
Sanitizable Signatures:

How to Partially Delegate Control for

Authenticated Data

Christina Brzuska Marc Fischlin Anja Lehmann
Dominique Schröder

Darmstadt University of Technology, Germany

www.minicrypt.de

Abstract. Sanitizable signatures have been introduced by Ateniese et al. (ESORICS
2005) and allow an authorized party, the sanitizer, to modify a predetermined part of
a signed message without invalidating the signature. Brzuska et al. (PKC 2009) gave
the first comprehensive formal treatment of the five security properties for such schemes.
These are unforgeability, immutability, privacy, transparency and accountability. They
also provide a modification of the sanitizable signature scheme proposed by Ateniese et
al. such that it provably satisfies all security requirement. Unfortunately, their scheme
comes with rather large signature sizes and produces computational overhead that in-
creases with the number of admissible modifications.

In this paper we show that by sacrificing the transparency property —thus allowing to

distinguish whether a message has been sanitized or not— we can obtain a sanitizable

signature scheme that is still provably secure concerning the other aforementioned prop-

erties but significantly more efficient. We propose a construction that is based solely on

regular signature schemes, produces short signatures and only adds a small computational

overhead.

1 Introduction

Digital signatures usually provide integrity and authenticity of digital data. This, in particular,
implies that even slight modifications of the data make the signature invalid. There are,
however, some cases where allowing such modifications while retaining the authenticity to a
certain extend may be desirable. For example,

• Governmental organizations like the World Health Organization (WHO) may ask med-
ical facilities to provide medical records for infectious disease surveillance programs.
Allowing the administration of such facilities to sanitize parts of the records (which are
authenticated by medical personal through signatures) like patient names or information
about psychological treatments eases the overhead. At the same time it still marks the
resulting data as authenticated by medical personal.

• Authenticated multimedia data like videos may require some editing, e.g., because of
graphic content or to insert local commercials into the data.

1



• Authenticated routing information as in the Secure Border Gateway Protocol (SBGP)
needs to be updated frequently, while the reliability of the data must be ensured.

As another example, consider the recent discussion about German identity cards and the
digital data stored on the card [Bun08]. The data includes common information about the
holder like the name, date of birth and address. These data are not signed, though, to
guarantee deniability of transactions —else a party retrieving such signed data can show this as
a proof for a transaction to third parties— and to possibly enable modifications by subordinate
authorities to volatile data like the address (see [BKMN08]). Note that in the non-digital case
local authorities today can easily change the address by placing an (authenticated) sticker on
the identity card. In the digital case, any signature over the holder’s data would prevent such
modifications (unless the issuing authority would bequeath the signing key, which is of course
not recommended).

Enter sanitizable signatures. The notion of sanitizable signatures has been introduced
by Ateniese et al. [ACdMT05]. Similar notions have been considered concurrently by Steinfeld
et al. [SBZ01] and Miyazaki et al. [MSI+03]. The idea behind sanitizable signatures is that
the signer delegates the signing rights of parts of the message to a designated party, the
sanitizer. The sanitizer, given a message and a signature of the signer, can then modify the
predetermined parts of the message and still produce a valid signature for the new message.
A verifier of this new signatures is then assured that (a) the fixed message parts have been
authenticated by the signer, and (b) that only the designated sanitizer can make admissible
modifications.

Sanitizable signature are thus an expedient solution to the scenarios above. For the digital
identity card, for example, the issuing authority can delegate the rights to modify the address
data to a local authority, but leave other data like the name or the date of birth immutable.
Citizens would then be assured that the data has only been generated by (local or superior)
authorities.1

Sanitizable signatures come with five security properties, described informally in [ACdMT05]
and rigorously in [BFF+09]:

Unforgeability. Resembles the common unforgeability notion for regular signatures: be-
sides the signer and the sanitizers no one should be able to produce signatures for new
messages.

Immutability. Confines the power of a malicious sanitizer, i.e., the sanitizer should not be
able to change other parts of the message than the intended ones.

Privacy. Sanitization steps should remove any information about the original data of the
sanitized parts. This is for instance important for the medical surveillance example, and
usually holds in an information-theoretic sense.

Accountability. In case of a dispute about the origin each party can contribute to settle
the dispute. A malicious signer or sanitizer cannot frame the other party.

Transparency. One cannot distinguish between signatures created by the signer or the
sanitizer.

1Note that this solves the modification problem but does not address the deniability issues discussed before.
Still, for applications where the receiver is considered to be trustworthy, say, the police, deniability may be a
minor issue. In addition, since our solution below is for example rather generic, it can potentially be combined
with privacy-enhancing solutions in order to overcome the deniability problem.

2



At first glance, transparency and accountability seem to be mutual exclusive. Yet, trans-
parency refers to indistinguishability for outsiders, whereas accountability allows the signer or
sanitizer to provide further proof about the origin.

The aforementioned work of Brzuska et al. [BFF+09] defined these properties with game-
based definitions and gave a construction based on the protocol in [ACdMT05], provably
meeting these five requirements. The signature length, however, is quite large and the compu-
tational overhead grows with the number of admissible modifications. The construction also
relies on specific number-theoretic assumptions.

Our results. We show that dropping the transparency requirement —thus allowing to dis-
tinguish genuine signatures of the signer from signatures produced by the sanitizer— yields
significantly more efficient solutions: We present a construction allowing short signatures, sig-
nature generation time comparable to regular signatures and based on arbitrary (but secure)
signature schemes.

Basically, the signer in our construction signs the fixed message parts mfix and the descrip-
tion of the admissible modifications adm together with the sanitizer’s public key pksan to get a
signature σfix. In addition, the signer generates another signature σfull for the entire message
(including modifiable parts). Then the full signature is given by σ = (σfix, σfull,adm, pksan).

To sanitize the message and replace (some of) the modifiable message parts the sanitizer
changes the message m to m′ accordingly and then creates the new signature σ′ by signing m′

with its signing key and replacing σfull by the derived signature σ′full. The entire signature
for the sanitized message is given by σ′ = (σfix, σ

′
full,adm, pksan).

We show that the construction above achieves unforgeability, immutability, accountability
and privacy. It is clearly not transparent as one can easily distinguish under whose public key
the second signature component verifies. As for the identity card example, transparency is
usually neither provided by the solutions for “non-digital” identity cards, because the sticker
is clearly visible given the card. Still, transparency may be a desirable security goal in some
settings, say, if a recent change of the address entails discrimination. An example might be a
landlord who is only willing to rent out to tenants which have not moved recently.

Our solution comes with several advantages over previous approaches, besides its generality
and efficiency improvements. First, since we analyze the solution in terms of the security
notions of [BFF+09] for sanitizable signatures, the solution really guarantees the desired goals,
and these formally stated goals can be scrutinized. Also, our solution allows handy hierarchical
extensions. That is, the sanitizer is allowed to change parts of a message, and can authorize
a subordinate authority to modify some of these parts. To this end, the sanitizer issues
certificates for public keys of local authorities such that they can make further modifications
by replacing the second signature component and appending their public key together with
the certificate to the signature.

Organization. We outline our construction in Section 2 and discuss its security properties
informally. We then give the technical details in Section 3.

2 Outline of the Construction

Our construction works as follows: Both the signer and the sanitizer each hold a key pair
(sksig, pksig) and (sksan, pksan), respectively, of a secure signature scheme. The signature
schemes used by the signer and the sanitizer can be distinct but we use the same scheme

3



for sake of simplicity. To sign a message m and allowing modifications by the sanitizer with
public key pksan, the signer first picks a description adm of the admissible message parts which
are changeable by the sanitizer, and those parts mfix which are fixed. Then the signer com-
putes the signature by signing the fixed part and the entire message (prepended with a bit to
indicate the difference):

σ = (σfix, σfull) = (Sign(sksig, (0,mfix,adm, pksan)), Sign(sksig, (1,m, pksan, pksig))).

We assume that adm (and possibly pksan, if not linked to the signature somewhere else) become
part of the signature.

The sanitizer can now modify the message, yielding message m′, and replace the signature
part σfull with a self-generated signature under pksan (but leaving σfix untouched):

σ′ = (σfix, σ
′
full) = (σfix,Sign(sksan, (1,m′, pksan, pksig))).

To verify a signature σ resp. σ′ for a message m with respect to pksig the verifier first recovers
the fixed part mfix by inspecting adm. Then the verifier checks the validity of the signature
part σfix with respect to (0,mfix,adm, pksan), and then verifies that the second part of the
signature either verifies under the signer’s or the sanitizer’s public key. If both properties hold
then the verifier accepts.

Let us briefly revisit the security notions for sanitizable signatures [ACdMT05, BFF+09]
and discuss if the scheme above achieves these notions. A formal approach follows in the next
section.

Unforgeability. We need to argue that no one except for the signer and the designated
sanitizer can create valid signatures for new messages. The unforgeability of the under-
lying signature scheme guarantees that one cannot forge signatures for the fixed part,
including pksan, and thus any forgery for the second part must necessarily be either for
the sanitizer’s public key or the signer’s public key. But then the unforgeability of the
sanitizer’s and signer’s signatures guarantee security for our sanitizable scheme. Note
that prepending the bit 0 and 1 to the messages in the two signatures prevents “mix-
and-match” attacks in which the adversary abuses the first signature component for the
second part.

Immutability. Guarantees that a malicious sanitizer cannot change inadmissible blocks. This
follows from the unforgeability of the signer’s scheme, protecting the fixed part of the
message.

Privacy. Message parts which are replaced cannot be recovered, because the sanitizer re-
moves those parts and signs the derived message from scratch. The information about
the original data is hidden information-theoretically.

Accountability. Neither party can claim that a message-signature pair originates from the
other party, unless this party has really signed the corresponding message before. This
again follows from the unforgeability of the underlying signature scheme. Note that, in
practice, this may require some certification of the owner of the sanitizer’s public key
pksan, or else the signer could create fake public keys on behalf of the sanitizer.

Transparency. Does not hold. One can easily distinguish signatures generated by the signer
from those produced by the sanitizer by inspecting the second signature part.

4



An interesting feature of the solution above is that the sanitizer itself can now act as a
certificate authority and delegate rights further. To allow a subordinate sanitizer the sanitizer
now acts as the signer and generates σfull as (σsan

fix , σ
san
full) by dividing the message further

into a part msan
fix which the subordinate sanitizer should not be allowed to change, and into a

variable part. The lack of transparency then again allows to decide upon the origin.

3 Technical Details of the Construction

We first present the formal structure of sanitizable signatures and then introduce our con-
struction according to this structure. We next discuss the security notions in detail and finally
show that our construction is secure according to these notions.

3.1 Sanitizable Signatures

The following definitions are taken from [BFF+09]. With our solution in mind, we simplify the
presentation whenever possible. For example, our solution does not require an explicit Proof
algorithm to identify the origin (signer or sanitizer), so we drop it from the formal descriptions.

Recall that our construction is based on a regular signature scheme S = (SKGen,SSign,SVf)
which consists of three efficient algorithms where SKGen on input 1n, the security parameter
in unary, returns a key pair (sk0, pk0); algorithm SSign on input sk0 and a message m ∈ {0, 1}∗
returns a signature σ; and algorithm SVf for input pk0,m, σ returns a decision bit d for accept
(d = 1) or reject (d = 0). We assume completeness in the sense that any signature generated
via SSign is also accepted by SVf. Unforgeability under adaptive chosen message attacks of
regular signature schemes says that for any efficient algorithm A the probability that A with
input pk0 and access to a signing oracle SSign(sk0, ·) for (sk0, pk0) ← SKGen(1n) outputs a
pair (m∗, σ∗) such that SVf(pk0,m

∗, σ∗) = 1 and m∗ has never been submitted to the signing
oracle, is negligible.

A sanitizable signature scheme SanSig is now a tuple of efficient algorithms (KGensig,KGensan,
Sign,Sanit,Verify, Judge) such that:

Key Generation. The key generation algorithms for the signer and sanitizer, respectively,
allows both parties to generate key pairs (for security parameter n, given as input):

(pksig, sksig)← KGensig(1n), (pksan, sksan)← KGensan(1n)

Signing. The signing algorithm of the signer takes the signer’s secret key sksig, a message
m ∈ {0, 1}∗ the public key pksan of the designated sanitizer and a description adm (used
to identify the fixed part mfix of m). It outputs a signature (or ⊥, indicating an error):

σ ← Sign(m, sksig, pksan,adm).

We assume that adm, pksan are recoverable from any signature σ 6=⊥.

Sanitizing. The sanitizer’s algorithm Sanit takes a message m ∈ {0, 1}∗, a signature σ, the
public key pksig of the signer and the secret key sksan of the sanitizer. It first modifies
the message m according to the modification instruction mod and then computes a new
signature σ′ for the modified message m′. It outputs m′ and σ′ (or possibly ⊥ in case of
an error).

(m′, σ′)← Sanit(m,mod, σ, pksig, sksan)

5



Verification. The Verify algorithm checks the validity of a signature σ for a message m with
respect to the public keys pksig and pksan and outputs a bit d ∈ {true, false}:

d← Verify(m,σ, pksig, pksan)

Judge. The algorithm Judge takes as input a message m and a valid signature σ, the pub-
lic keys of the parties, and outputs a decision d ∈ {Sig, San} indicating whether the
message-signature pair has been created by the signer or the sanitizer:

d← Judge(m,σ, pksig, pksan)

As usual we demand minimalistic functional properties of sanitizable signature schemes such
that the verifier always accepts signatures generated by the honest signer or sanitizer, and
that the judge decides correctly if the data has been formed correctly.

3.2 Construction

In order to describe our scheme formally we assume that adm and mod are (descriptions of)
efficient deterministic algorithms such that mod maps any message m to the modified message
m′ = mod(m), and adm(mod) ∈ {0, 1} indicates if the modification is admissible and matches
adm, i.e., adm(mod) = 1. For example, for messages m = m[1] . . .m[k] divided into blocks
m[i] of equal bit length t, adm might contain t and the indices of the modifiable blocks, and
mod essentially consists of pairs (j,m′[j]) defining the new value for the j-th block.

We also let fixadm be an efficient deterministic algorithm which is uniquely determined by
adm and which maps m to the immutable message part mfix = fixadm(m), e.g., for block-
divided messages mfix is the concatenation of all blocks not appearing in adm. To exclude
trivial examples we demand that admissible modifications leave the fixed part of a message
unchanged, i.e., fixadm(m) = fixadm(mod(m)) for all m ∈ {0, 1}∗,mod with adm(mod) = 1.
In addition, we also need that the fixed part must be maximal given adm, i.e., fixadm(m′) 6=
fixadm(m) for m′ /∈ {mod(m) |mod with adm(mod) = 1} (else fixadm mapping to the empty
string would for example be a valid instantiation).

Construction 3.1 (Sanitizable Signature Scheme) Let S = (SKGen,SSign,SVf) be a reg-
ular signature scheme. Define the sanitizable signature scheme SanSig = (KGensig,KGensan,
Sign,Sanit,Verify, Judge) as follows:

Key Generation. Algorithm KGensig generates on input 1n a key pair (pksig, sksig)← SKGen(1n)
of the underlying signature scheme, and algorithm KGensan for input 1n analogously re-
turns a pair (pksan, sksan)← SKGen(1n).

Signing. Algorithm Sign on input m ∈ {0, 1}∗, sksig, pksan,adm sets mfix = fixadm(m) for
the algorithm fixadm determined by adm, and computes

σfix = SSign(sksig, (0,mfix,adm, pksan)) and σfull = SSign(sksig, (1,m, pksan, pksig))

using the underlying signing algorithm. The algorithm finally returns σ = (σfix, σfull,adm).

Sanitizing. Algorithm Sanit on input a message m, information mod, a signature σ =
(σfix, σfull,adm), keys pksig and sksan first recovers mfix = fixadm(m). It then checks

6



that mod is admissible according to adm and that σfix is a valid signature for mes-
sage (0,mfix,adm, pksan) under key pksig (for pksan included in sksan). If not, it stops
outputting ⊥. Else, it derives the modified message m′ = mod(m) and computes

σ′full = SSign(sksan, (1,m′, pksan, pksig))

and outputs m′ together with σ′ = (σfix, σ
′
full,adm).

Verification. Algorithm Verify on input a message m ∈ {0, 1}∗, a signature σ = (σfix, σfull,
adm) and public keys pksig and pksan first recovers mfix = fixadm(m). It then checks
that SVf(pksig, (0,mfix,adm, pksan), σfix) = 1 accepts σfix as a valid signature and that
either SVf(pksig, (1,m, pksan, pksig), σfull) or SVf(pksan, (1,m, pksan, pksig), σfull) verifies
as true, too. If so, it outputs 1, declaring the entire signature as valid. Otherwise it
returns 0, indicating an invalid signature.

Judge. The judge on input m,σ, pksig, pksan parses σ as (σfix, σfull,adm) and outputs Sig if
SVf(pksig, (1,m,adm, pksan), σfull) validates as true, else if SVf(pksan, (1,m, pksan, pksig) =
1 then it returns San. Note that one of these two verification must work, as Judge is
only run on valid pairs (m,σ).

Completeness of signatures generated by the signer and sanitizer follows easily from the
completeness of the underlying signature scheme and the fact that fixadm leaves the fixed
message parts unchanged for modified messages. There is a negligible probability that a
signature of the signer or the sanitizer also verifies under the other party’s other key, yielding
possibly a wrong answer from the judge. We ignore this issue here for simplicity, because one
can easily circumvent this problem by having each party also prepend a bit to the signature,
indicating the origin (0 for signer and 1 for sanitizer). The judge can then also check that this
bit matches its decision.

3.3 Security of Sanitizable Signatures

Here we recall the security notions for sanitizable signatures given by Brzuska et al. [BFF+09]
(except for transparency which we do not define formally since our scheme does not achieve it).
We note that Brzuska et al. [BFF+09] show that signer and sanitizer accountability together
imply unforgeability, and that transparency implies privacy. Hence, in principle it suffices
to show immutability, accountability and transparency. However, since we drop the latter
requirement we need to show privacy from scratch.

Unforgeability. Unforgeability demands that no outsider should be able to forge signatures
under the keys of the honest signer and sanitizer, i.e., no adversary should be able to compute
a tupel (m∗, σ∗) such that Verify(m∗, σ∗, pksig, pksan) = true without having the secret keys
sksig, sksan. This must hold even if one can see additional signatures for other input data,
including the message-signature pairs and the public keys. This allows to capture for example
scenarios where several sanitizers are assigned to the same signer.

Definition 3.2 (Unforgeability) A sanitizable signature scheme SanSig is unforgeable if
for any efficient algorithm A the probability that the following experiment returns 1 is negligible
(as a function of n):

7



Experiment UnforgeabilitySanSig
A (n)

(pksig, sksig)← KGensig(1n)
(pksan, sksan)← KGensan(1n)
(m∗, σ∗)← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan)(pksig, pksan)

letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q
denote the queries and answers to and from oracle Sign,
and (mj ,modj , σj , pksig,j

) and (m′j , σ
′
j) for j = q + 1, . . . , r

denote the queries and answers to and from oracle Sanit.
return 1 if

Verify(m∗, σ∗, pksig, pksan) = true and
for all i = 1, 2, . . . , q we have (pksan,m

∗) 6= (pksan,i,mi) and
for all j = q + 1, . . . , r we have (pksig,m

∗) 6= (pksig,j
,m′j).

Immutability. This property demands informally that a malicious sanitizer cannot change
inadmissible blocks. In the attack model below the malicious sanitizer A interacts with
the signer to receive signatures σi for messages mi, descriptions admi and keys pksan,i of
its choice, before eventually outputting a valid pair (m∗, σ∗) and pk∗san such that message
m∗ is not a “legitimate” transformation of one of the mi’s under the same key pk∗san =
pksan,i. The latter is formalized by requiring that for each query pk∗san 6= pksan,i or m∗ /∈
{mod(m) |mod with admi(mod) = 1} for the value admi in σi, i.e., that m∗ and mi dif-
fer in at least one inadmissible block. Again, giving the adversary the possibility to ask the
signer about other sanitizer keys pksan,i covers the case that the signer interacts with several
sanitizers at the same time.

Definition 3.3 (Immutability) A sanitizable signature scheme SanSig is immutable if for
any efficient algorithm A the probability that the following experiment returns 1 is negligible
(as a function of n):

Experiment ImmutabilitySanSig
A (n)

(pksig, sksig)← KGensig(1n)
(pk∗san,m

∗, σ∗)← ASign(·,sksig,·)(pksig)
letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q
denote the queries and answers to and from oracle Sign.

return 1 if
Verify(m∗, σ∗, pksig, pk∗san) = true and
for all i = 1, 2, . . . , q we have

pk∗san 6= pksan,i, or
m∗ /∈ {mod(m) |mod with admi(mod) = 1}

Accountability. Accountability says that the origin of a (sanitized) signature should be
undeniable. There are two types of accountability: Sanitizer accountability says that, if a
message has not been signed by the signer, then even a malicious sanitizer should not be able
to make the judge accuse the signer. Signer accountability says that, if a message and its
signature have not been sanitized, then even a malicious signer should not be able to make
the judge accuse the sanitizer.

In the sanitizer-accountability game let ASanit be an efficient adversary playing the role of
the malicious sanitizer. Adversary ASanit has access to a Sign oracle. Her task is to output a

8



valid message-signature pair m∗, σ∗ together with a key pk∗san (with (pk∗san,m
∗) being different

from messages previously signed by the Sign oracle) such that the judge still outputs “Sig”,
i.e., that the signature has been created by the signer.

Definition 3.4 (Sanitizer-Accountability) A sanitizable signature scheme SanSig is sanitizer-
accountable if for any efficient algorithm ASanit the probability that the following experiment
returns 1 is negligible (as a function of n):

Experiment San-AccountabilitySanSig
ASanit

(n)
(pksig, sksig)← KGensig(1n)
(pk∗san,m

∗, σ∗)← ASign(·,sksig,·,·)
Sanit (pksig)

letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q
denote the queries and answers to and from oracle Sign

return 1 if
(pk∗san,m

∗) 6= (pksan,i,mi) for all i = 1, 2, . . . , q, and
Verify(m∗, σ∗, pksig, pk∗san) = true, and
Judge(m∗, σ∗, pksig, pk∗san) = Sig

In the signer-accountability game a malicious signer ASign gets a public sanitizing key pksan

as input. She is allowed to query a sanitizing oracle about tuples (mi,modi, σi, pksig,i
) receiving

answers (m′i, σ
′
i). Adversary ASign finally outputs a tuple (pk∗sig,m

∗, σ∗) and is considered to
succeed if Judge accuses the sanitizer for the new key-message pair pk∗sig,m

∗ with a valid
signature σ∗.

Definition 3.5 (Signer-Accountability) A sanitizable signature scheme SanSig is signer-
accountable if for any efficient algorithm ASign the probability that the following experiment
returns 1 is negligible (as a function of n):

Experiment Sig-AccountabilitySanSig
ASign

(n)
(pksan, sksan)← KGensan(1n)
(pk∗sig,m

∗, σ∗)← ASanit(·,·,·,·,sksan)
Sign (pksan)

letting (m′i, σ
′
i) for i = 1, 2, . . . , q

denote the answers from oracle Sanit.
return 1 if

(pk∗sig,m
∗) 6= (pksig,i

,m′i) for all i = 1, 2, . . . , q, and
Verify(m∗, σ∗, pk∗sig, pksan) = true and
Judge(m∗, σ∗, pk∗sig, pksan) = San

Privacy. Privacy roughly means that it should be infeasible to recover information about
the sanitized parts of the message. As information leakage through the modified message itself
can never be prevented, we only refer to information which is available through the sanitized
signature.

Our approach is based on an indistinguishability notion2 where an adversary can choose
pairs (m0,mod0), (m1,mod1) of messages and modifications together with a description adm
and has access to a “left-or-right” box. This oracle either returns a sanitized signature for the
left tuple (b = 0) or for the right tuple (b = 1). The task of the attacker is to predict the

2Brzuska et al. [BFF+09] also discuss a simulation-based approach which is equivalent to the indistinguisha-
bility notion.

9



random bit b significantly better than by guessing. Here we need the additional constraint
that for each call to the left-or-right box the resulting modified messages are identical for
both tuples and the modifications both match adm, else the task would be trivial. We write
(m0,mod0,adm) ≡ (m1,mod1,adm) for this.

Definition 3.6 (Privacy) A sanitizable signature scheme SanSig is private if for any effi-
cient algorithm A the probability that the following experiment returns 1 is negligibly close to
1
2 :

Experiment PrivacySanSig
A (n)

(pksig, sksig)← KGensig(1n)
(pksan, sksan)← KGensan(1n)
b← {0, 1}
a← ASign(·,sksig,·,·),Sanit(·,·,sksan,·),LoRSanit(·,·,·,sksig,sksan,b)(pksig, pksan)

where oracle LoRSanit(·, ·, ·, sksig, sksan, b)
on input (mj,0,modj,0,(mj,1,modj,1) and admj

first computes σj,b ← Sign(mj,b, sksig, pksan,admj) and then
returns (m′j , σ

′
j)← Sanit(mj,b,modj,b, σj,b, pksig, sksan),

and where (mj,0,modj,0,admj) ≡ (mj,1,modj,1,admj),
i.e., are mapped to the same modified message.

return 1 if a = b.

3.4 Security of Our Construction

Theorem 3.7 The sanitizable signature scheme in Construction 3.1 provides unforgeability,
immutability, privacy and accountability.

Proof. We only need to show immutability, accountability and privacy, as the signer- and
sanitizer-accountability together imply unforgeability [BFF+09].

Immutability. Assume towards contradiction that our construction is not immutable. We
show that this contradicts the unforgeability of the underlying signer’s signature scheme, i.e.,
we show that an adversary who successfully breaks immutability can be used to forge signatures
under the signer’s public key.

Let A be an efficient successful adversary against immutability. Adversary A impersonates
the sanitizer and has access to a signing oracle Sign(·, sksig, ·, ·). We show that if A is able
to find (m∗, σ∗, pk∗san) such that Verify(m∗, σ∗, pksig, pk∗san) = true and for all queries to the
signing oracle we have pk∗san 6= pksan,i or m∗ /∈ {mod(mi) | adm(mod) = 1}, then the forgery
immediately gives rise to a forgery against the underlying signature scheme.

The validity of the sanitizable signature σ∗ in the adversary’s forgery attempt contains a
valid signature σ∗fix for (0,m∗fix,adm∗, pk∗san) under the signer’s public key, it thus suffices to
show that this tuple has not been input into the signing algorithm. First observe that since
the signatures for the entire message start with a 1-bit, we only need to consider signatures
created for tuples with 0-bits. Hence, if (0,m∗fix,adm∗, pk∗san) = (0,mfix,i,admi, pksan,i) for a
query then admi = adm∗ and fixadm(m∗) = fixadm(mi), thus (by assumption about fixadm)
m∗ must be a valid modification mod(mi) of mi. Therefore this forgery attempt cannot satisfy
the requirement pk∗san 6= pksan,i or m∗ /∈ {mod(mi) | adm(mod) = 1}.

10



Note that the formal argument requires to build an adversary B against the underlying
signature scheme with oracle access to a signing oracle of that scheme. Then one shows that
B can simulate A’s attack on the sanitizable scheme and, in particular, the signer oracle in
the immutability attack. But this is straightforward for our scheme, given the signing oracle
of the underlying signature scheme.

Sanitizer-accountability. We show that if the sanitizer can make the judge falsely accuse
the signer, then the sanitizer can break the unforgeability of the underlying signer’s signa-
ture scheme. Let ASanit be an efficient and successful attacker. She has access to a signing
oracle Sign(·, sksig, ·, ·) and outputs a fresh, valid triple (pk∗san,m

∗, σ∗), where (pk∗san,m
∗) 6=

(pksan,i,mi) for all (pksan,i,mi,admi)-queries to the signing oracle.
The triple output by ASanit is such that Judge(m∗, σ∗, pksig, pk∗san) = Sig. This means

that Judge considers σ∗full and notices that σ∗full is a valid signer signature for the mes-
sage (1,m∗, pk∗san, pksig). But since (pk∗san,m

∗) 6= (pksan,i,mi) for all i and as all signa-
tures for the fixed part are signatures over messages prepended with a 0-bit, it follows that
(1,m∗, pk∗san, pksig) has not been signed before. The formal argument (building an adversary
B against the signature scheme, mounting a black-box simulation of A) follows again straight-
forwardly.

Signer Accountability. We show that a successful attacker against signer accountability
can be used to forge signatures of the sanitizer’s signature scheme. Let ASign be an effi-
cient successful adversary. She is given access to a sanitizing oracle, respectively, the sani-
tizer’s signing oracle Sign(·, sksan, ·, ·) and outputs a fresh, valid triple (pk∗sig,m

∗, σ∗), where
(pk∗sig,m

∗) 6= (pksig,i,mi) for all (mi,modi, σi, pksig,i, sksan)-queries to the sanitizing oracle.
The triple output by the adversary is such that Judge(m∗, σ∗, pk∗sig, pksan) = San, i.e.,

Judge inspects σ∗full and verifies that σ∗full is a valid sanitizer signature for the message
(1,m∗, pk∗san, pksig). Since the sanitizer only signs messages beginning with 1 and (pk∗sig,m

∗) 6=
(pksig,i,mi) for all queries, it follows that the sanitizer has not input this message into its sig-
nature algorithm before. The forgery thus comprises a forgery for the basic signature scheme,

Privacy. Privacy is guaranteed information-theoretically: Since the left-or-right oracle only
receives message pairs and modifications mapping to the same outcome, and the sanitizer signs
this derived message from scratch, the output distribution is identical for both values of the
bit b in the left-or-right oracle. �

3.5 Variations and Extensions

Our generic construction easily allows variations and extensions like hierachical sanitizing.
The sanitizer can delegate some of his rights to a subordinate sanitizer as follows. Let

(σfix, σfull) = (Sign(sksig, (0,mfix,adm, pksan)), Sign(sksig, (1,m, pksan, pksig)))

be a signer’s signature for the message m. It is clear that the sanitizer can only delegate rights
concerning the admissible blocks of the message. He thus determines a “subset” admsub ⊆ adm
(with the measing that adm(mod) = 1 whenever admsub(mod) = 1) that the subordinate
sanitizer is allowed to modify. Let m′ be the sanitizer’s modification of the message m, and
fixadmsub map m′ to the concatenation m′fix,sub of the message parts which are immutable for
the subordinate sanitizer. Let pkSubSan be the subordinate sanitizer’s public key.

11



To delegate the rights the sanitizer now signs the messages

(2,m′fix,sub,admsub, pksig, pkSubSan) and (3,m′, pkSubSan, pksig).

to obtain σsan
fix and σsan

full. The signature issued by the sanitizer consists of

(σfix,adm, σsan
fix , σ

san
full,admsub)

and possibly all the public keys. For sanitizing m′ to m′′, the subordinate sanitizer algorithm
SubSanit leaves (σfix,adm, σsan

fix ,admsub) unchanged and creates a new signature σsan
full
′ =

SSign(pkSubSan, (3,m′′, pkSubSan, pksig)). As the final signature it outputs

(σfix,adm, σsan
fix , σ

san
full
′,admsub).

Further hierarchical levels of sanitizers can be added accordingly.
Concerning flat hierarchies, in some settings it may be desirable to invole several sanitizer,

say, a setting with personel in a hospital. The extention of our scheme to such a setting is
straightforward. For each message the authorized sanitizer set is chosen, and σfix is a signer’s
signature over the message (0,mfix,adm, pksan,1, . . . , pksan,k), where pksan,1, . . . , pksan,k are the
authorized sanitizers’ public keys. In addition, let σfull be a signer’s or sanitizer’s signature
over the message (1,m, pksan,1, . . . , pksan,k, pksig). For verifying the validity of a signature,
one checks that σfix is a valid signer signature over (0,mfix,adm, pksan,1, . . . , pksan,k) and
that σfull verifies for the message (1,m, pksan,1, . . . , pksan,k, pksig) under pksig or under one of
the authorized sanitizers’ keys pksan,1, . . . , pksan,k (this key may be determined as part of the
signature).

References

[ACdMT05] Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik.
Sanitizable Signatures. ESORICS, Volume 3679 of Lecture Notes in Computer
Science, pages 159–177. Springer, 2005.

[BFF+09] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Marcus
Page, Jakob Schelbert, Dominique Schroeder, and Florian Volk. Security of San-
itizable Signatures Revisited. Public-Key Cryptography (PKC) 2009, Volume
5443 of Lecture Notes in Computer Science, pages 317–336. Springer-Verlag,
2009.

[BKMN08] Jens Bender, Dennis Kügler, Marian Margraf, and Ingo Naumann. Sicher-
heitsmechanismen für kontaktlose Chips im deutschen elektronischen Person-
alausweis. DuD — Datenschutz und Datensicherheit, Volume 3, pages 164–177.
Vieweg, 2008.

[Bun08] Bundesministerium des Innern. Grobkonzept zur Einführung des elektronischen
Personalausweises. (Version 2.0), July 2008.

[MSI+03] K. Miyazaki, S. Susaki, M. Iwamura, T. Matsumoto, R. Sasaki, and H. Yoshiura.
Digital documents sanitizing problem. Technical Report ISEC2003-20. IEICE,
2003.

[SBZ01] Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content Extraction Sig-
natures. ICISC, Volume 2288 of Lecture Notes in Computer Science, pages
285–304. Springer, 2001.

12


