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Abstract. In this paper we propose a new approach to privately compute the set-union cardinality and
the set-intersection cardinality among multiple honest-but-curious parties. Our approach is inspired by
a proposal of Ashok and Mukkamala (DBSec’14) which deploys Bloom filters to approximate the size
tightly. One advantage of their solution is that it avoids ample public-key cryptography. Unfortunately,
we show here that their protocol is vulnerable to actual attacks. We therefore propose a new Bloom
filter based protocol, also forgoing heavy cryptography, and prove its security.

1 Introduction
The set-union cardinality problem consists of n parties, each party holding a set Xi of data, and the task
is to compute the size of the union of all sets, s = |

⋃
Xi|. Ideally, this should be done in a way such

that only the final result s is revealed but nothing about the individual input sets. The problem is a
close relative to other so-called privacy-preserving set operation problems, including the set-intersection
cardinality problem where parties aim to compute s = |

⋂
Xi| securely, and the more general set-union

and set-intersection problems where the goal is to explicitly compute the union and the intersection,
respectively, and not only their cardinality. There are also more relaxed versions of the problem, called
disjointness and conjointness testing, where the parties only check whether the size of the intersection
resp. union is 0 or not.

Protocols for privacy-preserving set operations have numerous applications, explaining the vast number
of protocol proposals and publications (as discussed below). To name a few applications, De Cristofaro et
al. [CGT12] point out that such protocols can be used for anomaly detection in network monitoring or for
identifying common friends in social networks. Kerschbaum [Ker11] lists supply chain integrity protection
as another application. De Cristofaro et al. [CGT12] also discuss that the cardinality versions can be
specifically used in the areas of genomic computations, location sharing, or affiliation-hiding authentication.

1.1 The Ashok-Mukkamala Protocol

Ashok and Mukkamala [AM14] recently proposed a fast multi-party protocol for the set union cardinality
problem using Bloom filters. A Bloom filter [Blo70] is an array-based representation for sets where each
inserted element induces a set of 1’s in the array, based on the results of hashing the element with a
set of public hash functions.1 Verifying membership can be then carried out by re-hashing the element
and checking for 1-entries in the array. As such, Bloom filters have a small but tolerable false-positive
rate, since one may accidentally hit 1’s caused by other elements. The size of a Bloom filter is usually
proportional to the number of elements, independently of the size of the domain of the elements.

1The hash functions do not need to be cryptographically secure, but can still be based on hash functions like SHA [TRL12].

1



The idea of the Ashok and Mukkamala (AM) protocol is now to use the fact that unions of Bloom
filters correspond to the bit-wise OR of the arrays, which facilitates the computation of the union of the
underlying sets. The size of the union then corresponds, with exponentially high accuracy [PSN10], to
the number of 0’s and 1’s in the derived array. Unlike other solutions for the problem the AM protocol
does not rely on expensive cryptographic operations and reduces the network communication overhead
significantly.

Unfortunately, the authors of [AM14] only sketch some ideas why their protocol should indeed be
secure, lacking a formal proof in the common simulation-based sense of secure multi-party computation.
Our first result is to show that such a proof is elusive. We show how each party in the AM protocol
can predict any other party’s input set with very high precision, even if honestly following the protocol
description, by inspecting the communication data afterwards. This clearly violates the notion of a secure
protocol.

1.2 Secure Cardinality Protocols based on Bloom Filters

We adopt the approach [AM14] to use Bloom filters to devise protocols for the cardinality problems. Our
first protocol is for the set-union cardinality problem and for three (or more) parties. We assume that
each party first locally computes the Bloom filter of its input set. In the protocol two dedicated parties
act as accumulators, receiving random shares of each party’s Bloom filter. The sharing will be such that
it is compatible with the union operation for Bloom filters, enabling each accumulator to compute the
union over their Bloom filter shares. Both accumulators agree on a random permutation and forward the
permuted arrays of their shares to the third dedicated party, the evaluator. The evaluator then assembles
the permuted filters of the accumulators, computes the size of the union from the number of 1’s, and
announces the result to the other parties (if required).

Our protocol computes the size of the union with very small error (due to the negligible error caused
by the Bloom filter approach and some term related to the secret sharing of the filters). It withstands
honest-but-curious adversaries, as long as the adversary can only inspect the data of one of the three
dedicated parties, and it provably leaks only the size of the union of the input Bloom filters of all parties.2
The protocol is perfectly secure and does not rely on any cryptographic assumption. It requires little
interaction between parties and the bit communication of each party is proportional to the size m of the
Bloom filter. The latter is based on the observation that, for the cardinality problem, we can use “small”
error-prone Bloom filter shares, as we are still able to approximate the number of errors sufficiently well
and to subtract them out of the final result. We actually determine parameters enabling varying levels of
communication complexity and accuracy.

Next we briefly discuss how to extent our protocol if more than one party can be accessed by the
adversary. Basically, to tolerate t accesses of dedicated parties (and an arbitrary number of further parties)
we need Ω(t2) parties in total, building different layers of accumulators. For example, for t = 2 we need
at least 6 participants. The protocol remains perfectly secure in the honest-but-curious setting and still
provides a linear communication complexity for each party (linear in the size m of the Bloom filter).

We conclude with a two-party protocol for the cardinality problem, still based on Bloom filters. The
protocol is a slight modification of the protocol of Kiayias and Mitrofanova [KM05] for testing disjointness,
adopted to the case of union cardinality and the Bloom filter setting. Here we however need to revert
to cryptographic means like homomorphic encryption. Our protocol is based on the ElGamal encryption
scheme and computes the set-union cardinality problem in the honest-but-curious model. As opposed to
similar protocols for the general set-union problem we take advantage of the fact that we merely need to
compute the size of the union. This allows us to outsource the major computational effort to compute m

2Note that one can in principle compile protocols in the honest-but-curious case to thwart malicious attacks [Gol04], albeit
this comes with an observable slow down.
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encryptions and thus modular exponentiations for the Bloom filter array of size m to one party, the server.
The client side, on the other hand, only computes a single encryption and m modular multiplications.

We finally discuss that all our protocols can be easily adapted to compute the set-intersection car-
dinality problem. Indeed, as pointed out in [CGT12], solutions in the two-party case for the private
set-union cardinality problem in principle also give rise to protocols for the intersection problem, noting
that |X1 ∩X2| = |X1|+ |X2|−|X1 ∪X2|. However, this requires that the sizes of the individual sets X1, X2
are public, or that these values are incorporated privately into the computation. Also, the formula gets
significantly more complicated for multiple parties.

Hence, we here instead use a direct approach for Bloom filters via De Morgan’s law to adapt our
protocols. This approach, surprisingly, went unnoticed in [AM14]. Given the Bloom filters each party first
inverts its array bit-wise. Then they compute the cardinality of the union of these inverted filters with our
protocol. This yields the bit-wise inverse of the AND of the original Bloom filters. The parties can thus
derive the cardinality of the intersection by subtracting the cardinality of the obtained filter from the size
of the Bloom filters.

1.3 Related Work

There are numerous works on privacy-preserving set operations, with various security and complexity
properties. We list here only protocols specifically for set operation problems, neglecting general-purpose
multi-party protocols. Still, we note that there are solutions which apply general methods like oblivious
transfer to the set-operation setting. For a comprehensive overview about such approaches based on
oblivious transfer, and their performance characteristics, see [PSZ14]. We also omit a comparison to
assisted protocols in which (partially) trustworthy third parties support the evaluation; see [KMRS14] for
an overview over these protocols.

The early proposals for set operation protocols by Freedman et al. [FNP04] and by Kiayias and Mitro-
fanova [KM05] used polynomials to represent input sets and jointly evaluated the polynomials via homo-
morphic encryption. Several subsequent approaches [KS05, HW06, Fri07, DMRY09, HN12, Haz15] adopted
this idea in order to improve over security guarantees, efficiency, or functionality. Compared to our pro-
tocols these works often aim at the more general problems of set intersection and set union, and start
by designing versions withstanding honest-but-curious adversaries before adding (efficient) zero-knowledge
proofs to achieve security against malicious adversaries. At the same time, the proposals are usually more
costly, even in the honest-but-curious model, in the sense that they deploy public-key cryptographic oper-
ations, and they often focus on the two-party case. This is also true for other public-key based approaches
like [DKT10, DT10, CGT12].

Besides the oblivious polynomial evaluation approach, intersections can also be computed via oblivious
pseudorandom functions [FIPR05]. Basically, this allows one party to evaluate a pseudorandom function on
selected values without knowledge of the key, such that intersections can be spotted by comparing function
values. This approach has been refined in several works [HL10, JL09, JL10], including also proposals with
trustworthy hardware tokens [HL08, FPS+11]. All these approaches are for two-parties only and, due to
the current state of art of oblivious pseudorandom functions, based on public-key operations or additional
hardware components.

Using Bloom filters for privacy-preserving set operations has been suggested before for example in
[Ker11, Ker12]. The former work [Ker11] describes a Bloom filter based two-party protocol using homo-
morphic encryption to allow membership verification of single elements. This comes at the cost of a high
communication complexity and reveals the element to be checked. The latter paper [Ker12] extends this
idea and securely computes the set intersection via Bloom filters and homomorphic encryption, but adds
extra computations on encrypted elements. Dong et al. [DCW13] used so-called garbled Bloom filters to
compute intersections based on oblivious transfer. Garbled Bloom filters basically store the bits of the
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underlying sets in a randomly shared way in a single filter. This is in contrast to our approach in which
the original filter is split into many shares. In addition, the oblivious transfer step in their protocol is
inherent, even in the honest-but-curious model.

There are also approaches for secure set-operation protocols which are built on top of very basic multi-
party computation protocols. For example, using the SEPIA library with secure protocols for addition and
multiplication of bits, Many et al. [MBD12] propose to compute the union of Bloom filters via a bit-wise
OR according to the formula a ∨ b = a + b − a · b. Especially the sub protocol for multiplication in this
formula, however, adds a significant overhead. Similarly, Blanton and Aguiar [BA12] use basic comparison
operations and oblivious sorting to implement set operations like the computation of the union in a modular
way. Compared to our dedicated solution the overhead is again noticeable.

2 Preliminaries

2.1 Secure Multi-Party Computation

We follow the common approach to multi-party computations as in, e.g., [Gol04]. We assume a known
number of n participants, following the terminology in [AM14] sometimes also called sites. Each party has
some individual input and the joint goal is to privately compute a function f of these inputs. We usually
consider the case that a single party, the distributor, first obtains the function output and that this party
can then forwards the value to the other parties. We assume that the n parties are all connected point-
wise, and that the protocol execution happens asynchronously in the sense that the parties’ communication
depends on incoming messages instead of global clocks and synchronous rounds of interaction.

We only sketch the formal security definitions of multi-party computations here; a more rigorous
approach can be found in [Gol04]. In the honest-but-curious (aka. semi-honest) security model the efficient
adversary receives the views of a subset of parties after a faithful protocol execution, consisting of the input
and the internal randomness of the parties, the incoming and outgoing messages of all these parties, and the
function value if the party is the distributor. This is in contrast to the malicious scenario where parties
controlled by an adversary may arbitrarily deviate from the protocol, including aborts. As mentioned
before, there are means to transform protocols in the honest-but-curious case into protocols withstanding
malicious attacks [Gol04], at the expense of extra steps.

We let the honest-but-curious adversary inspect up to t of the n views of the parties for some parameter
t. We call such adversaries t-bounded. We assume that the adversary selects the t parties and their views
non-adaptively, at the outset of the protocol execution. Note that the adversary would usually also receive
the protocol communication of the other parties sent over their public connections, but we may assume
that secure channels are established through standard cryptographic means.3

Security in the honest-but-curious case now says that any adversary cannot deduce more from the
views than what is known from their protocol inputs and the protocol’s output anyway. This is formalized
by saying that whatever the adversary can output based on the views, another algorithm could compute
from the parties’ inputs and the protocol’s output without seeing the protocol execution. More formally, a
protocol privately computes a function if for any efficient, t-bounded, non-adaptive adversary A as above,
there exists an efficient algorithm S, called the simulator, such that for any inputs the output of the
adversary and the one of the simulator are computationally indistinguishable. Here, the simulator only
receives the inputs of up to t parties and the function output. If this holds even for unbounded adversaries
and statistical (or even perfect) indistinguishability, then we say that the protocol is statistically (or
perfectly) private.

Needless to say that securely computing a function implicitly assumes that a benign execution of the
3Note that such cryptographic channels mainly rely on the faster symmetric-key cryptography.
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protocol yields the correct value. We are also interested in sufficiently close approximations in this case,
emphasizing that this only affects correctness but not security of the protocol. Hence, for a real-valued
function f we say that a protocol securely ε-approximates f if security holds as above, and in addition for
any inputs a faithful execution of the protocol yields with probability 99, 9% an output which is within
the interval v ± ε of the actual function value v.

The function we are abstractly interested in is the set-union cardinality problem where each party holds
a set of data and their goal is to securely compute the size of the union of all their data. Following the
terminology in [AM14] the parties are also called sites Si, their sets Xi of data are sometimes called trans-
action identifiers (containing some item x) and are denoted by Li(x) there, and the union is occasionally
also denoted by L(x) =

⋃n
i=1 Li(x).

2.2 Using Bloom Filters for Multi-Party Computations

In this work we use Bloom filters to represent the sets Xi. Bloom filters, introduced by Burton Howard
Bloom in the 1970’s [Blo70], are data structures for membership checking on sets. Given a data set
X = {x1, x2, · · · , xd}, a bit-array of size m, initialized with 0, and a set of public hash functions H =
{h1, h2, · · · , hk} with range {1, 2, . . . ,m}, one creates the Bloom filter BF for the set X as follows. For
each pair xi ∈ X and hj ∈ H compute hj(xi) and set the corresponding bit in the array to 1. To check if a
given element a is in the set X one computes all values hj(a) for j = 1, 2, . . . , k, looks up the corresponding
entries in the previously generated array, and predicts membership of a in X if and only if all resulting
array positions contain 1’s. This can only result in false positives due to collisions, i.e., if the hash values
hj(a) for some element a /∈ X all map to 1’s which have been set by hashing other elements.

The error rate of Bloom filters directly corresponds to the size m of the bit array, the number k of
hash functions and the size d of the data set. To get a good trade-off between size of the Bloom filter
and error-rate, we choose the parameters such that the equation k = m

d ln 2, taken from [TRL12], holds.
As usual, this assumes that the hash functions behave like independent random functions. With this the
Bloom filter should be filled to approximately 50%.

When using Bloom filters for private set operations one usually starts with the representation of the
input sets of the parties as Bloom filters for some agreed-upon hash functions. The protocol then usually
computes the union or intersection (or their cardinality) of the Bloom filters BFi, neglecting the small
errors due to false-positive rate of the filters. In our case we thus compute the (parameterized) function
(X1, . . . , Xn) 7→ |

∨n
i=1 BFi| securely, where the hash functions are given as randomly chosen parameters

(for the function and to the protocol participants, including the adversary) and are used to derive the
Bloom filters BFi. Note that computing m− |

∨n
i=1 BFi|, as we actually do here, is equivalent.4

We remark that cryptographic protocols using Bloom filters implicitly assume an a-priori bound on the
size of sets. The reason is that the common parameters for the Bloom filters are usually chosen to match
these numbers. Else, if chosen independently of the data size, the error rate for functional correctness may
increase significantly. We also make the assumption here, visualized by the fact that the k hash functions
for the filter and the filters’ size m are available to all parties in our protocol.

3 Attacks on the Ashok-Mukkamala Protocol
As mentioned before security of a protocol for the set-union cardinality problem should guarantee that
participants cannot learn anything about other parties’ inputs beyond the size of the union of all data.
We now show that the scheme proposed in [AM14] violates this security property as an adversary can

4The protocol in [AM14] also seems to aim to compute this function securely, but this is not specified.
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identify another party’s input with high probability. This holds even if the adversary only inspects the
communication data of a party after protocol completion.

We first provide a brief overview of the protocol proposed by Ashok and Mukkamala [AM14]. Then
we present two attacks that can be applied individually or in combination. In the first attack we identify
a candidate list of possible input data for the “victim” Si based on the partial Bloom filter sent from Si

to our adversarially inspected site Sj in the protocol execution. This partial Bloom filter is built from Si’s
input data, but only for a random subset of all hash functions. Our goal is to estimate the amount and
configuration of shared data between Si and Sj . We also simulate the computation of such a candidate
list and present figures in order to showcase the effectiveness and precision of this attack. In the second
attack we aim to reconstruct the random subset of used hash functions of site Si, utilizing input data an
adversary assumes is possessed by Si with high probability. As noted in [AM14] the choice of the subset
is critical to the security of the overall protocol. We conclude this section with a brief description of a
combination of the previous two attacks and provide the results we obtained from our experiments.

3.1 The AM-Protocol in a Nutshell

Recall that the AM-Protocol is based on the approximation of the size of a set via the entries in a Bloom
filter. That is, given k independent and agreed-upon hash functions h1, . . . , hk with range in {1, 2, . . . ,m}
—where we assume in the analysis that the functions are random— we build the Bloom filter of bit size
m by hashing each element x ∈ X via all functions hi(x) and setting the corresponding bit to 1. Then,
given only the Bloom filter, we can approximate the size of X via the number z of zeros in the filter by:

|X| = ln(z/m)
k ln(1− 1/m)

Furthermore, the approximation is quite tight [TRL12].
The AM-Protocol exploits that the bitwise OR of partial Bloom filters for any r sets of hash function

indices K1,K2, . . . ,Kr ⊆ {1, 2, . . . , k} yields a Bloom filter for the hash functions with indices in the union
K1 ∪K2 ∪ · · · ∪Kr. More precisely, letting BF|K denote the Bloom filter created by applying only hash
functions with indices from K ⊆ {1, 2, . . . , k} to the set X, we have

r∨
i=1

BF|Ki = BF|∪ri=1Ki .

This enables each site Si to split the entire Bloom filter for its input data into partial ones, one for each
other party Sj , by picking random subsets KSi→Sj ⊆ {1, 2, . . . , k} of all hash functions h1, . . . , hk, and
creating the partial Bloom filters BFSi→Sj = BF|KSi→Sj

. Each partial filter is then handed to the site Sj

for further processing. This is called the decomposition phase in [AM14].
For correctness it is necessary to ensure that all hash keys are used in some Bloom filter BFSi→Sj of

party Si. The AM-Protocol therefore first lets Si pick a random number rSi→Sj in some range [a, b] for
each partial filter, and then lets Si include rSi→Sj random keys in the subset KSi→Sj . The exact figures
and the roles of a, b remain unspecified; it seems to us that they should prevent trivial subsets. To ensure
that each key appears in at least one filter, the AM-protocol once more lets Si randomly assign each hash
key to one of the n partial Bloom filters.

Once a party Sj has received the partial Bloom filters BFSi→Sj from all sites Si, the party Sj computes
the union of all these Bloom filters to create a filter BF′Sj and sends out this value to all other sites. This
is called the reconstruction phase in [AM14]. In the final merger phase each site Si computes the Bloom
filter union over all values BF′Sj received from the n sites Sj . The final step is now to approximate the
size of the union of the input data via the number z of 0-entries in the final Bloom filter.

6



3.2 Attack #1: Computing a Candidate List

Note that the underlying security idea of the AM-Protocol is that in the decomposition phase each party Sj

only obtains a partial Bloom filter BFSi→Sj from any other party Si. In fact, Ashok and Mukkamala [AM14]
argue about the number rSi→Sj of used hash functions being well distributed, neglecting the question of
how much information about the original data is still contained in a partial Bloom filter. This observation
is the leverage for our first attack, which allows us to use the partial Bloom filters to verify, with high
accuracy, if the other party’s input contains some individual data x.

To illustrate our attack assume that rSi→Sj hash functions with indices KSi→Sj have been used to
construct the partial Bloom filter BFSi→Sj . Both the number rSi→Sj and the actual set KSi→Sj are only
known to party Si. Party Sj now tries to check whether some data x is part of Si’s input or not. To
do so, it first computes the fraction p ∈ [0, 1] of 1-entries in the partial Bloom filter. Then Sj hashes x
with all hash functions h1, . . . , hk and counts how often it hits 1’s in the filter BFSi→Sj . If x is not part
of Si’s input, the hash values will, on the average, hit kp times; if x on the other hand, is contained in
the set, the process will generate rSi→Sj hits for the rSi→Sj actually chosen hash functions in KSi→Sj ,
plus an expected (k − rSi→Sj )p hits for the remaining, unused hashed functions. On the average these
are about kp+ (1− p)rSi→Sj hits, which exceeds the amount in the other case significantly for reasonable
parameter choices. Although this gap and the number of samples is presumably too small to apply the
Chernoff-Hoeffding bounds for estimating the deviation of expectations, our experiments and threshold
choice below show that this gap suffices for a good prediction. Hence, Sj can decide membership of x in
Si’s input with high probability.

We have run simulations on how good we can actually predict membership of elements. For this we
created two Bloom filters for sets Xi, Xj with a given overlap |Xi ∩Xj | for the respective parameters m,
|Xi| = |Xj |, and k. Since we work with the Bloom filters exclusively and the actual data are irrelevant, we
emulated ideal hash functions by inserting 1’s for each element at random positions to create the Bloom
filters (but with consistent position choice for the common elements, of course). For the partial Bloom
filters we picked a random subset rSi→Sj ∈ [a, b] of the hash functions, where we chose a = 3 and b = k−3.
For each parameter set we repeated the experiment 1, 000 times, averaging the results.

To determine the candidate elements we first count the number of ones for each element. Then we
compute the average and maximum count (AVG and MAX) over all elements. Finally we select all elements
as candidates for which the count is equal or greater to the following bound:

AVG + max(0.6, p) · (MAX−AVG)

That is, if the hits exceeds the average number by about 60% of the gap to the maximum (or a p-fraction
of the gap, where p is the ratio of 1’s in the received Bloom filter) then we consider the value to be in
the set. Notice that for reasonable parameter choices, p never exceeds 0.6 and max(0.6, p) can be safely
replaced with 0.6. However in the third simulated scenarios we deliberately chose parameters that lead
to very large p. In this scenario replacing max(0.6, p) with 0.6 would reduce the attack’s effectiveness
significantly.

Table 1 shows our simulation results. Here, precision (basically determining exactness) designates the
percentage of correctly identified candidates out of all the chosen candidates. We mark the percentage
of correctly identified candidates out of the actually shared elements as recall (basically determining
completeness).

To see why the attack works recall that for x /∈ Xi we get on the average E/∈ := kp hits, because
each of the random hash functions maps the distinct value x to random and independent positions. In
contrast, the expectation for x ∈ Xi is E∈ := kp + (1 − p)r, because the remaining k − r hash functions
also map x to random positions in the array. Since E∈ is always greater than E/∈, it is possible to choose a
bound that is greater than E/∈ and smaller than E∈. All elements with a number of ones greater than that
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|Xi| = |Xj | = 10, 000,
m = 1, 000, 000, k = 70

|Xi ∩Xj | precision recall
10 79.5 % 90.8 %
100 95.4 % 83.8 %
1000 99.2 % 71.7 %

|Xi| = |Xj | = 10, 000,
m = 2, 000, 000, k = 140

|Xi ∩Xj | precision recall
10 92.2 % 94.9 %
100 97.6 % 90.9 %
1000 99.8 % 83.3 %

|Xi| = |Xj | = 25, 000,
m = 1, 000, 000, k = 70

|Xi ∩Xj | precision recall
10 31.3 % 69.9 %
100 72.5 % 58.4 %
1000 93.9 % 45.3 %

Table 1: Simulation results for attack #1

bound will be considered a candidate. Since E∈ depends on r, which is unknown to the attacker, an ideal
bound cannot be calculated beforehand. It can however be estimated after counting the ones for every
element. The average number of ones (AVG) will usually be close to E1 /∈ while the maximum number
of ones (MAX) will be closer to E∈. Selecting a value between AVG and MAX as the bound is therefore
reasonable. Extensive simulations with different approaches to calculate the bound led us to the given
formula.

Note that this approach will only work if Si and Sj actually share at least one element. Otherwise
MAX will not be a good estimation of E∈ and the calculated bound will be meaningless. If it is not
known if both sites share any elements, a static bound may be used instead, that depends only on the
known parameters as well as p. However, its effectiveness will vary greatly with r and potentially also with
other parameters. Simulations have shown that a bound of 2kp may then be a reasonable choice in many
scenarios.

3.3 Attack #2: Reconstructing the Set of Hash Functions

For the second attack we use a candidate list of common elements which could have been generated, for
example, by our first attack. The attack here takes advantage of the fact that, for common elements,
we can check if one of the k hash functions coincides on these elements. That is, for each of the k hash
functions we check how many of the elements in the list hit a 1 in the partial Bloom filter we have obtained.
We can roughly expect that only the actually chosen r hash functions will produce hits for all candidates.
If we have a perfectly reliable candidate list of common elements, then we can even identify correctly left
out hash functions, if the hash function maps a candidate to 0.

Once we have identified the used hash functions we can in principle use the partial Bloom filter to plot
out the other party’s elements, with an error which is higher than for the optimal choice for Bloom filter
parameters, but still giving useful information to an attacker. We refrain from doing so here, though, as
the importance to hide this choice has already been mentioned in [AM14].

We have again run experiments to verify the correctness of our idea. We have used the same parameters
as for the first attack. We used the exact list of common elements as the candidate list. Our algorithm
decided to include a hash function as chosen if the number of ones counted for that hash function is greater
or equal to (AVGh + MAXh)/2 where AVGh and MAXh are the average and maximum number of ones
for all hash functions. The results of our experiments are given in Table 2.

3.4 Combination of Attacks #1 and #2

As briefly mentioned before the attacks can also be combined. In the first step we use attack #1 to generate
a list of candidates that, with high probability, are part of the other party’s input. We subsequently use this
candidate list as an input for attack #2 to reconstruct the hash function set. The results of the simulation
of the combined attack are displayed in Table 3 where success denotes the likelihood of identifying the r
chosen hash functions correctly. Note that we cannot expect to achieve the same success rate as in the
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|Xi| = |Xj | = 10, 000,
m = 1, 000, 000, k = 70

|Xi ∩Xj | success
10 99.2 %
100 100 %
1000 100 %

|Xi| = |Xj | = 10, 000,
m = 2, 000, 000, k = 140

|Xi ∩Xj | success
10 97.3 %
100 100 %
1000 100 %

|Xi| = |Xj | = 25, 000,
m = 1, 000, 000, k = 70

|Xi ∩Xj | success
10 65.2 %
100 100 %
1000 100 %

Table 2: Simulation results for attack #2

case of the exact candidate list, but our experiments show that for sufficiently large intersections we still
achieve overwhelming rates.

|Xi| = |Xj | = 10, 000,
m = 1, 000, 000, k = 70

|Xi ∩Xj | success
10 75.7 %
100 99.5 %
1000 99.9 %

|Xi| = |Xj | = 10, 000,
m = 2, 000, 000, k = 140

|Xi ∩Xj | success
10 90.1 %
100 99.9 %
1000 100 %

|Xi| = |Xj | = 25, 000,
m = 1, 000, 000, k = 70

|Xi ∩Xj | success
10 0.7 %
100 70.7 %
1000 99.7 %

Table 3: Simulation results for combination of attacks #1 and #2

4 Advanced Protocols for the Set-Union Cardinality Problem
In this section we present our new protocols. Although inspired by the general idea of using Bloom filters
as in [AM14] our proposed solutions are substantially different in the way they deploy Bloom filters. We
only describe here the set-union protocol; the set-intersection protocol can be derived by working over the
inverted Bloom filters, as explained in the Introduction.

We start with a description of a protocol for the case of at least three participants. We additionally
provide a security proof for this case. Three of the parties in this protocol will embrace a special role and we
call them core nodes. Two of the core nodes will act as accumulators of intermediate results of other parties
and forward their values to the third party, the evaluator, who will compute the final result (and possibly
distribute it to all other parties). In this version of the protocol an arbitrary number of participants can
be inspected by an adversary, but at most one of the three core nodes. We will subsequently explain how
the protocol needs to be extended to guarantee security in case an adversary inspects more than one core
node. Conclusively, we present an approach for the scenario where there are only two participants available
for protocol execution.

4.1 The Three-Party Case

We first discuss the most basic scenario of our protocol with an arbitrary number of regular participants
and three core nodes as described above. An overview over the proposed protocol is given in Figure 1.
Each of the core nodes acts as a regular participant, too, but has to perform some additional work. The
protocol consists of a general part which is executed by all members and a special part for the core nodes.
For simplification we will refer to the core nodes as A, B and C for the rest of this section, where A and
B are called accumulators and C is called the evaluator.

The idea of the first part of the protocol is that each party first locally computes its Bloom filter for
its input. Then the party transforms the representation of its Bloom filter of 0’s and 1’s into b-bit values
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Si A B C

input: Xi

locally
compute

BFi for Xi,

ShSi→A−−−−−→
accumulate
ShSi→A’s

apply trans-
formation
to obtain

ShSi

ShSi→B−−−−−−−−−−−−−−−−−−−−−−−−−→
accumulate
ShSi→B’s

pick random
permutation

π

π−−−−−→

compute
π(

∑
ShSi→A)

π(
∑

ShSi→A)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

compute
π(

∑
ShSi→B)

π(
∑

ShSi→B)
−−−−−−−−−−−−−−→

compute # of 0-entries
output: m− |

∨
BFi|

Figure 1: Protocol steps in the case of three or more parties

where
0 7→ 0 mod 2b, 1 7→ random element mod 2b.

Here b = 4, 8 or 16 may be appropriate choices, but even b = 1 is possible if one can tolerate slightly
higher error rates. Subsequently the party splits its transformed Bloom filter representation into two
equal-size shares ShSi→A and ShSi→B by mapping an entry r mod 2b to random r1, r2 mod 2b such that
r = r1 + r2 mod 2b and placing r1 in the first Bloom filter share and r2 into the second one. Note that
each of the two Bloom filter shares individually does not reveal any information about the original values.
An example of this transformation process for b = 8 and thus Z256 is given in Figure 2.

1|0|1|1|0|1|0|1|...

25|0|125|68|0|230|0|137|...

128|69|222|5|101|68|53|96|... 153|187|159|63|155|162|203|41|...ShSk→A ShSk→B

Original BF

Random Element A+B %256 ≡ rand Elm

0 → 0
1 → {0,..,255}

Figure 2: Local share computation of a node’s Bloom filter

The parties now all send their first Bloom filter share to the accumulator A, and their second share to
accumulator B. For each entry in the arrays, the accumulator simply sums up the corresponding entries
in all received filter shares. At this point neither A nor B individually possess any useful information
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about the Bloom filters of the other parties. Still they hold a shared version of the combined Bloom filter
of all parties. Now they agree on a random permutation π over {1, 2, . . . ,m} and permute the entries
of their shares according to π. This step is necessary to ensure that the evaluator C cannot reconstruct
information about individual data from the combined filter. Both A and B then send their permuted filters
to C who adds the entries component-wise and finally counts the number of 0-entries in the derived filter.
Eventually C can compute an approximation the size of the union set as in [AM14]. An example of the
calculations performed by the accumulators and the evaluator is given in Figure 3.

BA

183|113|255|27|112|134|130|184|...

∑ ShSi→A

113|134|130|184|183|112|255|27|...

π 

π (∑ ShSi→A)

π 

π (∑ ShSi→A) π (∑ ShSi→B)

Random Permutation π 

98|74|25|41|156|96|126|66|...

74|96|126|66|98|156|25|41|...

π 

π (∑ ShSi→B)

∑ ShSi→B

113|134|130|184|183|112|255|27|...

 74 | 96 |126| 66 | 98 |156| 25 | 41 |...

187|230|  0  |250| 25 | 12 | 24 | 68 |...

∑ 

-> 7 ones  -> estimate |L(X)|

Figure 3: Accumulation and evaluation of the transmitted Bloom filters by the core nodes

Note that the final result, independently of the inaccuracies due to the set-size approximation technique
via the zeros, contains a small error. This error is introduced by the representation of 1’s as random
elements in Z2b , potentially picking 0 mod 2b for a 1-entry.5 However, we can actually estimate these false
elements quite accurately: Let z0 denote the number of 0-entries in the final Bloom filter, and z1 the
number of (false) 0-representations of original 1-entries, such that z = z0 + z1 for the eventually derived
number z of zeros. Note that the expected value (over the random representations of the parties) of z1 is
2−b(m − z0) since each of the m − z0 non-zero entries is misrepresented with probability 2−b. It follows
that the expected number Ez0 of z0 is given by

Ez0 = z − 2−bm

1− 2−b
.

Hence, given z (and the parameters m, b) we can approximate the actual value of z0 easily.
Furthermore, since z1 is given by the sum of independent variables, the number of errors in our

approximation follows a binomial distribution. Suppose we take for z1 a confidence interval of 99.9%.
Then we can calculate the error bounds for the estimation of z0 and thus of the final result for different
values of b and |

⋃
Xi|, the actual size of the union. Approximating the binomial distribution through the

Gaussian distribution we obtain that with probability at least 99.9% the result of an honest execution
of the protocol lies within an interval ±3.29 times the standard deviation σ :=

√
(m− z0) · 2−b(1− 2−b)

around the mean. In this case, using the formula for estimating z0, our approximation is in the interval
(m− z0)± 3.29σ/(1− 2−b) for the standard deviation σ with probability 99.9%.

5Excluding 0-representations for 1’s potentially enables an attacker to trace the original 0-entries with some small, yet
noticeable probability, such that we rather accept an error on the side of correctness.
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For a concrete example consider a densely filled Bloom filter of size m = 1, 000, 000, with only 10%
of 0-entries, and let b = 1. Then with probability of 99.9% our guess will be within ±1, 561 elements of
the expected 450, 000 misrepresentations. Approximating z0 as above with the same confidence we will
output an estimation in the interval between 96, 878 and 103, 122 for the actual value 100, 000. For the
same value of m, but 50% of the Bloom filter being filled, and now with b = 8, our approximation of the
actual value of 500, 000 is within the range 498, 854 and 500, 146 with probability of at least 99.9%.

4.2 Proof of Security

We will now show security for our proposed protocol in the honest-but-curious security model, and under
the additional assumption that the adversary is 1-bounded and is allowed to inspect at most one of the
nodes. Recall that the notion of ε-approximation means that, in terms of correctness, the output value
(for a benign execution) is within an interval ±ε of the actual function value with probability 99.9%.

Theorem 4.1 Let n ≥ 3 and consider the n-party protocol in Section 4.1. The protocol ε-approximates the
function fm,h1,...,hk(X1, . . . , Xn) = m − |

∨n
i=1 BFi| perfectly secure in the honest-but-curious case against

1-bounded non-adaptive adversaries, where ε = 3.29 · (1− 2−b)−1 ·
√

2−b · (1− 2−b) · |
∨n

i=1 BFi|.

We stress again that the parameter b only influences the correctness of the computation. The bound
for ε has already been derived in the previous section. Note that for large b, like b = 128, and reasonable
filter size the approximation is correct with probability 99.9%.

Proof. First note that if the party inspected by the adversary is different from a core node then security is
trivial, as such parties only send out information. Such a view is easy to simulate because the simulator
receives the party’s input. We can thus focus on the case of the adversary accessing one of the core nodes.
As before, let n denote the number of participants of the protocol, m the length of the Bloom filters, and
b the number of bits that are used for representing a single bit by an element of the additive group Z2b .

Consider first the case that an adversary inspects one of the accumulators A or B. We only consider the
case of A here, as the case of B is analogous; the only difference is that A chooses the random permutation
and transmits it. Because A is an accumulator, the adversary in the actual protocol execution learns
a single share of every Bloom filter of every participant of the protocol. The entries of these shares
ShSi→A, i = 1, 2, . . . , n are determined by the randomness of the corresponding participant Si. Each share
individually consists of m random elements from Z2b .

We can devise a simulator for A as follows: The simulator receives as input A’s input set and the output
of the protocol |

∨n
i=1 BFi| (if this value is eventually distributed to all participants by the evaluator C).

It creates a view of A by faithfully computing the first outgoing messages of A as an ordinary participant
via A’s input data. Then it simulates each incoming share ShSi→A by picking m random elements from
Z2b . The simulator also places a random permutation π in A’s view, and the aggregated and permuted
filter shares as the message sent to C. It is easy to see that our simulator perfectly simulates the view of
A in an actual protocol execution.

Finally consider the case that the adversary asks to see the view of the evaluating node C. The node
C in the actual protocol execution receives as input two randomly permuted vectors sent by A and B.
When put together, these vectors add up to m − |

∨
BFi| presentations of 0-entries plus a random set of

false 0-presentations of 1-entries, i.e., where the shares add up to 0 mod 2b. We can build a simulator as
follows. The simulator, receiving m − |

∨
BFi| and C’s data set, first creates the random filter shares C

would send as an ordinary participant to A and B. It next prepares an empty Bloom filter and randomly
distributes |

∨
BFi| random elements from Z2b and leaves the other entries as 0. It next splits all the entries

of this filter randomly into two Bloom filters as the protocol participants, and puts these shares into the
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view of C. This again perfectly simulates the actual view of C in a genuine protocol execution, because C
in this case also receives randomly permuted entries of the same distribution. �

4.3 Extensions to the Multi-Party Case

The basic three-party protocol which we described previously is only secure if at most one of the three
core nodes is inspected by an adversary. For an adversary being able to access more core nodes we need to
adapt the previous approach. The basic idea of our extension is to use additional layers of accumulators.
The i-th layer (where we count the evaluator as layer 1 and the two accumulators of the basic case as layer
2) will consist of i accumulators. To withstand t-bounded adversaries we will use t+1 of such layers where
parties can only act as accumulators on one level. The set-up for t = 2 is given in Figure 4.

The execution starts by having each party compute its Bloom filter and splitting it up into t + 1
random shares over the group Z2b similar to the three-party case. i.e., 0-entries are random shares of 0,
and 1-entries become random shares of random elements from Z2b . Again all of the core nodes are also
participating in the general Bloom filter distribution phase in the beginning, i.e., act both as accumulators
as well as contributors. Then each party sends its t + 1 shares to the parties of the highest accumulator
layer. The accumulators of a layer accumulate their shares and permute the accumulated Bloom filter
shares randomly, where each layer picks a fresh permutation, e.g., chosen by one party and distributed to
the accumulators of the same layer.

In the next step the accumulators forward their filters to the next lower layer. Here, allowing to reduce
the communication overhead, it suffices that each lower-level accumulator receives at least two independent
shares from the higher layer. In Figure 4 party B for example guarantees the two independent shares by
splitting its share for the lower level, such that A and C can simply forward their share. When the
evaluator eventually receives the shares it computes the output as before.

Security relies on the same observation as in the three-party case. First note that the adversary cannot
obtain all individual shares of a participant sent to the t + 1 accumulators of the highest layer, as the
adversary can only inspect up to t parties. The adversary could, potentially, inspect all t parties of the
second highest layer, but then the data would correspond to randomly permuted shares of the overall
result already. This is again easy to simulate, similar to the case of inspection of the evaluator C in the
three party case.

If the adversary, on the other hand, inspects a party of the highest layer to learn the random permu-
tation of that layer, then it must miss one of the t parties of the second highest layer and thus at least
one of the shares. We can set this argument forth, noting that if the adversary misses the permutation
of the Bloom filters (as the composition of all permutations of all t layers, except for layer 1) by not
inspecting any party of some layer, then the t-bounded adversary cannot learn any information, besides
inspecting the evaluator. But the t-bounded adversary can only learn the permutation if it inspects one
accumulator for each layer. But then it misses the data of the evaluator and could only derive information
about individual Bloom filters if it was able to access all shares of a layer. But by construction, since it
inspects one party at each of the t layer levels, it must lack knowledge of a share on each level for every
Bloom filter. It follows as in the three-party case that nothing is leaked except the function’s output.

4.4 The Two-Party Case

In the two-party case it seems inevitable to rely on public-key cryptography and computations on encrypted
data. Our solution here utilizes the homomorphic property of the ElGamal encryption scheme. Our
protocol has the interesting feature that the major part of computational complexity lies on one side,
supporting typical client-server scenarios: While one party has to perform 2m exponentiations to create
the m ElGamal encryptions of the m Bloom filter entries, the other party merely needs to compute two
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π(∑ ShSi→A)=ShA→D 

ShB→D

π(∑ ShSi→C)=ShC→E 

ShB→E

Ƭ(ShA→D+ShB→D)=ShD→F 

Ƭ(ShB→E+ShC→E)=ShE→F 

ShSi→A 

ShSi→B 

ShSi→C 

permutation π

π 

Permutation Ƭ π(∑ ShSi→B)=ShB→D+ShB→E 

Figure 4: Accumulation and evaluation by the core nodes in the multi-party case

exponentiations and up to 2m+ 2 multiplications. In contrast to our previous protocols, the result of the
protocol is perfectly correct.

The protocol in Figure 5 works as follows. First the parties will compute the intersection of the
Bloom filters. For this party 1 encrypts the entries BF1[i] of its Bloom filter bitwise as g1−BF1[i] to
(Ri, Si) = (gri , pkri · g1−BF1[i]) for random ri. Among these m pairs, party 2 picks those for which its
Bloom filter value BF2[i] is 0, and multiplies them together (component-wise). To hide the choice of this
subset, party 2 re-randomizes the result by multiplication with (gs, pks). Note that, at this point, the
obtained ciphertext (V,W ) is an encryption of g

∑
i:BF2[i]=0(1−BF1[i]), thus counting the number of entries

i for which both filters are 0. Hence, if party 1 decrypts and determines this sum with at most m
multiplications by comparing it to powers g0, g1, g2, . . . gm, it obtains the size of the union of the filters by
subtracting this sum from m.

We only sketch that the protocol securely computes |BF1 ∨ BF2| in the honest-but-curious model; a
formal proof is straightforward. To argue security consider first the case that the adversary inspects the
view of party 1 after an honest execution. In particular this means that a simulator needs to provide a
consistent view, including the inputs, the randomness, and the incoming messages, given BF1 and the
final output s = |BF1 ∪ BF2|. The simulator creates the view by picking the randomness faithfully as the
honest party would, and by inserting a fresh ciphertext (V,W ) of gm−s into the transcript part of the
view. Note that this view is identically distributed as a view of party 1 in an execution, showing that the
protocol protects the data of party 1.

Next consider the case that the adversary inspects the view of party 2. In this case we again simulate
the view given only the filter of party 2 and the size s of the union. To this end the simulator again
faithfully picks the randomness for party 2 and simulates that the first, incoming message by creating a
genuine key pk and m random ciphertexts (Ri, Si) of 1’s as (gri , pkri) for random ri. The third protocol
message is easy to simulate by simply passing s in clear. By the IND-CPA security of the ElGamal
encryption scheme (under the decisional Diffie-Hellman assumption) it follows that the adversary cannot
distinguish our simulated encryptions from genuine ones, and thus the views of the two cases.
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Party 1 Party 2
input: Bloom filter BF1 of size m Bloom filter BF2 of size m
pick (sk, pk) for ElGamal scheme
over group G = 〈g〉 of prime order q > m

for i = 1 to m do:
pick ri ← Zq

set (Ri, Si) = (gri , pkri · g1−BF1[i])
end

pk, (Ri, Si)i=1,2,...,m−−−−−−−−−−−−−−−−−−→ pick s← Zq

compute V = gs ·
∏

i:BF2[i]=0Ri

compute W = pks ·
∏

i:BF2[i]=0 Si

(V,W )
←−−−−−−−−−−−−−−−−−−

decrypt to Σ = W · V −sk

set σ = 0 //find σ with Σ = gσ

while Σ 6= 1 and σ ≤ m do
set Σ← Σ · g−1 and σ ← σ + 1

end
output: m− σ //assume that party 1 sends the sum to party 2, too

Figure 5: Two-Party Protocol based on Bloom filters and the ElGamal encryption scheme

5 Conclusion
Our protocols adopt the basic idea of the AM protocol to devise secure multi-party protocols which are
provably secure, lightweight on the crypto operations, and low on network communication. It remains an
interesting open question how one can enhance our protocol to withstand malicious adversaries, ideally
forgoing expensive zero-knowledge proofs. Also, a worthwhile effort would be to devise errorless versions
of our protocol.
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