, as it could
have been signed at any point in time. Now consider
the case that the data is partially chosen by the ad-
versary and contains, for instance, today’s newspaper
headline. Then the signature may easily serve as a
proof that the execution took place today (or later).
Since talking about semantics of arbitrary data ap-
pearing in an execution is hard, we do not consider
such differences here in our model. We note, however,
that we make a more fine-grained distinction when dis-
cussing time deniability for some concrete schemes.

• Source deniability: Evidence of an interaction between
P and V can be simulated using the known keys and
V’s interactions with other provers, captured by as-
suming different prover keys pkP′ . In a more liberal
notion one could allow to query V(skV, ·) also about
the actual prover’s key pkP, but since the simulator
misses the P’s secret key, unforgeability indicates that
such queries should not facilitate the simulator’s task.

• Destination deniability: Evidence of an interaction be-
tween P and V can be simulated using the known keys
and interactions with P instances for different verifiers.

In the following definition we write P(· · · , ·[C]) to denote
the prover oracle that can take arbitrary arguments, but
will only respond if condition C is met by the argument in
question. Similarly, we write PC(· · · ) to denote the prover’s
oracle which only interacts if some global condition C (usu-
ally about the time) is true. We also write P(· · · )|C ⇒ ⊥ to
denote the fact that the simulator eventually outputs ⊥ if
condition C in one of its query sequences is met. All notions
straightforwardly apply to the verifier oracle as well.
Definition 3.2 (Oracles Hδ for δ-deniability). The set of
auxiliary oracles Hδ for δ-deniability of a message authenti-
cation protocol Π := (KGen,P,V) when simulating evidence
for a communication between a prover P and a verifier V on
messages m := (m1, . . . ,mn) is defined as follows.

δ-deniability auxiliary oracles Hδ

full
deniability Hδ := ∅

content
deniability

Hδ :=
(
P(skP, pkV, ·[/∈ {m1, . . . ,mn}]),

V(skV, ·)
)

context
deniability

Hδ :=
(
P(skP, pkV, ·)|m ∈ {M

pkV
S } ⇒ ⊥,

P(skP, ·[ 6= pkV], ·),V(skV, ·)
)

time
deniability
in [τ, τ ′]

Hδ :=
(
Ptime/∈[τ,τ ′](skP, pkV, ·),

V(skV, ·)
)

source
deniability Hδ :=V(skV, ·[ 6= pkP])

destination
deniability Hδ :=P(skP, ·[ 6= pkV], ·)

3.3 Primary and Combined Notions
Different notions are, due to different auxiliary oracles, of-

ten incomparable. In the following we give a few similarities
and relationships between our primary notions and discuss
how these notions can be combined.
Roughly speaking, if a simulator can simulate indistin-

guishable evidence with less auxiliary oracles, it can still do
so when having more. Consequently, full deniability implies
all other notions. Furthermore, context deniability is by def-
inition implied by destination deniability. This reflects our
understanding that the ability to deny the intended verifier
also means to be able to deny some context. Additionally,
content deniability implies context deniability, since content
deniability allows adversaries to use a communication on one
message to simulate evidence for another message, which is
also understood as a type of context deniability.
If a simulator needs more auxiliary oracles than available

in any of the primary notions alone, we have the possibility
of combining notions. When combining two deniability def-
initions with auxiliary oracles Hδ and Hδ′ , respectively, the
combined notion claims the existence of a successful simula-
tor using Hδ ∪Hδ′ as its set of auxiliary oracles. The com-
bined notion is at most as strong as —and usually weaker
than— the original notions, since it usually requires more
support during simulation. We can combine for instance
context with content deniability, or context with source de-
niability, especially if the content or the source can only
be denied if some other context is provided to the simula-
tor. A context-and-source deniable protocol is not necessar-
ily source deniable, as we will see in Section 5 in our analysis
of the OTR protocol.

4. DENIABLE AUTHENTICATION PROTO-
COLS

In this section, we informally discuss the level of denia-
bility in several common message authentication protocols,
both against malicious verifiers and spies. A formalization
is easy to derive from our discussions. A summary of the
analysis results is given in a table following each protocol,
where a checkmark X indicates that the deniability notion
holds. For time deniability we sometimes use (X) to indicate
that, depending on the authenticated message and the cho-
sen time window, time deniability may not be fulfilled. To
illustrate this point, consider the case that the prover signs
a self-chosen random message, as in the OTR protocol, ver-
sus the case that the prover signs an adversarially chosen
message which may contain for example today’s newspaper
headline.
In the protocol descriptions below, the keys used by each

party, either in a real protocol execution or for simulation,
are shown as inputs after the party’s role in parentheses. We
usually do not touch the issue of unforgeability explicitly,
but remark that all candidates achieve local unforgeability.

4.1 Classical Digital Signatures
Classical digital signatures, such as DSA and RSA-based

signatures, are the most common way of authenticating mes-
sages over the Internet. Because of their non-repudiation
property, digital signatures are not source deniable, and
hence whenever full deniability is a goal, we are advised
against using digital signatures. Nevertheless, they do have
some deniable aspects. Below, we see an abstract classical



digital signature scheme, where a prover signs a message
using a secret signing key SkP, and the signature can be
verified with the matching public verification key VkP.

Prover (SkP) Verifier (VkP)

σ := Sig(SkP,m) m,σ

Vf(VkP, σ,m)

digital signatures full ctnt ctxt time src dest
malicious verifier X (X) X

spy X (X) X

Table 1: Deniability of classical digital signatures

Context deniability follows as the simulator can, with the
help of its auxiliary oracleH, sign a messagem for a different
verifier V′ and claim that it has been signed for V. Formally,
this allows the simulator to run the real-world adversary A
and simulate A’s oracles through H, such that the output
of the simulator is perfectly indistinguishable. Destination
deniability holds similarly because P’s signatures sent to dif-
ferent verifiers are perfectly indistinguishable. That is, A’s
prover oracle is simulatable through the (restricted) prover
oracle in H, and the verifier’s oracle is trivially simulatable
since the verifier only relies on public keys. Furthermore, as
long as the signed message m is not time-specific, signatures
created at different times are indistinguishable from one an-
other. For arbitrary messages, time deniability depends on
the desired time window. For sake of illustration we also
remark that it would be straightforward to violate time de-
niability formally, by simply having the prover prepend the
current time to the message before signing it.
Note that, if we let P include the verifier’s identity V

or public key pkV in the signed message, then we gain the
stronger notion of global unforgeability, but lose destination
deniability as well as context deniability. The latter follows
as the simulator cannot produce a signature for the intended
verifier V, using signatures for different verifiers, anymore.

4.2 Chameleon Signatures
Chameleon signatures were introduced by Krawczyk and

Rabin as a combination of a chameleon hash function and a
standard signature scheme [13]. The chameleon hash func-
tion ChamHash(HkV,m, r) computes a hash value of a mes-
sage m using a random value r and a special public hashing
key HkV. It is collision-resistant unless a secret trapdoor
key TkV is known, which enables its holder (the verifier) to
efficiently find collisions, i.e., givenm and r, for any message
m′, a value r′ can be found such that the hash value for m′
and r′ is the same as for m and r. Furthermore, for random
r the derived value r′ has the same distribution.

Prover (SkP,HkV) Verifier (TkV,HkV,VkP)

r←$ {0, 1}∗
h := ChamHash(HkV,m, r)
σ := Sig(SkP, h) m, r, σ

h := ChamHash(HkV,m, r)
Vf(VkP, σ, h)

chameleon
signature full ctnt ctxt time src dest

malicious verifier X X X

spy (X)

Table 2: Deniability for chameleon signatures

Because of the provers’ signatures, this protocol is clearly
not source deniable and hence, also not fully deniable. The
most interesting result about chameleon signatures is their
content deniability against malicious verifiers, which follows
from the fact that the simulator, receiving the verifier’s se-
cret key TkV, can ask its auxiliary oracle for a signature for
a message m′, different from m, and then find collisions for
each hash value with the help of TkV to create chameleon
signatures with the same distribution. This implies also
context deniability and time deniability against malicious
verifiers, because one can transform signatures on different
messages or from other points in time.
Destination deniability against malicious verifiers should

not hold, but to some extent this depends on the chameleon
hash scheme. If the hash scheme is such that one can trans-
form given hash values for m, r under some verifier’s hash
key to a hash value for m′, r′, and a different verifier, with
help of its trapdoor key, then one can claim destination de-
niability. This, however, seems unlikely given the current
chameleon hash schemes.
In contrast to malicious verifiers, spies do not hold the

trapdoor key for the chameleon hash function. Consequently,
chameleon signatures are not content deniable against spies,
because in order to simulate signatures, a simulator would
need to either forge a signature for a new hash value, or
find collisions for the chameleon hash without knowledge of
the trapdoor key. Depending on the authenticated message
and the time window, chameleon signatures can be time
deniable against spies. Since hash values are computed us-
ing a verifier’s public hashing key, and then signed by the
prover, they cannot be obtained from different verifiers with
different hash keys. Therefore, chameleon signatures are
not destination deniable against spies. Furthermore, since
chameleon signatures cannot be simulated by spies using
other context, i.e., communications with different verifiers,
or on different messages, they are not context deniable.

4.3 Ring Signatures
Ring signatures were formally introduced in [22] by Rivest,

Shamir, and Tauman as a way of leaking secrets, such that
the authenticity of a message is only verifiable as being
signed by someone among a set of signers. In other words, in
a set of signers, signatures created by one signer are indistin-
guishable from signatures of any other signer. This property
is referred to as anonymity of ring signatures. Ring signa-
tures can be used for constructing deniable authentication
protocols [2, 16], especially two-party ring signatures with
only one prover and one verifier as the possible signers.
The level of anonymity usually has an effect upon the level

of deniability provided by ring signature schemes. Bender,
Katz, and Morselli discuss three different levels of anonymity
in ring signatures [2]. For our analysis here, we are interested
in their definition of anonymity against full key exposure (or
against attribution attacks). Intuitively, it requires that ad-
versaries cannot identify the real signer, even if they have



access to a signing oracle, and some of the users have ma-
liciously generated keys, and others reveal their secret keys
to the adversary, as long as at least two users have hon-
estly generated keys. In our scenario, both parties generate
their keys honestly, while malicious verifiers reveal their (still
honestly generated) keys to the judge (the adversary in the
anonymity attack).
Ring signature schemes are setup-free, i.e., provers do not

need the knowledge or consent of the other potential signers
to authenticate a message. The only things that a prover
needs for creating a deniable ring signature is the own sign-
ing key (SkP), the matching verification key (VkP), and the
verifier’s verification key (VkV).

Prover (SkP,VkP,VkV) Verifier (SkV,VkV,VkP)

σ := RingSig(SkP,VkP,VkV,m)

m,σ

RingVf(VkP,VkV, σ,m)

ring signatures full ctnt ctxt time src dest
malicious verifier X X X X X X

spy (X)

Table 3: Deniability in two-party ring signatures

Ring signatures with anonymity against full key exposure
are fully deniable against malicious verifiers, since not even
the knowledge of V’s secret key can help with identifying
the real signer. As a result, a judge who is presented with
some evidence including a signature and even V’s secret key
can only guess the real signer’s identity with a probability
that is negligibly close to 1

2 .
However, against spies, ring signatures are not content

deniable, since P’s signature can only be forged by V and
not by a spy. Depending on the desired time window of
deniability and the messages, they can be time deniable
against spies. Ring signatures are not source deniable, be-
cause they cannot be simulated by a spy using signatures
of other provers for the same verifier. Similarly, destination
deniability does not hold, since signatures cannot be simu-
lated by a spy using the prover’s signatures for other veri-
fiers. Without having the possibility to transform signatures
to signatures for other messages, or to create signatures for
specific verifiers from signatures for other verifiers, context
deniability against spies cannot be achieved either.

4.4 Designated Verifier Signatures
Verifier designation is a general term used for proofs that

can be verified only by designated verifiers, specified by
provers. Designated verifier proofs were introduced by Jakob-
sson, Sako, and Impagliazzo [12]. Other concrete protocols
such as [23,24,26] were later introduced.
Here, we analyze the designated verifier signature scheme

(DVS) from [26] by Yang an Liao. In DVS, verifiers need
their secret keys to verify received signatures. Moreover,
the same secret keys allow them to forge signatures. Below,
x and y are Diffie-Hellman long term secret keys and X
and Y are the corresponding public keys in a cyclic group
G. A long term symmetric secret key can be computed as
k := Y x or k := Xy by the prover or the verifier, respectively.

Furthermore, a keyed hash function H is used for computing
a MAC, where H is modeled as a random oracle.

Prover (x, Y ) Verifier (y,X)

t←$ G
s := H(k,m||t)
r := (m||t) · ks s, r

m||t := r · k−s

verify H(k,m||t) = s

DVS full ctnt ctxt time src dest
malicious verifier X X X X X X

spy X X X X X X

Table 4: Deniability in DVS from [26]

DVS is fully deniable against malicious verifiers, and un-
der the CDH assumption also against spies. Assuming that
the transcript of an alleged authentication for a message m
between a prover P and a verifier V is presented to a judge,
which consists of s = H(k,m||t) and r = (m||t) · ks for a
randomly chosen t, the symmetric key k can be used by V
to generate a signature on any message m exactly the way
the prover P would.
A spy can choose a key k′ at random and use it for simu-

lating evidence by computing s = H(k′,m||t) for a random
t and r = (m||t) · k′s. For verifying the transcript, a judge
needs to compute the real key k and hash it with the random
oracle H, which is infeasible according to CDH assumption.
As a result, the evidence simulated by the spy is indistin-
guishable to any efficient judge from real evidence.

4.5 Key Exchange and MAC
The combination of an authenticated key exchange proto-

col and a MAC scheme is a classical construction to achieve
deniability [3, 11]. Since both parties share a key after the
key exchange, the verifier can create a MAC for any mes-
sage, providing at least content deniability. We distinguish
between key exchange protocols that are deniable for both
parties, denoted by dKE, and other key exchange protocols,
denoted by KE. Assuming a previously shared key k, the
message authentication protocol looks simply like below.

Prover (k) Verifier (k)

t := MAC(k,m) m, t

verify t = MAC(k,m)

(d)KE&MAC full ctnt ctxt time src dest
verifier (dKE) X X X X X X

spy (dKE) X X X X X X

verifier (KE) X X X

spy (KE) X X X

Table 5: Deniability in KE and MACs

A key exchange protocol is called key indistinguishable
if given a protocol transcript, the real key is computation-
ally indistinguishable from a random value from the same



distribution. Key indistinguishability is a very basic secu-
rity property and hence we only consider here key exchange
protocols that satisfy this property. The combination of a
deniable key exchange protocol that is deniable for provers
and verifiers against malicious verifiers and spies and a MAC
scheme is fully deniable against malicious verifiers and spies.
In particular, because of key indistinguishability, a spy can
randomly sample a key and use it for computing MACs.
However, for an arbitrary key exchange protocol, which is
not necessarily deniable for provers or verifiers, the above
protocol is not necessarily source and destination deniable.

5. DENIABILITY IN OFF-THE-RECORD
PROTOCOL

In this section we analyze deniability of the off-the-record
messaging protocol (OTR), which was introduced by Borisov,
Goldberg, and Brewer [3] as a better suited protocol for ca-
sual conversations than for instance PGP and S/MIME. It
enables message authentication with certain level of denia-
bility, as well as end-to-end encryption and forward secrecy.
OTR is deployed in various instant messaging clients, in-
cluding Pidgin, Kopete, and Cryptocat. The current ver-
sion, OTRv3 [1], uses a SIGMA protocol for key-exchange,
which still contains signatures and is therefore not fully de-
niable. In the following we discuss that the simpler original
version OTRv1, despite using signatures, still provides some
reasonable deniability guarantees.
Below, we see an execution of OTRv1 between two users.

For our analysis, however, we consider message authenti-
cation only in one direction, where a user P is always the
prover and the other user V always the verifier. For con-
fidentiality, messages are encrypted with a symmetric key,
and for authentication, MACs are used. To provide forward
secrecy, keys are regularly renewed. The current MAC key
is always the hash value of the current encryption key using
a one-way hash function H. An initial Diffie-Hellman key
exchange is performed in a cyclic group G generated by a
generator g. This key exchange is authenticated by sending
signatures on the ephemeral DH values gx1 and gy1 along.
Afterwards, P and V share a DH key k11 as the encryp-
tion key and its hash value H(k11) as a MAC key. Before
an old encryption key is securely erased, a new one is ex-
changed, where the ephemeral DH values are, contrary to
the computation of the initial key, not signed, but MACed
with the previous MAC key. In the simplified protocol, be-
low, only the initial key exchange and the first two messages
are shown. We neither include the revelation of the MAC
key after transmissions. Furthermore, xi and yj are cho-
sen uniformly at random by P and V, respectively, and the
resulted shared encryption key is denoted by kij .

Prover (SkP,VkV) Verifier (SkV,VkP)

gx1 , Sig(SkP, g
x1 )

gy1 , Sig(SkV, g
y1 )

gx2 , Enc(k11,m1), MAC(H(k11), gx2 ,Enc(k11,m1))

gy2 , Enc(k21,m2), MAC(H(k21), gy2 ,Enc(k21,m2))

OTRv1 full ctnt ctxt time src dest
verifier X X X X

spy X X X

Table 6: Deniability in OTRv1

Discussing unforgeability of OTRv1 is beyond the scope of
our work here. For one, for a comprehensive treatment one
would need to argue about scenarios in which both parties
act as senders and receivers, potentially also taking into ac-
count considerations like causality. The other point is that
the keys are used in a non-standard way (as also pointed
out in [20]), because the encryption key k11 and its deploy-
ment infringe with the MAC key H(k11). Providing such an
unforgeability analysis would be very interesting.

Theorem 5.1. OTRv1 is context, content, time, and desti-
nation deniable against malicious verifiers. Under the CDH
assumption, context, content, and time deniability hold also
against spies.

We discuss informally, why the above theorem holds. Let
tr be the transcript of an alleged interaction between P and
V, where only P authenticates messages. It starts with an
initial signed DH key exchange and may contain further key
exchanges if more than one message was authenticated.
Regardless of the adversary, the authenticity of all mes-

sagesmi other than the first messagem1 can be fully denied.
In other words, the adversary can simulate the part of tr af-
ter the initial key exchange by itself. The reason behind this
is that a malicious verifier can easily use the initial shared
key k11 to simulate the rest of tr. A spy, who does not know
k11, can pick a random value k′ ←$ G and use it as the sym-
metric encryption key to simulate the rest of the transcript.
Judges cannot compute the real key k11 from the gx1 and gy2

in the transcript to verify the computed MACs, otherwise
they would violate the CDH assumption. Consequently, it
is sufficient to only analyze deniability of the key exchange
and the first authenticated message:

For a malicious verifier, V:

• context deniability: V can obtain P’s signature on
some gx1 using old communications with P or from
another user, who can communicate with P. The ver-
ifier V then chooses y1, computes gy1 , the key k11 and
its hash H(k11) which is then used to compute MACs
on messages. For multiple messages, OTRv1 remains
context deniable, since after the initial key exchange,
V can simulate the rest of the transcript arbitrarily.
This can be formalized accordingly by having the sim-
ulator emulate A’s attack, assembling a prover oracle
with its oracle P(skP, ·[ 6= pkV], ·) to generate a signed
gx1 value, then creating its own y1 and signing it with
the known signature key. The verifier oracle is already
given such that S can generate the same output as A.

• content deniability: Given a real communication with
P authenticating some message, V can compute a se-
cret key k11 which matches P’s gx1 . This allows V to
compute a MAC for any other message using the key
H(k11) and simulate evidence that is indistinguishable
from evidence of a real interaction. The formal simu-
lation is as in case of context deniability.



• time deniability: At the beginning of a communica-
tion P signs a random value. This signature is in-
distinguishable from P’s signatures computed at dif-
ferent times. Since V can compute MACs with the
key H(k11), the content of authenticated messages and,
therefore, the time of the interaction is deniable.

• destination deniability: V can obtain P’s signature
from another user’s interaction with P. For the sim-
ulation, V chooses some value y1, computes gy1 , the
key k11 and its hash H(k11). Then, V signs gy1 and has
everything needed to compute MACs on arbitrary mes-
sages and forge interactions that are indistinguishable
to a judge. The formalization is again straightforward.

For a spy, S:

• context deniability: S can obtain P’s signature on some
gx1 , as well as V’s signature on some value gy1 from P
and V’s communication on a different message. Then,
S chooses some random value k′11 from G as a shared
key and uses it to encrypt the first message and the
hash value H(k′11) to compute a MAC on the cipher-
text. Since the judge does not obtain k′11 from S, who
is not supposed to have this key, and cannot compute
the real key k11 in polynomial time by the CDH as-
sumption, it is not possible to verify the ciphertext nor
the MAC, and the simulated evidence is indistinguish-
able from an honest one to the judge. For multiple
messages, OTRv1 remains context deniable, since af-
ter the initial key exchange, V can simulate the rest of
the transcript arbitrarily.

• content deniability: Follows as context deniability.

• time deniability: At the beginning of a communica-
tion P signs a random value. This signature is in-
distinguishable from P’s signatures at different times.
Because of content deniability, S can compute indis-
tinguishable MACs for arbitrary messages. Therefore,
even if the authenticated message is time dependent,
the execution remains time deniable.

Since OTRv1 is not source deniable, provers cannot claim
that they have never before participated in any communi-
cation. However, users that have talked at least once before
with another user have also signed at least one random value
for an initial key exchange. Because of context deniability,
provers can argue that their signatures were obtained from
some communication transcripts and were then used to sim-
ulate others. The same is true for destination deniability
against spies. This way, an acceptable level of deniability in
off-the-record messaging is offered. More formally, the com-
bined notions of context-and-source deniability and context-
and-destination deniability are satisfied, since a simulator
can use the auxiliary oracles for context deniability to ob-
tain signatures of provers and verifiers on random values and
simulate the rest, i.e., encrypting and authenticating mes-
sages with simulated ephemeral encryption and MAC-keys.

6. DISCUSSION

Adversary classification.
Regarding a message authentication protocol which is de-

niable against malicious verifiers but not against spies, it

is beneficial to malicious verifiers to impersonate spies and
present judges with evidence of an interaction which does
not contain their secret keys. Judges would have to decide,
possibly using some circumstantial evidence, whether they
believe the adversaries on their identity and the claim of not
having the verifiers’ secret keys. This might be hard or in
cases even impossible.

Unforgeability and deniability trade-off.
Depending on the authentication protocol, there can be a

trade-off between deniability and unforgeability. Although
forgeable protocols are fully deniable, unforgeability can and
should not be sacrificed completely. We observed a simple
example of such a trade-off in our analysis of classical dig-
ital signature schemes. When simply signing a message,
such a scheme achieves destination deniability, without be-
ing globally unforgeable since a prover’s signatures sent to
different verifiers are indistinguishable. While a verifier des-
ignation by appending the intended verifier’s public key re-
sults in a globally unforgeable scheme, this solution costs
the scheme its destination deniability. When designing or
using a message authentication protocol, it is crucial to an-
alyze the scenario and clarify, which levels of deniability and
unforgeability are desired.

Deniability in practice.
Formally, successfully denying an authenticated interac-

tion relies among others on two basic assumptions. First,
judges need flawless proofs in order to favor an adversary’s
evidence over a prover’s denial and do not settle for less, e.g.,
log-files, IP-addresses, or the like. Secondly, judges are not
biased, do not care about the adversary’s motive to sim-
ulate an interaction, and do not fully trust the adversary.
In practice, however, these assumptions may be too strong.
Moreover, judges can be more powerful than assumed here.
They may be able to communicate with adversaries in an on-
line manner as mentioned in the introduction, force provers
to reveal their randomness, and observe the network com-
munication.

Outlook.
Our notions for deniable message authentication each cap-

ture, with the exception of a few dependencies discussed
in Section 3.3, different aspects of deniability. As future
work one can formally show the orthogonality of the notions.
Moreover, we suggest studying the possibility of combining
two or more message authentication protocols that satisfy
different deniability notions in order to construct a protocol
with stronger deniability guarantees.
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