
Technische Universität Darmstadt
Department of Computer Science

Cryptography and Complexity Theory

How Threshold Ring Signature Schemes
hide the Signers

Bachelor’s Thesis by

Philipp-Florens Lehwalder

Examiner: Prof. Dr. Marc Fischlin

Adviser: Rune Fiedler

Date of Submission: April 12, 2021

Erklärung zur Abschlussarbeit gemäß § 22 Abs. 7
und § 23 Abs. 7 APB TU Darmstadt

Hiermit versichere ich, Philipp-Florens Lehwalder, die vorliegende Bachelor-
Thesis gemäß § 22 Abs. 7 APB der TU Darmstadt ohne Hilfe Dritter und
nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben.
Alle Stellen, die Quellen entnommen wurden, sind als solche kenntlich ge-
macht worden. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen. Mir ist bekannt, dass im Falle eines Plagiats
(§38 Abs.2 APB) ein Täuschungsversuch vorliegt, der dazu führt, dass die
Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht wird.
Abschlussarbeiten dürfen nur einmal wiederholt werden. Bei der abgegebe-
nen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung gemäß § 23 Abs. 7 APB überein. Bei einer Thesis des
Fachbereichs Architektur entspricht die eingereichte elektronische Fassung
dem vorgestellten Modell und den vorgelegten Plänen.

12. April 2021

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Notations . 3
2.2 Complexity Assumptions . 4

2.2.1 Random Oracle Model 4
2.2.2 Ideal Cipher Model . 4
2.2.3 Discrete Logarithm Problem 4
2.2.4 (Strong) RSA Assumption 4
2.2.5 Computational and Decisional Diffie-Hellman Problem 5
2.2.6 Problems in Coding Theory 5
2.2.7 Lattice Problems . 6
2.2.8 Problems in Multivariate Cryptography 6

2.3 Building Blocks . 7
2.3.1 Hash Functions . 7
2.3.2 Bilinear Pairings . 7
2.3.3 Public Key Encryption 7
2.3.4 Trapdoor Permutations 8
2.3.5 Trapdoor Commitments 8
2.3.6 Accumulators . 9
2.3.7 Verifiable Random Functions 10
2.3.8 Somewhere Perfectly Binding Hashing 10
2.3.9 Zero-Knowledge Proofs 11
2.3.10 Shamir’s Secret Sharing 13

3 Threshold Ring Signature Definitions 13
3.1 Threshold Ring Signature Definition 13
3.2 Linkable Threshold Ring Signature Definition 14

3.2.1 Traceable Threshold Ring Signature 15
3.3 Threshold Ring Signature Security Definitions 15
3.4 Classification . 18

3.4.1 Considerations regarding Anonymity 19

4 Construction with Secret Sharing 21
4.1 Linkable Variants . 21
4.2 Unlinkable Variants . 22

4.2.1 Based on Trapdoor Permutations 22
4.2.2 Based on Bilinear Pairings 24
4.2.3 Based on Trapdoor Commitments 25

5 Construction with Ring Hashing 28
5.1 Linkable Variants . 28

5.1.1 Based on the DLP . 28
5.2 Unlinkable Variants . 30

5.2.1 Based on Trapdoor Permutations 30
5.2.2 Based on Short-Time Keys 32
5.2.3 Based on Message Block Sharing 34

6 Construction with Zero-Knowledge Proofs 36
6.1 Linkable Variants . 36

6.1.1 Based on RSA . 36
6.1.2 Based on the DLP . 39
6.1.3 Based on VRFs . 41

6.2 Unlinkable Variants . 44
6.2.1 Based on the MDP . 44
6.2.2 Based on the MQP . 46

7 Conclusion 49
7.1 Results . 49
7.2 Trends and Future Work . 53

4

1 Introduction

Ring signatures were originally presented by Rivest, Shamir, and Tauman
in 2001 [RST01] as a derivative of group signatures, introduced by Chaum
and van Heyst [CvH91]. Both concepts allow creating signatures on behalf
of a group of possible signers such that the actual signer remains anonymous
in this set. In contrast to group signatures, ring signatures do not require a
setup phase among all participants or a central group manager who is able
to revoke the signer’s anonymity. Instead of having a predefined group of
possible signers with ring signatures, a signer can freely select any number
of foreign public keys to form a ring in which it remains hidden.

Bresson et al. [BSS02] extended this concept and proposed threshold
ring (thring) signatures, which enable a group of signers to form a ring
signature and to prove that the number of signers is over a defined threshold,
but as for ring signatures, without revealing who belongs to the signers.
Therefore, standard ring signatures can be considered as a special case of
thring signatures with a threshold of one.

Possible applications for thring signatures are, for example, anonymous
petitions or polls where one can verify that at least a number of t parties have
agreed on a decision without exposing their identities. Considering elections
with well over hundreds of thousands of eligible voters per electoral district,
the fact that they do not need to run a setup protocol together is a crucial
benefit compared to traditional group signatures.

Another exemplary use case is shared cryptocurrency wallets where per-
forming a transaction requires the signature of at least t parties; with thring
signatures, one could use the same key-pair across multiple wallets without
the need of distributed key generation. Moreover, cryptocurrencies their-
selves constitute a significant field for (threshold) ring signatures, for exam-
ple, Monero1 or Bytecoin2, both based on the CryptoNote protocol [vS13],
employ ring signatures to ensure untraceable transactions.

Leaking secrets or whistleblowing are also frequently mentioned scenarios
for thring signatures. While the priority here is, of course, guaranteeing
uncompromising anonymity for the whistleblowers, proving that a certain
number of ”insiders” indeed participated in this exposure may also give it
more trustworthiness as if it was verifiable signed by only a single party.

Furthermore, as stressed by Bresson et al. [BSS02] and Chow et al.
[CHY05], the advent of mobile ad-hoc networks and ubiquitous computing,
where ad-hoc groups may spontaneously need to communicate with sensitive
data, results in increasing importance for secure thring signatures.

Since anonymity is the key feature for (threshold) ring signatures, a
throughout understanding of how threshold ring signatures hide the signers

1https://www.getmonero.org/
2https://bytecoin.org/

1

https://www.getmonero.org/
https://bytecoin.org/

is essential.
Therefore, this thesis aims to provide an overview of existing schemes,

to explain and compare their used techniques for ensuring anonymity while
considering their assumptions, building blocks, efficiency, and signature size.

In Chapter 2, we first introduce our notations, followed by complexity
assumptions and building blocks used in various thring signature schemes
and are required for their examination. Formal definitions of thring signa-
tures and their security properties are provided in Chapter 3, where we also
present our classification system and discuss these distinctions in terms of
anonymity. In the Chapters 4, 5, and 6, we go over three major construc-
tion types we identified for thring signatures and examine concrete schemes
of each construction type with a focus on their way of ensuring anonymity.
For each construction type, the schemes are again separated to whether they
are linkable or unlinkable. The title of each analyzed scheme refers either
to the crucial building block the scheme makes use of or to the complexity
assumption of its underlying public-key cryptosystem. We want to note here
that we have focused on the major construction types as they give the best
overview over the majority of current thring signatures. Accordingly, there
may be individual schemes that do not follow any of these three construction
types; we address an observed possible fourth, relatively rare construction
type in the results. In Chapter 7, we conclude with recapitulating our results
and discussing some trends and future work.

This thesis’s main contributions are an extensive analysis of twelve exem-
plary thring signature schemes, belonging to one of three major construction
types we identified for thring signatures, regarding the way they hide the
signers while also taking into account their efficiency and resulting signa-
ture size. To allow a systematic comparison of different thring signature
schemes, all examined schemes are further classified according to our classi-
fication system.

On the one hand, our contributions are beneficial when planning to in-
tegrate thring signatures into real-world applications in terms of choosing
the most suitable technique for the app-specific requirements. For example,
one trade-off could be the signature size and the level of anonymity. On
the other hand, when constructing new thring signature schemes, such an
overview and comparison of different schemes and their analyzed techniques
could likewise be conducive for composing its own secure method of hiding
the signers.

2

2 Preliminaries

In this chapter, we first introduce notations that we use throughout this the-
sis and provide definitions for complexity assumptions and common building
blocks that are used in various thring signature schemes we will discuss in
the further course of this work.

2.1 Notations

We denote an algorithm as probabilistic polynomial time by PPT and de-
terministic polynomial-time by DPT.

When assigning a value y to a variable x, we use the following notation
x ← y, if x is randomly sampled out of a set A, we write x←$A and the
size/order of a set A is denoted by |A|.

To differentiate between an ordered list of elements and a set of elements,
we use the notation (x1) and {xi}, respectively.

When writing [t] for a positive integer t, we refer to the set {1, . . . , t}.
For a polynomial f , the notation deg(f) indicates the degree of f .
The security parameter is denoted by λ and often written as 1λ.
A function negl(x) is called negligible if for any constant c ≥ 0 there

exists an integer n such that ∀x > n : negl(x) < 1
xc . When calling a

problem ”hard”, we mean that any PPT adversary has only a negligible
success probability (advantage) of solving this problem.

We consider a function f as a one-way, if it easy to calculate f(x) for
all x values in the domain of f , but it is hard to invert f , i.e. to calculate a
value x′ such that for a given y it holds that f(x′) = y. If this function f is
bijective, we refer to it as a one-way-permutation and often write it as F.

Given a matrix M or a vector v, we denote MT or vT as the transpose
of M or v, respectively. With ||v|| we denote the norm or length of a vector
v. Lastly, the weight of a vector v corresponds to all non-zero entries of v
and is denoted as wt(v).

Let U be the set of all parties represented by their unique index i. Then,
we assume that every party i ∈ U has a public- and secret key-pair, indicated
by pki and ski, respectively. Furthermore, we assume that everyone is able
to gather any number of foreign public keys pki with i ∈ U .

Finally, we denote a ring by an list of ordered public keys R = (pk1, ..., pkN) =
(pki)i∈RI with RI ⊆ U . The set of signers is represented by the set of in-
dices SI ⊆ RI and their associated secret keys are denoted by S = {ski}i∈SI.
The remaining parties included the ring NI = RI \ SI are called the non-
signers. Note that all the sets of the indices as for the ring members, signers
or non-signers, are indicated with the letter ”I” (except for U).

3

2.2 Complexity Assumptions

2.2.1 Random Oracle Model

The random oracle model (ROM), formalized by Bellare and Rogaway in
1993 [BR93], is a widely used model for cryptographic schemes where one
assumes that every party has access to an oracle, used as a black box, that
gives truly random but fixed responses to all queries. Fixed means that the
oracle will return the same response when querying it with the same input
again. So, an adversary cannot compute a response on its own but has to
query the random oracle.

2.2.2 Ideal Cipher Model

In the ideal cipher model (ICM), one assumes that there exists a publicly
accessible random cipher Ek, which is chosen uniformly at random from the
family of all block permutations indexed by a l0-bit key k and operating on
blocks with l-bit sizes {0, 1}l. All parties are then able to make encryption
Ek as well as decryption queries E−1

k to this ideal cipher. It has been shown
that the ideal cipher model and the random oracle model are equivalent in
a way that the security of the ideal cipher model implies the random oracle
model [CDMP05] and vice-versa [DSKT16, DS16, CPS08].

2.2.3 Discrete Logarithm Problem

Definition 1 (Discrete Logarithm Problem [McC90]) Given a group
G and a generator g ∈ G with 〈g〉 denoting its cyclic subgroup; The discrete
logarithm problem (DLP) defines the problem of finding an integer x such
that for a given element h ∈ 〈g〉 it holds:

h = gx

However, given the element x, verifying that it is indeed the correct
exponent is straightforward, hence, the DLP is a candidate for an one-way
function [HIL99].

2.2.4 (Strong) RSA Assumption

We follow to the definitions given by [KL14]. Given a security parameter
λ the PPT algorithm GenRSA outputs a RSA public- and secret key-pair
(N, e) and d, respectively. The integer N is a product of two λ-bit primes,
and for e, d > 0 it holds that gcd(e, φ(N)) = 1 and e ∗ d ≡ 1 mod φ(N),
with gcd(a, b) returning the greatest common divisor of the two given num-
bers and φ(n) denoting Euler’s totient function. Then, consider the game
InvRSAA (λ) between a PPT adversary A and a challenger C:

1. C generates a RSA key-pair with ((N, e), d)← GenRSA(1λ).

4

2. C chooses a random value y←$Z∗N and gives (N, e) and y to A.

3. A outputs a value x ∈ Z∗N and wins if xe ≡ y mod N .

The RSA problem is hard relative to GenRSA, if for every PPT adversary
A, there exists a negligible function negl(x) such that:

Pr[Awins InvRSAA (λ)] ≤ negl(λ)

Finally, the RSA assumption states that there exists a GenRSA algorithm
such that the RSA problem is hard. If the adversary is allowed to choose
the public exponent e, we refer to this as the strong RSA assumption.

2.2.5 Computational and Decisional Diffie-Hellman Problem

The computational- and decisional Diffie-Hellman problem [Bon98] are both
related to the discrete logarithm problem and are considered as stronger as-
sumptions. If the DLP is easy to calculate in a group G, then both problems
can also directly be solved in G.

Definition 2 (Computational Diffie-Hellman Problem) Given a finite,
cyclic group G of order N with a generator g, the computational Diffie-
Hellman problem (CDHP) asks to compute gxy for the tuple (gx, gy).

Definition 3 (Decisional Diffie-Hellman Problem) Given a finite, cyclic
group G of order N with a generator g, the decisional Diffie-Hellman problem
(DDHP) asks to decide between the two triples (gx, gy, gxy) and (gx, gy, gz),
where x, y, z ∈ Z∗N are random integers.

Assuming the hardness of the DDHP, i.e., that both triples should be
computationally indistinguishable, is a stronger assumption than on the
CDHP since the DDHP can be trivially solved if the CDHP is easy.

2.2.6 Problems in Coding Theory

We follow the definitions of [DV09]. A [n, k]-binary linear code C is a k-
dimensional vector subspace of Fn2 . A code C is defined by a (n − k) × n
binary parity check matrix H; for all words x ∈ C included in the code,
referred to codewords, it holds that HxT = 0. For a word x ∈ Fn2 its
syndrome s corresponds to HxT = s.

Definition 4 (Syndrome Decoding Problem [AMCG08]) Given a par-

ity check matrix H ∈ F(n−k)×n
2 , a non-zero target vector y ∈ Fn−k2 , and a

weight w ∈ N; The syndrome decoding problem (SDP) defines the problem
of finding a vector x ∈ Fn2 of weight wt(x) ≤ w (if any) such that:

HxT = yT

5

Definition 5 (Minimum Distance Problem [AMCG08]) Given a par-

ity check matrix H ∈ F(n−k)×n
2 and a weight w ∈ N; The minimum distance

problem (MDP) defines the problem of finding a non-zero vector x ∈ Fn2 of
weight wt(x) ≤ w such that:

HxT = 0

2.2.7 Lattice Problems

A lattice L ⊆ Rn is a discrete subgroup of Rn. A basis of L is a set of
linearly independent vectors B = {b1, . . . , bd} such that:

L = L(B) = B · Zn =

{ d∑
i=1

xibi : xi ∈ Z
}

Definition 6 (Shortest Vector Problem) Given a lattice L ⊆ Rn with
λ(L) denoting its minimal distance, the approximate shortest vector problem
(SVP) for γ ≥ 1 defines the problem of finding a non-zero vector v ∈ L\{0}
such that:

||v|| ≤ γ · λ(L)

Definition 7 (Short Integer Solution [CLRS10b]) Given a matrix A ∈
Zn×m and a prime number q, the short integer solution (SIS) defines the
problem of finding a vector v in the lattice defined by Λ⊥q = {x ∈ Zm : Ax =
0 mod q} that has a length ||v|| ≤ β with β < q.

2.2.8 Problems in Multivariate Cryptography

We follow the definitions of [PBB13]. A multivariate quadratic system over
a finite field F is a system of m multivariate quadratic equations with N
variables and can be written as follows:

n∑
i=1

n∑
j=1

p
(k)
ij · xi · xj +

n∑
i=1

p
(k)
i · xi + p

(k)
0 , with k ∈ [m]

Definition 8 (MQ-problem [PBB13]) Given m multivariate quadratic
polynomials p1, . . . , pm in N variables over a finite field F, the MQ-problem
(MQP) defines the problem of finding a vector x = (x1, . . . , xn) ∈ Fn such
that:

p1(x), . . . , pn(x) = 0

6

2.3 Building Blocks

2.3.1 Hash Functions

Definition 9 (Hash Function) A hash function H(·) takes a message of
arbitrary length as an input and maps it to a fixed-sized digest or hash value:

H : Σ∗ → Σl, with l ∈ N

A secure hash function has to fulfill the properties preimage resistance
(or one-wayness), second preimage resistance (or weak collision resistance),
and (strong) collision resistance. Intuitively, the last property, which implies
the weaker ones, requires that it should be hard to find to different strings
m 6= m′ such that H(m) = H(m′).

When proving the correctness or security of a scheme under the random
oracle model, the random oracle acts as an idealized hash function and
is replaced in practice with a concrete implementation of a hash function,
which is believed to be secure.

2.3.2 Bilinear Pairings

Definition 10 (Bilinear Pairing [Men09, CHY05]) A bilinear pairing
is a map defined over two cyclic groups (G1,+), (G2, ·) of order q such that
the bilinear pairing ê : G1 ×G1 → G2 satisfies the following properties:

1. Bilinearity: ∀R,S, T ∈ G1 : ê(R+ S, T) = ê(R, T)ê(S, T).

2. Non-degeneracy: ∃P,Q ∈ G1 : ê(P,Q) 6= 1.

3. Computability: ∀P,Q ∈ G1: ê(P,Q) can be efficiently computed.

2.3.3 Public Key Encryption

Definition 11 (Public Key Encryption [HKSS20]) A public-key encryp-
tion scheme is a tuple of three algorithms PKE = (KeyGen,Enc,Dec) over a
message space M(λ), randomness space R(λ), and ciphertext space C(λ):

• KeyGen(1λ)→ (pk, sk): A PPT algorithm that takes the security para-
meter λ as an input and outputs a public- and secret key-pair (pk, sk).

• Enc(pk,msg)→ ct: A PPT algorithm that takes a public key pk and a
message msg ∈M(λ) as an input and outputs a ciphertext ct.

• Dec(sk, ct)→ msg: A DPT algorithm that takes a secret key sk and a
ciphertext ct ∈ C(λ) as an input and outputs a message msg.

7

Besides completeness, i.e., that with an honestly generated key-pair, de-
cryption of an honestly generated ciphertext always outputs the original
message, PKE schemes need to satisfy IND-CPA security and key-privacy
[HKSS20].

IND-CPA security ensures that no efficient adversary should be able to
decide which message was encrypted in a ciphertext when given the used
public key without the corresponding secret key.

Lastly, key-privacy ensures that no efficient adversary should be able
to decide which public key has been used for the encryption of a given
ciphertext.

2.3.4 Trapdoor Permutations

Trapdoor permutations are permutations that can be efficiently computed
using a public key but computing its inversion is only feasible with the
corresponding secret key.

Definition 12 (Trapdoor Permutation [BS20]) A family of trapdoor per-
mutations is a tuple of three algorithms TP = (KeyGen,F,F−1):

• KeyGen(1λ)→ (pk, sk) A PPT algorithm that takes the security para-
meter λ as an input and outputs a public- and secret key-pair (pk, sk).

• F(pk, x) → y A bijective DPT algorithm or permutation that takes a
public key and an arbitrary value x as input and outputs a value y on
the same domain.

• F−1(sk, y)→ x The bijective DPT inverting algorithm of F that inputs
a secret key sk and a value y and outputs x s.t. for a given valid
key-pair (pk, sk) from Gen it holds that y = F(pk, x).

The important property is that without knowledge of the trapdoor, i.e.,
the secret key sk, F forms a one-way permutation. With knowledge of the
trapdoor, however, the inversion F−1 can be calculated efficiently.

2.3.5 Trapdoor Commitments

Trapdoor commitments allow computing binding commitments using a pub-
lic key, while with the usage of a corresponding secret key, it is possible to
change a commitment afterward.

Definition 13 (Trapdoor Commitment [HS20]) A trapdoor commitment
scheme is a tuple of five algorithms TC = (Setup,KeyGen,Com,TCom,TOpen,
VerifyOpen):

• Setup(1λ)→ pp: A PPT algorithm that takes the security parameter λ
as an input and returns the public parameters pp.

8

• KeyGen(pp)→ (pk, τ): A PPT algorithm that takes as input the public
parameters pp and outputs a public key pk and a trapdoor τ .

• Com(pk,msg)→ (c, op): A PPT algorithm that takes as inputs a public
key pk and a message msg and returns a commitment c on msg and
an opening op.

• TCom(pk, τ)→ (state, c): A PPT algorithm that takes a public key pk,
a trapdoor τ as an input and outputs a state state and a counterfeit
commitment c.

• TOpen(τ, state, c,msg) → op: A PPT algorithm that that takes as
input a trapdoor τ , a state state, a commitment c, and a message msg
and returns a corresponding opening op.

• VerifyOpen(pk, c, op,msg) → {0, 1}: A DPT algorithm that returns 1
if the given commitment c opens to the message msg using the auxiliary
opening information op under the public key pk and 0, otherwise.

A trapdoor commitment scheme must fulfill the security properties com-
pleteness, hiding, binding, and trapdoor indistinguishability [HS20]. Com-
pleteness requires that an honestly generated commitment and opening al-
ways verifies under the committed message. Hiding requires that without
the opening, the commitment itself does not reveal anything about the mes-
sage. Without knowledge of the trapdoor, a commitment should be binding,
meaning that it is not possible to change the message of a commitment af-
ter it has been created. Lastly, when opening a commitment, it should be
indistinguishable whether it was a counterfeit commitment generated with
a trapdoor or a regular commitment without any trapdoor.

2.3.6 Accumulators

A (static) cryptographic accumulator ACC [BdM94] provides a compact rep-
resentation of a finite set X = {x1, . . . , xn} and allows to prove membership
of an element to this set using this accumulator, while it should be infeasible
to create a valid witness for an non-accumulated element.

Definition 14 (Accumulator [DHS15, MHOY20]) An accumulator over
a domain D consists of a tuple of four algorithms ACC = (Setup,Eval,Wit,Verify):

• Setup(1λ) → pp: A PPT algorithm that takes as input the security
parameter λ and returns the public parameters pp.

• Evalpp(X)→ accX : A DPT or PPT algorithm that takes a set X ⊆ D
as input and returns the corresponding accumulator accX .

9

• Witpp(accX , x) → {witx,⊥}: A DPT or PPT algorithm that takes the
accumulator accX and an element x as input and creates a witness wx
proving that x is accumulated by accX or outputs ⊥ if x /∈ X .

• Verifypp(accX , witx, x)→ {1, 0}: A DPT algorithm that takes the accu-
mulator accX , a witness witx, and an element x as input and outputs
1 if witx is a valid witness proving that x ∈ X holds and 0 otherwise.

2.3.7 Verifiable Random Functions

A verifiable random function (VRF), introduced by Micali et al. [MVR99],
is a pseudo-random function where the owner of a secret key can create a
publicly verifiable proof about the correctness of its evaluation.

Definition 15 (Verifiable Random Function [HKSS20]) A verifiable
random function is a tuple of four algorithms VRF = (Gen,Eval,Prove,Verify):

• KeyGen(1λ) → (vk, sk): A PPT algorithm that takes the security pa-
rameter λ as an input and outputs a verification key vk and a secret
key sk.

• Eval(sk, x) → y: A DPT algorithm that takes a secret key sk and a
value x ∈ {0, 1}a(λ) as an input and outputs a value y ∈ {0, 1}b(λ).
Where a(λ) and b(λ) are polynomially bounded and efficiently com-
putable functions in λ.

• Prove(sk, x)→ π: A PPT algorithm that takes a secret key sk and an
input value x as an input and outputs a proof π.

• Verify(vk, x, y, π) → {0, 1}: A DPT algorithm that outputs 1 if the
proof π proves that the value y is the correct output for the input value
x under the verification key vk and 0 otherwise.

Two important properties that a VRF should fulfill are pseudorandom-
ness and key-privacy. Intuitively, pseudorandomness means that no efficient
adversary should be able to distinguish between outputs of a PRF from
uniform. Secondly, key-privacy ensures that when having only the output
without the proof, no efficient adversary should be able to tell for which
verification key the output was computed for.

2.3.8 Somewhere Perfectly Binding Hashing

A somewhere statistically binding hash, introduced by Hubáček and Wichs
[HW15], allows committing to a database using a hashing key, which is sta-
tistically binding at a hidden position. Backes et al. [BDH+19] modified
this primitive to somewhere perfectly binding hashing with private local open-
ing, where one can open its commitment at individual positions using secret
hashing keys.

10

Definition 16 (Somewhere Perfectly Binding Hash [HKSS20]) A some-
where perfectly binding hash with private local opening is a tuple of four
algorithms SPB = (Gen,Hash,Open,Verify):

• KeyGen(1λ, n, ind)→ (hk, shk): A PPT algorithm that takes the secu-
rity parameter λ, a maximum database size n, and an index ind as an
input and outputs a hashing key hk and a secret hashing key shk.

• Hash(hk, db) → h: A DPT algorithm that takes a hashing key hk and
a database db as an input and outputs a digest h.

• Open(hk, shk, db, j) → wit: A DPT or PPT algorithm that takes a
hashing key hk, a secret hashing key shk, a database, and an index j
as an input and outputs a witness wit.

• Verify(hk, h, j, x, wit)→ {0, 1}: A DPT algorithm that outputs 1 if wit
witnesses that the preimage of h has the value x at index j under the
hashing key hk, i.e., dbj = x, and 0 otherwise.

A SPB scheme is somewhere perfectly binding if it holds that when veri-
fication succeeds for an index ind and a value x, all valid openings also open
to x at the same index ind. Furthermore, SPB needs to be index-hiding,
which ensures that no efficient adversary should be able to determine the
index ind from a public hashing key hk.

2.3.9 Zero-Knowledge Proofs

With a zero-knowledge proof (ZKP) a prover P can convince a verifier V that
it knows a witness wit for an NP statement φ satisfying a relation R, that
is (φ,wit) ∈ R, but without the verifier getting any further knowledge than
the validity of the statement.

While zero-knowledge proofs provide unconditional or statistical sound-
ness, i.e., even infinitely powerful adversaries should be unable to create
a proof for a wrong statement, zero-knowledge arguments (computation-
ally sound proofs) only provide computational soundness, so its soundness-
breaking property is only limited to PPT adversaries.

Furthermore, we differentiate between interactive and non-interactive
proof or argument systems, depending whether the prover P needs to com-
municate with the verifier V in order to convince V over its statement or if
P can create the proof/argument on its own.

For instance, a non-interactive zero-knowledge arguments of knowledge
(NIZKAoK) scheme can be defined as follows:

Definition 17 (NIZKAoK [GM17, MHOY20]) A NIZKAoK scheme con-
sists of a tuple of four algorithms, namely (Setup,Prove,Verify, SimProve):

11

• Setup(1λ,R) :→ (crs, τ) A PPT algorithm that takes the security para-
meter λ and a relation R as input and returns the common reference
string crs and a simulation trapdoor τ .

• Prove(crs, φ, wit)→ π: A PPT algorithm that takes the common refer-
ence string crs, a statement φ, and a witness wit as input and returns
a corresponding proof π s.t. (φ,wit) ∈ R.

• Verify(crs, φ, π)→ {0, 1}: A DPT algorithm that on input the common
reference string crs, a statement φ and a proof π returns 1, if π proves
that there exists a witness wit s.t. (φ,wit) ∈ R holds and 0 otherwise.

• SimProve(crs, τ, φ) → π: A PPT algorithm that inputs the common
reference string crs, the simulation trapdoor τ , and a statement φ and
outputs a simulated proof π.

A NIZKAoK scheme is secure if it satisfies correctness, i.e. an honestly
created proof verifies, knowledge-soundness, zero-knowledge, and simulation-
extractability. While knowledge-soundness requires that one can always ex-
tract a valid witness from a verifying proof, simulation-extractability is a
stronger property where this extraction should even hold if the adversary
has access to a simulation oracle. Lastly, the zero-knowledge property for
NIZKAoK and non-interactive zero-knowledge proofs of knowledge (NIZK)
holds if no PPT adversary can distinguish between an honest and simulated
proof, created by Prove and SimProve, respectively.

Another variant of zero-knowledge proofs are non-interactive witness-
indistinguishable proofs (NIWI) proposed by Feige and Shamir [FS90], which
need to fulfill the properties (perfect) completeness, perfect-soundness, and
witness-indistinguishability [HKSS20]. Perfect-soundness states, similarly
as knowledge-soundness, that it should be impossible to create a verifying
proof for a false statement. Witness-indistinguishability is the weakened
alternative to zero-knowledge and requires that, given two valid witnesses
for a statement, an efficient adversary should not be able to decide which of
them has eventually been used to compute a proof.

For interactive zero-knowledge proofs or arguments of knowledge, one
often shows that for every verifier V, there exists a simulator SimV, only in
possession of the statement φ without the witness w, who can reproduce a
communication transcript that is indistinguishable from one resulted from
an actual communication between an honest verifier and a prover. If this
zero-knowledge condition only holds for honest verifiers, since it could reveal
some information to a cheating verifier, we denote this relaxation as honest
verifier zero-knowledge (HVZK).

12

2.3.10 Shamir’s Secret Sharing

In general, a (t,N)-threshold secret sharing scheme allows to share a secret
S over a group of N parties using N shares Si such that a subgroup of a
certain number t is able to recover the secret using their shares, but any
group with fewer than t shares should learn nothing about S.

Shamir’s secret sharing scheme [Sha79] is based on polynomial interpola-
tion; to share a secret S ∈ GF (q) with q > N in a (t,N)-threshold manner,
we construct a polynomial of degree t− 1:

p(x) = a0 + a1x+ a2x
2 + . . .+ at−1x

t−1

with the coefficients set to a0 = S and to random values for ai←$GF (q)
with 0 < i ≤ t − 1. We then distribute the shares Si for the N parties by
evaluating the polynomial:

S1 = p(1), . . . , Si = p(i), . . . , SN = p(N)

Using polynomial interpolation, any group of t parties can reconstruct p(x)
with their shares Si and eventually get the secret by evaluating S = p(0).
However, having only knowledge over t− 1 shares, for each possible value of
the last missing share S′, every interpolated polynomial is equally likely to
be the correct one; thus, one learns nothing about the actual secret S.

3 Threshold Ring Signature Definitions

3.1 Threshold Ring Signature Definition

A t-out-of-N threshold ring (thring) signature σ on a message msg is created
by t distinct signers SI with their corresponding secret keys S = {ski}i∈SI
with respect to a ring R of size N , which includes, among N − t others, the
public keys of the signers. A verifier can then be convinced that at least t
parties among the ring R have created the signature, but without learning
any further details about this subgroup.

Definition 18 (Threshold Ring Signature) A (t,N)-threshold ring sig-
nature scheme consists of a tuple of four algorithms TRS = (Setup, KeyGen,
Sign, Verify):

• Setup(1λ)→ pp: A PPT algorithm that takes the security parameter λ
as an input and outputs the public parameters pp.

• KeyGen(pp)→ (pki, ski): A PPT algorithm that takes the public para-
meters as an input and outputs a public and secret key-pair for party
i.

13

• Signpp(msg,R,S) → σ: A possibly interactive PPT algorithm that
takes as inputs a message msg ∈ {0, 1}∗, a list of public keys R =
(pki)i∈RI with RI ⊆ U and |RI| = N , and a set of secret keys S =
{ski}i∈SI with SI ⊆ RI and |SI| = t, whose corresponding public keys
are contained in R, and outputs a signature σ.

• Verifypp(msg,R, σ)→ {0, 1}:: A DPT algorithm that outputs 1, if the
signature σ is a correct (t,N)-threshold ring signature on msg w.r.t.
the ring R and 0 otherwise.

The signing phase of a TRS scheme is said to be interactive, if the t
signers have to communicate with each other in order to form the signature.
In schemes where the signing process is non-interactive, the Sign algorithm is
often split into two methods, namely Sign and CombiSign. The first method
Sign expects only a single secret key ski rather than the set S, so each signer
independently creates a signature σi using its own secret key ski. Finally,
any party can combine the t signatures {σi}i∈SI using CombiSign to a single
(t,N)-TRS signature.

3.2 Linkable Threshold Ring Signature Definition

Linkable threshold ring signatures were first introduced by Liu et al. [LWW04]
and allow to determine if two signatures are linked , meaning that they were
signed by the same signer (group) with respect to the same ring.

As in [TWC+05], we denote the linkability of a scheme as group-oriented
if this criterion only depends on the ring, and as event-oriented if it considers
the ”event,” the signature has been created for (in the form of an event-
id or dependent on the message). Furthermore, we denote the linkability
as coalition-linkable if the entire signer group has to be the same and as
individual-linkable if it suffices that they include a single common signer.
While non-accusatory linkability only detects whether different signatures
are linked, accusatory linkability also reveals the identity of the signer of
those linked signatures. Lastly, non-slanderability or unframeability ensures
that no adversary can create a signature that seems to be linked to an honest
user’s signature.

Definition 19 (Linkable Threshold Ring Signature) A linkable thresh-
old ring signature scheme consists of a tuple of five algorithms LTRS =
(Setup, KeyGen, Sign, Verify, Link). The first four algorithms are syntac-
tically the same as for unlinkable TRS, expect for Sign, which might also
expect an event-id e for event-oriented schemes. Therefore, the only new
algorithm to define is Link:

• Linkpp(σ1, σ2) → {0, 1} A DPT algorithm that outputs 1, if the two
given signatures σ1, σ2 are linked and 0 otherwise. In case of ac-

14

cusatory linkable schemes, it also outputs the public key(s) {pki} of
the detected ”double-signer(s)”.

3.2.1 Traceable Threshold Ring Signature

Traceable threshold ring signatures, introduced by Fujisaki et al. [FS07],
are a nonce-based modification of linkable ring signatures, where one always
includes a nonce or tag in the signing- and verification algorithm, so two
signatures on the same message are only linked if the same signer signed
twice using the same nonce. If a signer signs a different message using the
same nonce, its identity is revealed.

Therefore, we consider traceable thring signature schemes as event-oriented
and accusatory linkable thring signature schemes.

3.3 Threshold Ring Signature Security Definitions

A threshold ring signature scheme is secure, if it fulfills the properties cor-
rectness, unforgeability, and anonymity [MHOY20]. Note that the terms
anonymity, source-hiding, or signer ambiguous are synonymous. Before
providing the according definitions, we introduce three oracles, which the
adversary A can query:

• SO(msg,R,SI): Given a message msg a ring R of size N , and a signer
set SI, the signing oracle SO returns a correctly generated signature
σ ← Signpp(msg,R,S = {sk}i∈SI) and updates the set of signing
queries Qsign = Qsign ∪ (msg,R)

• CO(pki): Given a public key pki with i ∈ U , the corruption oracle
CO returns the corresponding secret key ski and updates the set of
corruption queries Qcorr = Qcorr ∪ i if i /∈ Qcorr.

• JO(pk, sk): Given a public key pk and a secret key sk, the joining
oracle JO adds this key-pair to the system, provided the public key
is new, and returns the new corresponding index i′ ∈ U . Additionally,
it updates the set of corruption queries Qcorr = Qcorr ∪ i′.

If the adversary is granted access to the joining oracle JO in the security
games of a thring signature scheme, and is thus able of adding potentially
maliciously created keys, the scheme achieves anonymity w.r.t adversarially-
chosen keys as proposed by [BKM06].

Furthermore, if it allows the adversary to participate in signing compu-
tations with other honest signers, such that A could potentially infer some
knowledge allowing it to identify them in another signature, the scheme is
secure against the presence of active adversaries [HS20].

Although some schemes may also satisfy these stronger definitions with-
out any or just little modifications, if the authors did not explicitly consider

15

these scenarios, we assume them as being not as secure in these stronger
and more realistic scenarios.

Definition 20 (Correctness [MHOY20]) A (t,N)-TRS scheme is cor-
rect, if for all security parameters λ ∈ N, all messages msg ∈ {1, 0}∗, and
all ring- and signer sets s.t. SI ⊆ RI ⊆ U , the following holds:

Pr


pp← Setup(1λ),
{(pki, ski)← KeyGen(pp)}i∈RI,
σ ← Signpp(msg,R,S) :

Verifypp(msg,R, σ) = 1

 = 1

Intuitively, correctness or completeness requires that an honestly generated
signature verifies, i.e., the Verify algorithm outputs 1.

Definition 21 (Unforgeability [HS20]) A (t,N)-TRS scheme is existen-
tially unforgeable under a chosen message attack if no PPT adversary A has
a non-negligible probability of winning the following game UnforgeTRSA (λ):

1. The challenger C chooses a security parameter λ and initializes the
public parameters pp← Setup(1λ).

2. The adversary A is given access to the signing oracle SO and the
corruption oracle CO and may query them according to any adaptive
strategy.

3. A outputs (msg∗,R, σ∗), corresponding to a (t,N)-threshold ring sig-
nature σ∗ on a message msg∗ w.r.t. to a ring R.

4. A wins if R = (pki)i∈RI with RI ⊆ U ∧ |RI| = N , the signature σ∗ is
a valid (t,N)-threshold ring signature, i.e., Verifypp(msg

∗,R, σ∗) = 1,
(msg∗,R) /∈ Qsign, and |Qcorr ∩RI| < t.

An adversary A is said to (τ, qs, qc, ε)-break the unforgeability if within run-
ning time τ , A wins the game UnforgeTRSA (λ) with probability ε after qs many
SO queries and qc many CO queries have been issued [AMCG08].

Definition 22 (Computational Anonymity [HS20]) A (t,N)-TRS scheme
is computational anonymous if every PPT adversary A has the following
probability of winning the game AnonTRSA (λ):

Pr
[
A wins AnonTRSA (λ)

]
≤ 1

2
+ negl(λ)

With negl(λ) being a negligible function and AnonTRSA (λ) denoting the fol-
lowing game:

1. The same as Step 1 in UnforgeTRSA (λ).

16

2. The same as Step 2 in UnforgeTRSA (λ).

3. The adversary A sends a message msg∗, a ring R ⊆ U , and two signer-
indices sets SI∗0,SI∗1 ⊆ RI, where |SI∗0| = |SI∗1| = t to the challenger
C.

4. The challenger C selects a random bit b←$ {0, 1} and sends the signa-
ture σ∗ ← Signpp(msg

∗,R, S∗b) with S∗b = {ski}i∈SI∗b to A.

5. A outputs a bit b
′

and wins if b
′

= b and SI∗0 ∪ SI∗1 ∩Qcorr = ∅.
For linkable schemes it can be further required that no unique signer
of the two sets SI∗0, SI∗1 was included in a query to SO.

If the adversary A also has access to the joining oracle JO in addition to
the signing oracle SO and corruption oracle CO, the scheme is anonymous
w.r.t adversarially-chosen keys.

Finally, an adversary A is said to (τ, qs, qc, qj , ε)-break the anonymity if
within running time τ , A wins the game AnonTRS

A (λ) with probability ε after
qs many SO queries, qc many CO queries, and qj many JO queries have
been issued.

Definition 23 (Unconditional Anonymity) A (t,N)-TRS scheme is un-
conditionally anonymous if Definition 22 holds with the modifications that
the adversary A is computational unbounded and the requirement in Step 5
of the AnonTRSA (λ) game, SI∗0 ∪ SI∗1 ∩Qcorr = ∅, is removed.

Intuitively, anonymity for (t,N)-threshold ring signatures means, that
for a given signature σ and the corresponding ring R, an adversary A cannot
determine which subgroup of size t among the N ring members has created
the signature.

Computational anonymity is often limited to the fact that A does not
have the secret keys for the possible signer subsets, which it could use to
check its guesses, or the anonymity relies on a problem that is assumed to
be hard.

Unconditional anonymity is a stronger notion in which a computationally
unbounded adversary A, who is therefore also able to compute all secret
keys and try out all random values possibly used for the signature, should
also have no better chance of identifying the actual signers than randomly
guessing.

Note that an adversary does not necessarily need to be computation-
ally unbounded but could also get in possession of all secret keys because,
e.g., the underlying public-key cryptography has been broken or a trusted
authority responsible for the key-generation has been corrupted.

Another way to define unconditional anonymity is by constructing a PPT
simulation Simulatepp(msg,R,SRI\{i}), where SRI\{i} denotes the set of all

17

Interactive Signing Non-Interactive Signing

TA-Dependent TA-Independent

Linkable Unlinkable

Group-Oriented Event-Oriented

Individual-La. Coalition-La.

Accusatory Non-Accusatory

Figure 1: Classification of threshold ring signatures.

ring members’ secret keys except the one from party i, that simulates the
signing process [DV09, AMCG08]. For an unconditionally anonymous TRS
scheme it then should hold that for any ring R, any signer subset SI, and
any signer u ∈ SI, there exists a random sequence such that:

Simulatepp(msg,R,SRI\{u}) = Signpp(msg,R,S)

Intuitively, it should be possible to create two identical signatures but cre-
ated by different signer subgroups, e.g., the simulation swaps the role of a
previous non-signer with a signer of a given signature.

3.4 Classification

As shown in Figure 1, we classify thring signature schemes along three axes;
interactive signing (IS) vs. non-interactive signing (NIS), TA-dependent
(TAD) vs. TA-independent (TAI), and linkable (LA) vs. unlinkable (ULA).
Linkable ring signatures are again divided into group-oriented vs. event-
oriented, accusatory vs. non-accusatory, and individual-linkable vs. coalition-
linkable as proposed by [TWC+05].
IS vs. NIS: The first distinction depends on whether the signers have to
interact and cooperate during the signing process or if each signer can create
a signature on its own and any third party can combine them later on.
TAD vs. TAI: If some form of a trusted authority or trusted third party
is needed in order to create a signature, we call this signing process TA-
dependent, otherwise TA-independent. Note that a signing phase can be
non-interactive (among the signers), but each signer still has to communi-
cate with a trusted authority.
LA vs. ULA: Last but not least, thring signatures can provide linkabil-
ity or unlinkability. For linkable signatures, we follow the classification by

18

[TWC+05] and distinguish between group-oriented schemes, where the linka-
bility property only depends on the signer group, and event-oriented schemes
where it further considers the ”event” the signature was created for. If it
suffices that only a single signer signs twice with respect to the same ring
independently of the other co-signers, we denote them as individual-linkable
and otherwise as coalition-linkable. Additionally, if linked signatures also
reveal the identities of the signers, we denote them as accusatory and oth-
erwise as non-accusatory.

3.4.1 Considerations regarding Anonymity

IS vs. NIS: Regarding anonymity, in schemes with an interactive signing
process, the signers have to trust each other because a corrupt signer could
betray the other honest signers by, e.g., disclosing their communication,
which could prove their cooperation of signing. Of course, this attack-type
of deanonymization by corrupt co-signers or active adversaries does not ap-
ply to non-interactive schemes.
TAD vs. TAI: For TA-dependent signing protocols, the trusted author-
ity can be considered as a single point of failure; if the trusted authority
gets corrupted, in the worst case, no one can create signatures anymore and
all secret keys are revealed. Depending on its role and influence in specific
schemes, it can be able to revocate the signers’ anonymity. While the spon-
taneity property of ring signatures still holds, i.e., signers can still freely
select the ring of public keys, such a revocation property can be seen as a
violation of the original idea behind ring signatures by Rivest et al. [RST01].
LA vs. ULA: Linkable thring signatures intentionally restrict the signers’
anonymity to detect if the same group of signers signed more than once,
which can be useful for applications such as e-voting. However, it is impor-
tant to emphasize that all linkable schemes are culpable, which means that
the actual signer group can confirm that it has created a given signature by
creating another signature that is linked to the given one. Analogously, a
group of non-signers can prove the opposite for themselves.

While this anonymity restricting property does not apply to unlinkable
thring signatures, they can still provide claimability, meaning that signers
have the possibility of proving that they are the creators of a signature or
that a party didn’t sign [LWW04]. To do so, the signers could reveal the
seeds with which they pseudo-randomly generated the non-signer parts of
the signature, which proves that they have generated the signature and that
the non-signers indeed did not participate in the singing process [RST01].
The crucial difference remains that claimability gives the signers only the
possibility of claiming their signature by choice, while for culpable schemes
the signers and non-signers can be identified by breaking the scheme’s un-
derlying hardness assumption.

Following this fact, all linkable thring signatures can only provide com-

19

putational anonymity. Because as soon as an adversary computed the secret
key(s) of a possible signer or a signer subset for a given signature, depending
on if it is individual- or coalition linkable, it can verify its guess by creating
a signature on its own and checking if they are linked. Furthermore, we
can consider the linkability properties group-oriented, individual-linkable,
and accusatory as most anonymity restrictive. Those signatures are already
linked if a single signer signs twice, regardless of the other co-signers or the
event/message the signature has been created for, and additionally reveals
the signer’s identity.

20

4 Construction with Secret Sharing

The main idea of using Shamir’s secret sharing for constructing (t,N)-thring
signatures is to prove that at least t out of N parties have used their secret
key in order to compute their shares for a polynomial interpolated by N − t
shares belonging to the non-signers.

We observe two commonly used variants of implementing Shamir’s secret
sharing for thring signatures: In both variants, a polynomial f is interpo-
lated by N − t random shares for the non-signers (plus one initial point),
and afterward, the signers evaluate this polynomial and make use of their
secret keys to receive their own valid shares of the signature.

In the first variant, the non-signers’ shares are generated using a trapdoor
permutation, and after the polynomial that passes through those shares has
been interpolated, the signers evaluate it and compute their own shares by
inverting their trapdoor permutations with their secret keys.

In the second variant, all shares are randomly sampled beforehand and
committed to a hash for the polynomial’s initial point. f(0). This initial
point and the other N − t shares of the non-signers are used to interpolate
the polynomial. Since the output of the random oracle (the hash function) is
unpredictable and thus not known in advance, it is ensured that all shares are
”fixed,” so the signers cannot choose their shares after the interpolation of f .
Therefore, the signers need to adjust other values that are connected to these
fixed shares using their secret keys and the evaluation of the polynomial.

This construction hides the signers in a way that any polynomial of
degree N + t can be interpolated by N − t + 1 points, and if all points
are randomly chosen independently of the signer group, the polynomial and
all resulting shares do not reveal any information about the signers behind
the signature. Furthermore, it is obviously not possible to tell which of the
N shares were used to interpolate the polynomial or have been obtained
afterward by evaluating it and thus belonging to the signers.

4.1 Linkable Variants

There currently does not exist any linkable thring signature scheme that
constructs the signature using Shamir’s secret sharing to the best of our
knowledge. Even though it may be possible to design a linkable scheme with
Shamir’s secret sharing, this construction type is not reasonable for linkable
scenarios. The linkability is mostly used to ensure that indeed t-out-of-
N distinct signers have created a signature; with Shamir’s secret sharing,
however, this criterion can be readily ensured while remaining unlinkable.

21

4.2 Unlinkable Variants

4.2.1 Based on Trapdoor Permutations

As an exemplary thring signature scheme that uses Shamir’s secret sharing
in the first variant, we examine the first scheme proposed by Bresson et
al. [BSS02] based on RSA, the random oracle model, and the ideal cipher
model.

The random permutation under the ideal cipher model is denoted with
Ek,i, with the additional parameter i acting as an index. The trapdoor per-
mutation TP is instantiated with an extended RSA trapdoor permutation,
which ensures the efficient combination of unique RSA keys with different
moduli Ni.

Then, if a group of t signers SI want to sign a message msg w.r.t. a ring
R = (pki)i∈RI, they proceed as follows:

1. k ← H(msg)
Set the symmetric key to the hash of the message msg.

2. ∀i ∈ NI : xi←$ {0, 1}l and yi ← TP.F(pki, xi)
Sample random values xi of length l for all non-signers and compute
yi using the trapdoor permutation TP.F in the forward direction.

3. Compute the polynomial f ∈ GF (2l) s.t.
deg(f) = N − t, f(0) = y0 = H(R), ∀i ∈ NI : f(i) = Ek,i(yi)

4. ∀i ∈ SI : Set yi = f(i) and compute xi ← TP.F−1(ski, E
−1
k,i (yi))

The signers evaluate the polynomial to receive yi and make use of their
secret key to invert the TP.F and compute xi.

5. Output σ := ((xi)i∈RI, f)

The verification is straightforward: The verifier just recovers k, v, and
all yi values using xi and TP.F with pki, and finally checks if deg(f) = N−t,
f(0) = H(R), and if f(i) = Ek,i(yi) holds for all i ∈ RI.

In the same manner, the signature is constructed in the code-based
scheme by Dallot et al. [DV09]. The trapdoor permutation in their scheme
is based on a specific instance of the syndrome decoding problem. With
each non-signers’ public key, the signers can compute the syndrome of any
random word xi with which they likewise interpolate a polynomial f . Using
their secret keys, the signers can decode the syndrome that includes the
evaluation of f(i) to receive the corresponding word that weighs less than a
public set weight.

Classification Since the t signers have to cooperate with each other in
a way that, e.g., a ”leader” of the signer group creates f , sends it to the
other t − 1 signers and receives their xi values, the signing process of this

22

scheme is interactive (IS). Since no trusted authority is needed in order to
create the signature, it is TA-independent (TAI).

Anonymity For all given values xi, where each value belongs to a ring mem-
ber i ∈ RI, the polynomial f passes through the points (i, Ek,i(TP.F(pki, xi)),
and through the point (0,H(R)). Having N +1 points in total but the poly-
nomial’s degree is N − t, we know that N − t + 1 points have been used
to interpolate f and the remaining t points have been obtained through
evaluating f . Since all N − t random values yi of the non-signers and the
output of the random oracle for the initial value y0 = H(R) used for the
interpolation of f are independent of the signer group, any other polynomial
of the same degree in GF (2l) could have been obtained likewise. Due to the
trapdoor permutation TP.F, when evaluating f to receive yi ← E−1

k,i (f(i)),
one has to make use of the corresponding trapdoor ski to invert TP.F and
to compute a valid xi such that yi = TP.F(pki, xi) holds.

However, no adversary A can tell which of the N points have been re-
ceived through evaluation of the polynomial, instead of being used to inter-
polate it. That holds even if A is in possession of all the secret keys, still,
all N parties are equally likely to be one of the (non-)signers.

Similarly to [DV09], one can prove the unconditional anonymity by con-
structing a simulation Simulatepp(msg,R,SR\{u}), to which is given the set
SR\{u} containing all ring members’ secret keys except the one from party
u. It should output the same random sequence as a given signature σ but
with having swapped a signer u ∈ SI with a non-signer v ∈ NI. For this
scheme, the simulation is constructed as follows:
The key k and the initial value y0 is set to the same value, and for every
i ∈ NI ∪ {u} \ {v} there are random values such that x′i = xi, thus it
holds that y′i = yi and f ′ = f . Then, the x′i values for all i ∈ SI \ {u}
are calculated the same as in Step 4, hence x′i = xi. The last value
x′v ← TP.F−1(E−1

k,v(skv, f
′(v))) is computed by using the secret key of party

v. Finally, it holds for the simulated signature σ′ = ((x′i)i∈RI, f
′) that

σ′ := σ.
Hence, the t signers remain unconditionally anonymous among the N

other parties of the ring.

Efficiency and Signature Size Signing requires N − t forward compu-
tations and t inversions of the RSA trapdoor permutation TP.F and N
polynomial evaluations. Verification requires N forward computations of
TP.F and N polynomial evaluations. If the public exponent of RSA e is set
to 3, O(N − t) modular multiplications and O(t) modular exponentiations
are needed for signing and exactly 2N modular multiplications for verifying.

Even though the signature size is independent of t, to satisfy unforge-
ability under a chosen message attack, the authors state that the security
parameter l has to be much larger than N such that the signature size is at

23

least O
(
N2
)
.

Regarding the scheme from Dallot et al. [DV09], their signing process
requires N − t syndrome computations, N polynomial evaluations and ap-
proximately t(c!) syndrome decodings. Verifying a signature requires N + 1
polynomial evaluations and N syndrome computations.

Their signature size is in O(N) and more specifically, the authors state
that with the parameters m = 16 and c = 9, to achieve a security level of
263.3, the size is only 579N − 198t bits. As for many code-based schemes, a
downside are the large public keys, which would require 1.2 MBytes in this
case.

4.2.2 Based on Bilinear Pairings

The first identity based thring signature was presented by Chow et al.
[CHY05], which relies on the computational Diffie-Hellman problem under
the random oracle model and uses bilinear pairings.

In identity based signatures schemes every user already has a public key
without having to run a key-gen algorithm before being able to participate
in the public-key system. The public key just corresponds to the output
of a public function, e.g., a hash function, for some identifying string of a
user. When using identity based schemes for ring signatures, the spontaneity
property is ”improved” when considering real world scenarios, since every
signer can freely select public keys of parties that haven’t even intentionally
joined any public-key system by generating and publishing their public keys.
However, this approach requires a trusted authority from which every user
has to request their secret key if they want to create a signature.

The scheme operates on two groups G1 and G2 of order q as defined
for bilinear pairings 10 and uses two hash functions H : {0, 1}∗ → G1 and
H0 : {0, 1}∗ → Z∗q . In G1, the CDHP needs to be hard but the DDHP should
be efficiently solvable, e.g., as on a specific elliptic curve. With a generator
point P of G1, the master secret key of the trusted authority is a random
value skTA←$Z∗q and the public key corresponds to PKTA = P · skTA. A
public key of a party with identity ID is of the form PKID = H(ID) and
the secret key equals SKID = H(ID) · skTA.

The signing process for a message msg is of the second variant and works
as follows:

1. ∀i ∈ NI : zi, yi←$Z∗q and compute Ui ← ziP − yiPKTA and Vi ←
ziPKIDi .

2. ∀i ∈ SI : ri←$Z∗q and compute Ui ← riP .

3. Set y0 ← H0(R, t,msg,
⋃N
k=1{Uk}) and interpolate the polynomial f ∈

GF (q) s.t. deg(f) = N − t, f(0) = y0, ∀i ∈ NI : f(i) = yi.

24

4. ∀i ∈ SI : Set yi ← f(i) and compute Vi ← riPKIDi + yiSKIDi .

5. Output σ := (
⋃N
k=1{Uk},

∑N
k=1 Vk, f).

To verify a given signature σ, the verifier checks if deg(f) = N − t,
f(0) = H0(R, t,msg,

⋃N
k=1{Uk}), and if the following equation holds with

the use of a bilinear pairing ê:

N∏
k=1

ê(PKIDk , Uk + f(k)PKTA) = ê(P,
N∑
k=1

Vk)

Classification The signing process is interactive (IS) and TA-dependent
(TAD) since one need to request a secret key from the trusted authority
before being able to sign.

Anonymity Similarly to 4.2.1, all non-signers’ values yi used to interpo-
late the polynomial f are randomly generated and the initial point y0 is the
output of a random oracle, the resulting polynomial f can be considered as
chosen randomly from all polynomials of degree N − t over Zq. Thus, the
evaluated values yi for i ∈ SI are random as well and since all zi, ri values
are also randomly generated and independent from SKIDi , the distribution
of the final signature {

⋃N
k=1{Uk},

∑N
k=1 Vk, f} is uniformly distributed and

independent of the signer set for any message msg and ring R. Following
this observation, this scheme also provides unconditional anonymity.

Even if an adversary would get in possession of the master secret key
skTA of the trusted authority, and thus can compute every party’s secret
key, the adversary still had no better chance of determining the signer set
than just randomly guessing. The only risk that would remain is that the
trusted authority itself is corrupt or gets corrupted and logs all secret key
requests; if then a valid signature appears, where N − t parties of the ring
have never requested their secret key, the trusted authority can immediately
infer the signer group.

Efficiency and Signature Size Signing requires 3N group multiplications
and N polynomial evaluations. Verification requires O(N) group multipli-
cations, N polynomial evaluations, and N pairing operations, which are still
rather expensive, according to the authors.

Lastly, the signature size is O(N).

4.2.3 Based on Trapdoor Commitments

Haque and Scafuro [HS20] presented a post-quantum secure thring signa-
ture based on trapdoor commitments, which holds under the quantum ran-
dom oracle model (QROM) and is secure against active adversaries and
adversarially-chosen public keys.

25

Here, the public- and secret key-pair (pki, ski) of a party i ∈ U corre-
sponds to the output of the KeyGen algorithm of a trapdoor commitment
scheme TC such that pki equals to the public key for TC and the secret key
equals to the according trapdoor ski = τ .

The main idea of the signing process is of the second variant and works
as follows for a message msg over some field F with respect to a ring R:

1. ∀i ∈ NI : yi←$F and (ci, opi)← Com(pki, yi).
Sample random values yi for all non-signers and create a commitment
ci under pki to it.

2. ∀i ∈ SI : (statei, ci)← TCom(pki, ski).
Every signer creates a trapdoor commitment ci.

3. Set z0 ← H(msg, c1, . . . , cN) and interpolate the polynomial f s.t.
deg(f) = N − t, f(0) = z0, ∀i ∈ NI : f(i) = yi.

4. ∀i ∈ SI : yi = f(i) and compute opi ← TOpen(ski, statei, ci, yi).
The signers evaluate f to receive yi and use their trapdoor ski to
compute an opening opi such that ci opens to yi.

5. Output σ := ((ci, yi, opi)i∈RI)

However, this construction cannot be proven to be unforgeable under the
quantum oracle model. To reduce the unforgeability to the commitment’s
binding property, one would classically rewind the adversary and adapt the
random oracle so that it produces two openings for the same commitment
of a non-signer; but this form of extraction is not guaranteed to work for
adversaries having quantum access to the random oracle. This is why the
authors applied the Unruh [Unr15] transformation and achieved ”on-line ex-
tractability” for the unforgeability proof, i.e., all needed outputs are already
contained in the signature, so there is no need of rewinding the adversary.
Rather than having a single polynomial f , now there are m possible ini-
tial points z0, . . . , zm resulting in m different polynomials that should be
interpolated by the same single set of commitments com = (ci, . . . , cN).
Therefore, the signers have to create m sets of openings, where the non-
signer openings are still the same but their own openings are adjusted to
the respective polynomial fj with 1 ≤ j ≤ m. All these openings are en-
crypted using a random one-way permutation G with a random salt ri to
(gi, . . . , gN) for each point zj . Yet, only one set of openings is revealed using
a random oracle with J = H1(msg, com, (gi,j)i∈RI,j∈[m]), where H1 maps to
[m]. This process is repeated K times to increase the probability of extrac-
tion, so that we have K ”lines” of commitments with each of them having
m rows of possible openings (includes yi, opi, and ri), whereas only one
row will be revealed. The final signature then consists of σ = (σk)

K
k=1 with

σk = ({(cki , yki,Jk , op
k
i,Jk

, rki,Jk)}Ni=1, (gki,j)i∈RI, j∈[m]).

26

A signature σ on a message msg w.r.t a ring R is valid if the following
checks pass for 1 ≤ k ≤ K:

• ∀i ∈ RI : VerifyOpen(pki, c
k
i , op

k
i,Jk

, yki,Jk) = 1

• For comk = (cki)i∈RI, J
k ← H(msg, comk, (gi,j)i∈RI,j∈[m]), and

zkJk ← H1(msg, comk, Jk) it holds ∀i ∈ RI : gki,Ji = G(yki,Jk‖op
k
i,Jk
‖rki,Jk)

• For the polynomial f defined by (0, zkJk) and N − t (i, yki,Jk) values it

holds that deg(f) ≤ N − t and ∀i ∈ RI : f(i) = yki,Jk

Classification The signing process is interactive (IS) and TA-independent
(TAI).

Anonymity First of all, as in 4.2.1, the polynomial f or rather the given
points (0, zkJk) and (i, yki,Jk) for i ∈ RI are randomly distributed over F
independent of the signer group and thus perfectly hide the signers.

Nevertheless, an adversary A can deanonymize the signers if G is not
hiding and thus enables A to learn about its preimages or if A can break
the trapdoor indistinguishability of the underlying trapdoor commitment
scheme TC.

For the first case, note that for 1 ≤ j ≤ m the encryptions (gki,j) with

gki,j = G(yki,j‖opki,j‖rki,j) always contain the same openings for the non-signers,

whereas the signer openings differ so that they open the commitment cki
to the correct point yki,j for the polynomial fj,k with the constant term of
zj,k. Hence, if G is not hiding and an adversary A can eventually infer the
preimages of the given encryptions (gki,j), it can identify the signers and
non-signers by observing which openings differ and which stay the same.

Assuming the permutation G is hiding, the anonymity of this scheme is
reduced to the trapdoor indistinguishability. This follows from the fact that
all non-signer commitments are created ”honestly” without a trapdoor and
all signer commitments are trapdoor commitments so that they can adjust
their openings after the polynomial interpolation. So, if an adversary is able
to distinguish honest and trapdoor commitments, it can deanonymize the
signers of any signature.

Additionally, this scheme achieves anonymity against adversarially-chosen
public keys and active adversaries by having the signers check the correct-
ness of each step during the signing phase, especially the correctness of each
received commitment.

Efficiency and Signature Size Following from the Unruh transforma-
tion, the parameters m (how many possible openings the signers have to
create) and K (how often they have to repeat the signing process) are sta-
tistical security parameters for the unforgeability of this scheme. Creating a
signature requires at least K(N − t) honest- and Kt trapdoor commitment

27

creations, KmN polynomial interpolations and t trapdoor opening com-
putations. Verification requires KN commitment verifications and KN2

polynomial evaluations.
The signature size amounts to O(KmN)

5 Construction with Ring Hashing

For this type of construction, the signature is created by ”hashing along
the ring,” where the unpredictability property of the random oracle ensures
that the ring is only possible to construct it in one direction. Therefore,
the signer is required to compute a hash in advance and to use its secret
key to adapt its share of the signature, which eventually closes the ring.
However, when considering a valid signature, each ring member’s share of
the signature equally leads to the fulfillment of the ring equations and it is
impossible to determine at which position one closed the ring.

Regarding the threshold scenario, the extension differs from linkable to
unlinkable schemes. In the case of linkable schemes, every signer just creates
a standard ring signature, such that the final thring signature consists of
the combination of these t 1-out-of-N signatures, and if all appear to be
unlinked, one can be convinced that they are indeed from t different signers.
However, other techniques are necessary for unlinkable thring signatures to
guarantee that the number of signers is above the specific threshold, such
as using fair partitions or by relying on a trusted authority.

Since this construction type relies on the random oracle, all following
schemes also require the random oracle model for their security proofs.

5.1 Linkable Variants

5.1.1 Based on the DLP

The first linkable (threshold) ring signature was presented by Liu et al.
[LWW04] in 2004, which is based on the DLP and constructs the signature
using ring hashing.

Given the cyclic group G of order q defined by the generator g, it holds
for a public- and secret key-pair (pki, ski) of party i ∈ U that pki = gski .
Additionally, the scheme utilizes two hash functions H1 : {0, 1}∗ → Zq and
H2 : {0, 1}∗ → G.

The 1-out-of-N signature of round k ∈ [t] on a message msg w.r.t to a
ring R is generated as follows by the signer is ∈ SI = {is}:

1. Compute h = H2(R) and ỹ ← hskis .

2. Set r←$Zq and compute cis+1 ← H1(R, ỹ,msg, gr, hr).

3. ∀i ∈ NI : si←$Zq and compute ci+1 ← H1(R, ỹ,msg, gsipkcii , h
si ỹci).

28

4. Compute sis ← r − skiscis mod q.

5. Output σk := (c1, (si)i∈RI, ỹ)

To verify the signature, the verifier recalculates h = H2(R) and
∀i ∈ RI : z′i ← gsipkcii , z

′′
i ← hsi ỹci and ci+1 ← H1(R, ỹ,msg, z′i, z

′′
i) if

i 6= N . Then, it checks if the final ring equation c1 = H1(R, ỹ,msg, z′N , z
′′
N)

holds.
The Link algorithm checks whether two signatures σ and σ′ are linked if

they are valid and the so-called linkability tags are equal ỹ = ỹ′.
Last but not least, the extension to a t-out-of-N signature corresponds to

the concatenation of all t 1-out-of-N signatures: σ := {σk}∈[1,t] = {σ1, . . . σt},
where all different pairs σk, σk′ need to be unlinked.

Classification Since every signer can independently create a signature and
combine it with the other signers’ signatures, the signing process is non-
interactive (NIS) and TA-independent (TAI). Additionally, it is individual
linkability is event-oriented and non-accusatory.

Anonymity We observe that every ring member’s value si is a valid share
of the resulted signature since it contributes to the fulfillment of the ring
equations. These equations are, as the name suggests, cyclic, in a way that
for every i ∈ RI the digest ci includes the previous ci−1 and si−1 as input
for the hash function. Since we assume that it is impossible to predict the
output of the hash function under the random oracle, we know that a ring
member has initially generated a digest, computed the remaining ones af-
terward, and made use of its secret key to close the ring. This ring closure
happens in Step 4 with the computation of sis using the signer’s secret key.
However, its secret key is hidden through the random value r and the ran-
dom digest cis such that sis is also randomly distributed over Zq as all other
si values. This results to t · qN variations of the final threshold signature σ
with the same probability regardless of the signer group.

Hence, when excluding the ỹ value (and thus h) created in Step 1, the
scheme would provide unconditional anonymity. Yet, the addition of ỹ (the
linkability tag) ensures linkability and reduces the anonymity to the DDHP,
and, as for all linkable schemes, to the underlying assumption of its public-
key cryptography, which is the hardness of the DLP in this case.

For a given signature σ, one can consider the public key of a ring member
pki, the h value, and ỹ as a triple (pki, h, ỹ) = (gski , gα, gαskπ). Now, if an ad-
versary A is able to break the DDHP, it can decide between (gskπ , gα, gαskπ)
and (gski , gα, gαskπ) with i 6= π, and A is therefore also able to determine
the signer of any valid signature.

Efficiency and Signature Size Creating a t-out-of-N signature requires

29

t(4N − 2) modular exponentiations and t(2N − 1) modular multiplications.
Verification requires 4tN modular exponentiations and 2tN modular multi-
plications.

The signature size results to O(tN).

5.2 Unlinkable Variants

5.2.1 Based on Trapdoor Permutations

The second thring signature scheme proposed by Bresson et al. [BSS02] is
a modification of the initial ring signature scheme by Rivest et al. [RST01],
where the permutation under ideal cipher assumption is replaced with a
hash function under the random oracle model.

The extension to threshold signatures is achieved through fair partitions.
In this scenario, a partition π = (π1, . . . , πt) of the ring indices RI is a fair
partition for the signer set SI with |SI| = t if every signer i ∈ SI belongs to
a different subset πj , which we call a sub-ring.

As in the first scheme by Bresson et al., discussed in 4.2.1, each user i ∈ U
has a RSA key-pair (pki, ski) that is used for the extended RSA trapdoor
permutation scheme TP.

The so-called combining function looks as follows:

Cv,msg(γ, y1, . . . , yN) = H(msg, yN ⊕H(msg, yN−1 ⊕ . . .H(msg, γ ⊕ y1 ⊕ v))

With a hash function H : {0, 1}∗ → {0, 1}l and each yi relating to yi =
TP.F(pki, xi) for some xi value, and γ figuring as a ”gap value.” The resulting
ring equation is verified if Cv,msg(·) = v holds.

To close such a ring, the signer is ∈ SI of a sub-ring extracts its xis =
TP.F−1(ski, yis) value with yis = C−1

is,γ,msg
(vs, (yi)i∈RI,i 6=is), which works as

follows for a given seed vs and random yi values for all non-signers:

1. Compute vis+1 ← H(msg, vs).

2. Compute ∀i ∈ NI : vi+1 ← H(msg, vi ⊕ yi).

3. Set yis ← vs ⊕ vis .
Which closes the ring: vis+1 = H(msg, vis ⊕ yis) = H(msg, vs).

Essentially, the signing process then operates on a set of partitions Π =
(π1, . . . , πp) with p = 2t logN such that for every subset of t ringer members
there exists a fair partition π for it in Π. The fair partition πs, referred to as
the signer partition because there is a signer in every sub-ring, enables the
signers to close a super-ring formed over all partitions using the gap-values.

In more detail, the signing algorithm, which includes another hash func-
tion H1 : {0, 1}∗ → {0, 1}tl, works as follows with i iterating over the ring
members, j over the sub-rings, and k over the partitions:

30

1. ∀k ∈ [p] : ∀j ∈ [t] : vkj ←$ {0, 1}l.
Sample random seeds of length l for every sub-ring of each partition.

2. For all non-signer partitions k = 1, . . . , p, k 6= s:

(a) ∀i ∈ RI : xki ←$ {0, 1}l and yki ← TP.F(pki, x
k
i)

Sample random xki values and compute yki using TP.F.

(b) ∀j ∈ [t] : zkj ← Cvkj ,msg
(0, (yki)i∈πkj (RI)) and γkj ← vkj ⊕ zkj

Simulate the sub-rings of the non-signer partition πk.

3. Set v′s←$ {0, 1}t·l and us+1 ← H1(v′s), and compute a super-ring using
the gap-values: ∀k ∈ [p], k 6= s : uk+1 = H1(uk ⊕ (γk1‖ . . . ‖γkt)).

4. Set (γs1‖ . . . ‖γst)← us ⊕ v′s
Compute the gap-values for the sub-rings of the signer partition πs.

5. For the signer partition πs:

(a) ∀i ∈ NI : xsi ←$ {0, 1}l and ysi ← TP.F(pki, x
s
i).

(b) ∀i ∈ SI: Compute ysi ← C−1
i,γsj ,msg

(vsj , (y
s
i)i∈πsj (RI)) with j s.t.

i ∈ πsj and xsi ← TP.F−1(ski, y
s
i), and update vsj ← vsj ⊕ γsj 3.

6. Set ν←$ [p] and output σ :=
(
ν, uν ,

(
xk1, . . . , x

k
N , v

k
1 , . . . v

k
t

)
i∈[p]

)
Given a signature σ, a verifier needs to recalculate all yki values and all gap-
values zkj as in Step 2b. Finally, σ is valid if the super-ring equation formed
out of those gap-values validates:

uν = H1(γν−1
1 ‖ . . . ‖γν−1

t ⊕ H1(. . .H1(γν1‖ . . . ‖γνt ⊕ uν) . . .))

Classification The scheme has an interactive signing phase (IS) and is in-
dependent of a trusted authority (TAI).

Anonymity First of all, we observe that similarly to [RST01], in each
signer’s sub-ring, all N − 1 non-signer values xi are randomly sampled out
of the set {0, 1}l. Only at the closing point is, corresponding to the signer of
this sub-ring, the last xis is uniquely determined by the inversion of the com-
bining function. Following this fact, for every signer ring πsj and for any mes-
sage msg, random seed vsj , and gap value γsj , the ring equation Cv,msg(·) = v

has (2l)(N−1) solutions all of which can be chosen independently of the signer
of this ring. Therefore, the signer remains unconditionally anonymous in its
sub-ring.

3In the paper’s description, the authors most likely forgot to update the signer seeds,
which is necessary for the super-ring equation to hold.

31

While only a single fair partition for the signers SI would reduce their
anonymity to its defined sub-rings and their possible combinations of t sign-
ers, the set Π of p fair partitions provides complete anonymity. This is due
to the fact that every possible subset of t ring members has a fair partition
in Π and thus can equally likely be the signer group who has created a given
signature.

Efficiency and Signature Size Signing and verifying requiresO
(
2tN logN

)
forward computations of the RSA trapdoor permutation TP.F, while addi-
tional t computations of its inversion TP.F−1(·) are necessary for creating a
signature. In both cases, modular exponentiations are the computationally
most expensive operations.

The signature size equals O
(
2tN logN

)
due to the fair partitions; if one

would just list all subgroups with t ring members, the size would result to(
N
t

)
= O

(
N t
)
.

5.2.2 Based on Short-Time Keys

Okamoto et al. [OTYO18] presented a ”flexible” unlinkable thring signature
scheme, where a t-out-of-N signature can be updated to a (t+ α)-out-of-N
signature without having all the previous signers to sign again.

The public and secret key-pair of a user i ∈ U corresponds to pki =
(〈gi〉, gi, pi, qi, yi,Hi, H̄i) and ski = xi with the following properties: 〈gi〉 is
a prime subgroup of Z∗pi of order qi, Hi : {0, 1}∗ → Zqi , H̄i : {0, 1}∗ → 〈gi〉
are random hash functions, and it holds for the random value xi ∈ Zqi that
yi = gxii mod pi.

A t-out-of-N signature consists of t 1-out-of-N signatures and to ensure
that they were all signed by distinct signers while providing unlinkability,
the authors make use of short-term keys. On request by the signers, the
short-time key-pairs are generated by a dealer with respect to a message
msg and a ring R as follows: Set ti←$Zqi , wi←$ {0, 1}λ s.t. wi is unique
for all ring members, and compute zi ← gtii · (H̄i(msg‖wi‖R))−1 mod pi.
Then, the short-time public key corresponds to zi and the secret key to ti,
whereas the tuple (ti, wi) is encrypted and sent to the signer i. The dealer
additionally sends the list zmsg,R = (z1, z2, . . . , zN) to the signers and saves
the history (msg,R, {ti}i∈RI, {wi}i∈RI).

After the communication with the dealer, each signer is computes its
1-out-of-N signature in a round k ∈ [t]. This signing process is similar to
the one from [LWW04] discussed in 5.1.1 and works as shown:

1. Set w ← wi, ris ←$Zqis , and compute ais ← g
ris
is

mod pis and
cis+1 ← His+1(msg‖R‖zmsg,R‖ais).

2. ∀i ∈ RI\{is}: si←$Zqi , compute ai ← zi ·H̄i(msg‖w‖R)gsiycii mod pi
and ci+1 ← Hi+1(msg‖w‖R‖zmsg,R‖ai).

32

3. Compute sis ← ris − tis − xiscis mod qis .

4. Output σk := (c1, (si)i∈RI, w) and zmsg,R.

The t-out-of-N signature then results to σ := ({σk}k∈[t], zmsg,R). If α previ-
ous non-signers want to extend it to a (t+ α)-out-of-N signature, they first
need to request their short-time keys or rather (ti, wi) from the dealer for
this specific ring R and message msg, before they can create the signatures.

To verify a signature σ, the verifier needs to check if all w values of the
1-out-of-N signatures σk are unique and if they all are valid by proceeding
as follows: For all i ∈ RI compute ai ← zi · H̄i(msg‖w‖R)gsiycii mod pi and
ci+1 ← Hi+1(msg‖w‖R‖zmsg,R‖ai), if i 6= N . Finally, the signature is valid
if c1 = H1(msg‖w‖R‖zmsg,R‖aN) holds.

Classification The signature generation is non-interactive (NIS).
Although the authors state that the requirement of their dealer is not differ-
ent from the cooperation among the signers for schemes with an interactive
signing phase, we still classify this signing process as TA-dependent (TAD).
We see it this way because no party is able to create a signature without
having to contact the dealer beforehand, who is in possession of all short-
time key-pairs of all created signatures. And when arguing that we could
consider the dealer as the cooperation among the signers or as a leader of
the signers, their scheme would then turn into a scheme with an interactive
signing phase. Also, new signers would then have first to contact the previ-
ous signers to extend the existing signature. Therefore, we consider, as do
Haque et al. [HKSS20], that this scheme requires a fully trusted authority.

Although signers cannot create another valid signature on the same mes-
sage with respect to the same ring (depending on the implementation of
the dealer), we agree with the authors that their scheme is still unlinkable.
This is because the short-time keys, which prevent signers from creating a
duplicate signature, are completely independent of a ring member’s actual
key-pair.

Anonymity This scheme provides unconditional anonymity under the short-
time secret keys {ti}i∈RI of the ring members. Since if an adversary A gets
in possession of the short-time secret keys {ti}i∈RI for a given signature
σ, e.g., by corrupting the dealer, it can tell the signers and non-signers
apart. Given a single short-time secret key t′, A can infer whether a ring
member i ∈ RI is the signer of a 1-out-of-N signature σk by checking if
gt
′

= zi · H̄i(msg‖w‖R) holds.
However, without knowledge of the short-time secret keys, this previ-

ous equation has two unknown variables, t′ and w, because the adversary
further does not know to which ring member w belongs. Also notice that

the {wi}i∈RI values have
(

2λ−1
N

)
· N ! variations with the same probability,

33

making it impossible for A to infer the other N − t unknown wi values.
Consequently, under the DLP assumption, each signer can prove that it
was the creator of a signature, while non-signers can prove the opposite for
themselves when they have received their tuple (ti, wi) from the dealer for
the signature in question.

Besides that, the signers are perfectly hidden against any computational
unbounded adversary. First of all, through to the random short-time se-
cret keys ti ∈ Z∗qi , the set of short-time public keys {zi}i∈RI has

∏
i∈[n] qi

variations all of which could also have been chosen with equal probability.
During the signing process, the signer of σk chooses random si ∈ Z∗qi values
for each non-signer in Step 2, and its own sis value is likewise randomly dis-
tributed over Z∗qi through ris , tis , and the output of the random oracle cis .
In conclusion, considering the values (c1, (si)i∈RI) of each signature σk, this
results to t ·

∏
i∈[N] qi variations for the final threshold signature σ, which

holds independently of the signer group.

Efficiency and Signature Size After having received the short-time keys,
the creation of a t-out-of-N signature requires t(2N − 1) modular exponen-
tiations and t(3N − 2) modular multiplications. The verification requires
2tN modular exponentiations and 3tN modular multiplications.

The signature size results to O(tN).

5.2.3 Based on Message Block Sharing

Built on the quantum secure signature scheme based on the shortest vector
problem (SVP) from Lyubashevsky [Lyu08], Melchor et al. [MBB+13] pro-
posed a ring signature scheme, which in turn was extended to the threshold
setting by Chen et al. in 2019 [CHGL19].

The scheme mostly operates on the quotient ring D = Zp[x]/〈xk + 1〉,
where xk + 1 is irreducible, k is a power of two and k > λ, and p is a prime
s.t. p = 3 mod 9. Its elements a ∈ D are polynomials of degree k − 1 and
â ∈ Dm are vectors of m polynomials.

Furthermore, it makes use of a family of collision-resistant hash functions
H : Dm× → D, which is defined as follows for an integer m and D× ⊆ D:
H = {hâ : â ∈ Dm} such that for any vector ẑ ∈ Dm× it holds that hâ(ẑ) =
âẑ =

∑
aizi. For any ŷ, ẑ ∈ Dm and c ∈ D these hash functions satisfy

h(ŷ+ ẑ) = h(ŷ) +h(ẑ) and h(ŷc) = h(ŷ)c. Lyubashevsky showed that when
D× is restricted to a set of small norm polynomials, the collision problem
for hash functions in H is as hard as solving the SVP in the worst case over
lattices corresponding to ideals in D.

The extension from Melchor’s ring signature to the threshold setting
is achieved by applying a message block sharing technique. Here, signers
can’t flexibly sign any self chosen message, but a trusted authority first has
to process a message msg and distribute it to all N parties so that only

34

subgroups of order t can reassemble the original message. The known hash
of the message is denoted by r ← H(msg). Each parties’ share of the padded
and permuted message is denoted by Γi for i ∈ RI and such a set of message
blocks can be combined to get msg[i]← msgi1‖ . . . ‖msgik .

For a publicly known element C←$D, the public key of a party i ∈ U
corresponds to a hash function pki = hi in H defined by a self-chosen âi and
the secret key equals ski = ŝi such that hi(ŝi) = C.

Given Dy,Dz,Ds,c ⊆ D and another hash function H : {0, 1}∗ → Ds,c the
signing process then works as follows:

1. ∀i ∈ NI : ŷi←$Dmz and set ẑi ← ŷi.

2. ∀i ∈ SI : ŷi←$Dmy and compute Ψ←
∑

i∈RI hi(ŷi)
and y′ ← H(h1(ŷ1), . . . , hN (ŷN),Ψ).

3. ∀i ∈ SI: Compute ei ← H(Ψ,msg[i], y′, r) and set ẑi ← ŝiei + ŷi
if ẑi /∈ Dmz , go to Step 1.

4. Output σ := {(ẑi)i∈RI, (ei)i∈SI, yi}.

Given the signature σ and all message block sets from the signers {Γi}i∈[t],
a signature is verified if r = H(msg) holds for the recombined message and
if the following ring equation holds:

∀i ∈ [t] : ei = H(
∑
j∈RI

hj(ẑj)− C
∑
i∈[t]

ei,msg[i], y′, r)

Classification The signing phase is interactive (IS) and TA-dependent
(TAD) since it requires a trusted authority, which distributes padded and
permuted message blocks of messages that can be signed.

Anonymity Essentially, the subtraction of C
∑

i∈[t] ei in the ring equation
ensures that for it to be satisfied t parties must have used their secret keys
si in order to to adapt their ẑi vector. At first, all random hi(ŷi) values for
each ring member are included in the sum Ψ and committed in the hash
for ei. Since H(·) is modeled as a random oracle, an equation of the form
ei = H(Ψ− Cei) is not directly solvable. Hence, a digest ei has to be com-
puted beforehand and, in this case, needs to be combined with a matching
secret key so that the subtraction of Cei is eliminated. However, for each
ei it is unknown at which index j ∈ RI the given ẑj vector evaluates to
hj(ẑj) = Cei, which consequently corresponds to a signer index. This relies
on the fact that all ẑj vectors are random elements out of the same domain
Dmz . Even though the signers’ ẑj vectors aren’t randomly sampled but com-
puted as ẑj ← ŝiei + ŷi, the secret key ŝi is hidden by multiplication with
the hash digest ei and by the addition of the random vector ŷi.

35

Lyubashevsky further showed that for any hash function h of H and
two secret keys ŝ, ŝ′ s.t. h(ŝ) = h(ŝ′) the statistical difference between
the signatures generated with each of them is negligible. Analogously, this
applies not only to the ring signature scheme by Melchor et al. but also to
Chen’s et al. threshold extension.

All in all, this scheme provides unconditional anonymity even the trusted
authority has no influence on the signer’s anonymity because it only distrib-
utes messages that can be signed.

Efficiency and Signature Size Creating a signature requires at least N
inner products and t scalar multiplications of m dimensional polynomial
vectors of degree k − 1 in the ring D. Verification requires exactly N inner
products of those vectors and t polynomial multiplications in D.

The signature size is independent of t and results to O(N).

6 Construction with Zero-Knowledge Proofs

Schemes that fall under this category construct the thring signature by per-
forming one or multiple zero-knowledge proofs that witness the signature’s
correctness, while the zero-knowledge property ensures anonymity for the
signers. Given such a signature, a verifier can be convinced that it is valid
if the scheme’s specific zero-knowledge proof verifies, which should only be
possible for honestly created signatures due to the soundness of the proof.

A common approach to obtain a thring signature scheme for this con-
struction type is to apply the Fiat-Shamir transform on an HVZK threshold
identification protocol.

6.1 Linkable Variants

6.1.1 Based on RSA

Tsang et al. [TWC+05] proposed a linkable thring signature based on the
strong RSA assumption, the DDHP, and the random oracle, which uses
two transformed zero-knowledge proofs for its construction. A signature is
constructed by applying the Fiat-Shamir transformation on two three-move
interactive honest-verifier zero-knowledge proofs of knowledge (HVZK) to
non-interactive signatures based on proofs of knowledge (SPK).

A key-pair of user i ∈ U corresponds to pki = (li, Ni, gi, yi,Hi) and
ski = (pi, qi, xi), where Ni is the product of the two (li−1)-bit primes pi, qi,
Hi is a hash function, and gi is a random generator of the quadratic residue
of Ni. Also, it holds for the randomly chosen value xi that yi = gxii .

The first HVZK protocol PK1 allows a prover to prove its knowledge of
t-out-of-N integers x1, . . . , xN such that yi = gxii and vi = hxii holds for
1 ≤ i ≤ N to a verifier.

36

Typical for HVZK protocols, it consists of a commit, challenge, and re-
sponse phase. By applying the Fiat-Shamir transformation, the authors
created a signature scheme, i.e., by replacing the challenge sent by the veri-
fier in the challenge phase with a hash of the commitment together with the
message to be signed.

Considering the scenario, where t signers SI among the ring RI want to
prove their knowledge of t-out-of-N discrete logarithms for yi and hi, the
transformed signature of knowledge for a message msg is denoted by:

SPK1

(α1, . . . , αN) :
∨

SI⊆RI, |SI|=t

(∧
i∈SI

yi = gαii ∧ vi = hαii

) (msg)

And works as follows:

1. ∀i ∈ NI : ci←$Zp1 and ∀i ∈ RI : ri←$Zp2 .
Sample values ri for every signer and ci values for all parties randomly
out of two sets Zp1 , Zp2 with defined parameters p1 and p2 and calcu-
late the commitments ti and Ti:

ti ←

{
grii , i ∈ SI;

grii y
ci
i , i ∈ NI

and Ti ←

{
hrii , i ∈ SI;

hrii v
ci
i , i ∈ NI

2. c = H((g1, y1, h1, v1)‖ . . . ‖(gN , yN , hN , vN)‖t1‖ . . . ‖tN‖T1‖ . . . ‖TN ,msg)
Set the challenge to the hash of the commitment and the message.

3. Compute the polynomial f s.t. deg(f) ≤ N− t, f(0) = c, ∀ ∈ RI\SI :
f(i) = ci holds. Then, ∀i ∈ SI set ci ← f(i) and compute:

si ←

{
ri − cixi, i ∈ SI;

ri, i ∈ NI

4. Output σ = (f, s1, . . . , sN)

To verify this signature, one needs to check if deg(f) ≤ N − t and if the
following equation holds with ci = f(i):

f(0) = H((g1, y1, h1, v1)‖ . . . ‖(gN , yN , hN , vN)‖
yc11 g

s1
1 ‖ . . . ‖y

cN
N gsNN ‖v

c1
1 h

s1
1 ‖ . . . ‖v

cN
N hsNN ,msg)

The second signature scheme, SPK2, is created analogously by perform-
ing the Fiat-Shamir transform on the HVZK protocol PK2. PK2 allows a
prover to prove the knowledge about all discrete logarithms x1, . . . , xN such
that yi = gxii holds for 1 ≤ i ≤ N to a verifier.

A group of signers SI having their secret keys S = {ski}i∈SI then creates
a (t,N)-thring signature on a message msg and event-id e as follows:

37

1. ∀i ∈ RI : hi,e ← H(param, pki, e) with param denoting the system
parameters and calculate

ỹi,e ←

{
hxii,e, i ∈ SI;

hrii,e for ri←$ZbNi/4c, i ∈ NI

2. Compute a signature σ1 with

SPK1

(α1, . . . , αN) :
∨

SI⊆RI, |SI|=t

(∧
i∈SI

yi = gαii ∧ ỹi,e = hαii,e

) (msg)

3. Compute a signature σ2 with

SPK2

{
(β1, . . . , βN) :

N∧
i=1

ỹi,e = hβii,e

}
(msg)

4. Output σ = ((ỹi,e)i∈RI, σ1, σ2)

While in Step 2 the signers prove that they know t secret keys, i.e., the
discrete logarithm xi of yi, and xi has been used as the exponent of hi,e to
calculate ỹi,e. In Step 3 they prove that they know all discrete logarithms
of ỹi,e and not just t ones.

To verify a given signature σ, the verifier calculates all hi,e values and
verifies both SPK signatures, σ1 and σ2.

The Link algorithm checks if two signatures σ, σ′ are linked if they are
valid and there exists an index i such that ỹi,e = ỹ′i,e, additionally it out-
puts pki, the public key of the detected double-signer. Note that this is
also why the second proof resulting from SPK2 is necessary; without this
proof, adversaries could break the non-slanderability property by creating a
signature that includes at least one ỹi,e value of an honest user’s signature
so that these signatures appear to be linked.

Fujisaki et al. [FS07] achieved an improved efficiency compared to this
scheme with their traceable thring signature, which only requires the first
signature of knowledge SPK1. Hence, besides the DDHP, their proof of
anonymity is reduced to the zero-knowledge of the first HVZK protocol PK1,
rather on both HVZK protocols.

Classification The signing process is interactive (IS) and TA-independent
(TAI). Since the linkability property considers the event-id and is even in-
dependent of the co-signers, it is event-oriented and individual-linkable, and
since two linked signatures reveal the identity of the double-signer, it is ac-
cusatory.

38

Anonymity When considering only the construction of σ1 using SPK1

while omitting the second condition with ỹ, this would represent an un-
linkable thring signature that perfectly hides the signers. This is because
both HVZK protocols PK1, PK2 are zero-knowledge, which can be proven
using a simulator Sim who can foretell the challenge (or has control over the
random oracle for SPK1 and SPK2). For the first and more complex protocol
PK1, knowing the challenge c, Sim interpolates the polynomial f in advance
and then sets all si, ti, Ti values as previously done for the non-signers.
Given the simulated transcript (ti, Ti, f, si), it is indistinguishable from a
real transcript for PK1 even though Sim does not have a single secret key of
any ring member. However, as in the scheme by Liu [LWW04] discussed in
5.1.1, the addition of ỹ is required to provide the linkability property of this
scheme and reduces the anonymity also to the DDHP and to the strong RSA
assumption. Here, the strong RSA assumption is the hardness assumption
of the scheme’s underlying public-key cryptography; if an adversary A can
break it, A can also deanonymize all honest signers owed to the provided
likability.

Given the generator gi of a ring member i, we can consider the yi value of
its public key and the values hi,e, ỹi,e as a triple (yi, hi,e, ỹi,e) = (gxii , g

α
i , g

γ
i).

If an adversary A is able to break the DDHP, then it can decide between γ
being a random integer γ = ri or being the product of the first two discrete
logarithms of the triple s.t. γ = xiα. Since the first case applies to all
non-signers and the latter one to all signers, A can deanonymize the signers
of a given signature.

Efficiency and Signature Size Signing requires 6n + 2t modular expo-
nentations and N polynomial evaluations. Verification requires 6N modular
exponentations and N polynomial evaluations.

The signature size is O(N).

6.1.2 Based on the DLP

In 2020, Munch-Hansen et al. [MHOY20] proposed the first thring signature
scheme that is size-independent of N . It is based on the DLP, RSA accumu-
lators, non-interactive zero-knowledge arguments of knowledge (NIZKAoK)
and the random oracle model.

Given a group G of order p and its generator g, the key-pair (pki, ski)
of a party i ∈ U is created as ski←$Zp and pki ← gski such that pki is a
prime.

The RSA accumulator ACC introduced by Benaloh and de Mare [BdM94]
works as follows:

• Setup(1λ): Sample random 1λ bit safe primes p = 2p′ + 1 and q =
2q′ + 1, where p′ and q′ are also primes and sets m ← pq. It samples

39

g′←$Z∗m and sets g ← (g′)2 mod m. Finally, it returns pp = (m, g)

• Evalpp(X): Return accX = g
∏
x∈X x mod m.

• Witpp(accX , x): Return witx = g
∏
y∈X ,y 6=x y mod m.

• Verifypp(accX , witx, x): If (witx)x mod m = accX return 1 and 0 oth-
erwise.

The NIZKAoK scheme allows to prove its knowledge of a witness w =
(pki, ski, witpki) for the statement φ = (pp, accR,H(msg, nonce), ỹ) con-
tained in the relation R = (pki = gski) ∧ (ACC.Verifypp(accR, pki, witpki)) ∧
(ỹ = H(msg, nonce)ski)). Intuitively, a verifier can be convinced that the
discrete logarithm of ỹ equals a secret key ski corresponding to a public key
pki that is included in the ring R accumulated by accR.

Given the public parameters pp of ACC and the common reference string
crs of NIZKAoK, each signer is ∈ SI creates its 1-out-of-N signature in a
round k ∈ [t] as follows:

1. Accumulate accR ← ACC.Evalpp(R) and compute the witness
witpkis ← ACC.Witpp(accR, pkis).

2. Set nonce = (msg,R) and compute ỹ ← H(msg, nonce)skis .

3. Compute the proof π ← NIZKAoK.Prove(crs, φ, w = (pkis , skis , witpkis)).

4. Output σk := (ỹ, π).

To verify a 1-out-of-N signature σk, one needs to recalculate the accumu-
lator accR and check if the given proof π verifies: NIZKAoK.Verify(crs, φ, π).

Given two 1-out-of-N signatures, σk, σ
′
k, the Link algorithm checks whether

they are linked if ỹ = ỹ′ holds.
Lastly, all 1-out-of-N signatures σk can be combined to get a t-out-of-

N signature σ := {σk}k∈[t], where they all need to be unlinked to each other.

Classification The signing phase of this scheme is non-interactive (NIS)
and TA-independent (TAI). The scheme does require a trusted setup to
generate a global common reference string for the NIZKAoK, but after the
setup, no trusted authority is needed to create a signature. The linkability
is individual linkable, non-accusatory, and since it considers the signed mes-
sage, it is event-oriented.

Anonymity This scheme is anonymous if the non-interactive zero-knowledge
argument of knowledge NIZKAoK and the RSA-accumulator ACC are secure
and the DDHP is hard in G under the random oracle model. As in [LWW04]
and [TWC+05] discussed in 5.1.1 and 6.1.1, due to the linkability tag ỹ cre-
ated in Step 2 for ensuring the linkability of this scheme, the anonymity is

40

reduced to the hardness of the DDHP. Additionally, the DLP, which implies
the DDHP, also needs to be hard, or otherwise, an adversary could compute
any secret key of a public key and create a signature on its own to check
if it is linked to a given one. Furthermore, the NIZKAoK scheme needs to
satisfy the zero-knowledge property such that an honest proof should be in-
distinguishable from a simulated proof created with a trapdoor τ . Since the
witness w contains the identity of the signer (and even its secret key), the
proof π must not reveal any information about it, except that the signer has
knowledge of a witness w and it fulfills the statement φ in the relation R.
Additionally, the authors require that each ring member’s public key needs
to be checked, i.e., that it is a prime number, before a signer should continue
with the signing process; hence this scheme is secure against adversarially-
chosen public keys.

Efficiency and Signature Size The signing process for a t-out-of-N signa-
ture requires 2tN modular exponentiations and the creation of a NIZKAoK
proof for the specific relation R. This proof should be a rather efficient
and compact as it mostly consists of statements about the knowledge of
exponents, according to the authors. Verification requires tN modular ex-
ponentiations and the verification of the NIZKAoK proof π.

Lastly, the signature size is independent of the number of the ring mem-
bers and results to O(t) due to the common reference string based argument,
wherein the statement is not part of the signature.

6.1.3 Based on VRFs

Built on the logarithmic-sized ring signature scheme presented by Backes
et al. [BDH+19], Haque et al. [HKSS20] recently proposed a thring signa-
ture scheme based on verifiable random functions (VRF) and non-interactive
witness-indistinguishable proofs (NIWI) in the plain model. Additional build-
ing blocks are a public key encryption scheme (PKE), somewhere perfectly
binding hashing (SPB), and a one-way permutation F.

The public- and secret key-pair of each party i ∈ U corresponds to

PKi = (vki, pk
(1)
i , pk

(2)
i , E) and SKi = (ski, sk

(1)
i , sk

(2)
i , rE) with the follow-

ing meanings: The key-pair (vki, ski) belongs to a VRF scheme, (pk
(1)
i , sk

(1)
i)

and (pk
(2)
i , sk

(2)
i) are two PKE key-pairs, rE←$PKE.R is a random value

out of the randomness space of PKE, and E ← PKE.Enc(pk
(1)
i , skF,i; rE) with

skF,i←$ {0, 1}2λ.
A t-out-of-N thring signature σ consists of t 1-out-of-N ring signatures

σk, wherein the authors allow that each signer is ∈ SI may choose an in-
dividual threshold tis . However, for simplicity, we omit this feature since it
does not effect the way the signers are hidden in this scheme.

Each signer is ∈ SI creates its 1-out-of-N signature in a round k ∈ [t] as

41

follows:

1. Compute y ← VRF.Eval(skis ,msg‖R), p← VRF.Prove(skis ,msg‖R).

2. Set rct←$PKE.R and compute ct← PKE.Enc(pk
(1)
is
, p; rct).

3. Generate (hkis , shkis)← SPB.KeyGen(1λ, N, is) and compute
his ← SPB.Hash(hkis ,R) and witis ← SPB.Open(hkis , shkis ,R, is).

4. Choose a random ring member i←$ RI \ {is} and set rE←$PKE.R,
(hki, shki)← SPB.KeyGen(1λ, N, i), hi ← SPB.Hash(hki,R), and
witi ← SPB.Open(hki, shki,R, i).

5. Compute a NIWI proof π that one of the following claims is true:

(a) (φ,w) ∈ RPK with φ = (msg,R, t, y, ct, hkis , his) and
w = (PKis , is, p, rct, witis) if and only if

SPB.Verify(hkis , his , is, PKis , witis) = 1∧PKE.Enc(pk(1)
is
, p; rct) =

ct ∧ VRF.Verify(vkis ,msg‖R, y, p) = 1.

(b) (φ,w) ∈ RPK′ the same as 5a but for ring member i.

(c) (φ,w) ∈ RF with φ = (R, his , hi, hkis , hki) and
w = (is, i, PKis , PKi, witis , witi, skF,is , skF,i, rE,is , rE,i) if and only

if F(skF,is) = skF,i ∧ PKE.Enc(pk
(2)
is
, skF,is ; rE,is) = Eis ∧

PKE.Enc(pk
(2)
is
, skF,; rE,i) = Ei ∧

SPB.Verify(hkis , his , is, PKis , witis) = 1 ∧
SPB.Verify(hki, hi, i, PKi, witi) = 1.

6. Output σk := (y, ct, hkis , hki, π)

A 1-out-of-N signature σk is verified by recalculating both hashes his and
hi using hkis and hki, respectively, and by checking if the proof π verifies
NIWI.Verify(φ, π) with φ = (msg,R, y, ct, his , hi, hkis , hki).

Even though the authors did not explicitly mentioned the linkability
of their first version of this scheme, we still consider it as linkable; two
signatures, σk, σ

′
k, are linked if y = y′ holds. Note that since VRF.Eval is

deterministic, no signer can create multiple valid signatures on the same
message with respect to the same ring without them being linked.

Lastly, a t-out-of-N thring signature corresponds to σ := {σk}k∈[t],
whereas all 1-out-of-N signatures need to be unlinked to each other.

Classification The signing phase is non-interactive (NIS) and TA-independent
(TAI). The linkability is individual linkable, event-oriented, and non-accusatory.

Anonymity First of all, notice that an honest signer is ∈ SI does not

42

use its second PKE key-pair (pk
(2)
is
, sk

(2)
is

), or E and rE for creating a signa-
ture. These values are only needed for the proof of anonymity to simulate
a NIWI proof, where the challenger picks proper secret keys skF to exploit
condition 5c of the proof. Note that such an adaption is necessary due to
the missing trapdoor of NIWI proofs, which in turn relies on the fact that
NIWI proofs do not need a common reference string. Secondly, the inclusion
of another ring member i in Step 4 of the signing phase is also required
to prove this scheme’s anonymity. Because then it is possible to transform
a signature created by a signer is to a signature created by another ring
member i over a sequence of hybrid arguments. If each change to the next
hybrid is indistinguishable, it follows that it is also indistinguishable for the
final signature whether it has been created by ring member is or i0.

Essentially, this scheme ensures anonymity if VRF is pseudorandom and
has key-privacy, SPB is index-hiding, PKE has key-privacy and CPA-security,
and NIWI is witness-indistinguishable.

Since every 1-out-of-N signature σk contains the signer’s VRF evaluation
of msg‖R, y needs to be indistinguishable from random, and it should be
impossible to infer to which verification key y belongs to, as long as the
corresponding proof p remains secret.

The index-hiding property of SPB ensures that the two hashing keys
hkis , hki do not reveal the indices is and i with which they were initially
generated and where one of them necessarily belongs to the signer of σk.

The key-privacy and CPA-security of PKE is needed so that given the
ciphertext ct of a signature σk, it should computationally hide the public

key pk
(1)
i used for the encryption and the encrypted proof p of the VRF

evaluation.
Finally, NIWI needs to fulfill witness-indistinguishability, which ensures

that it should be indistinguishable for every efficient adversary to decide
which witness was used to compute a proof π. Under the assumption that all
previously properties hold, this implicates that it should be indistinguishable
which ring member is the creator of a signature σk.

Since the non-signers’ public keys aren’t explicitly used during the sign-
ing procedure, except that they are included in the ring, which is used as
an argument for VRF and SPB, this scheme is secure against adversarially-
chosen public keys.

Efficiency and Signature Size Creating a t-out-of-N thring signature
requires t VRF evaluations and proofs; t PKE encryptions; 2t SPB key-
generations, hashing and opening computations; and computing t NIWI
proofs for a rather complex language. When considering the feature of
individual thresholds, twice as many of the previously mentioned operations
are necessary.

Verification requires two 2t SPB hashing computations and verifying a

43

NIWI proof.
Due to SPB hashing, membership witnesses of a ring of size N can be

achieved in O(log(N)poly(λ)) for a polynomial poly. Thus, the signature
size of this scheme is in O(t log(N)).

6.2 Unlinkable Variants

6.2.1 Based on the MDP

Based on a generalization of Stern’s zero-knowledge identification protocol
[Ste94], Aguilar Melchor et al. [AMCG08] proposed a thring signature that
relies on the minimal distance problem (MDP) and on the random oracle
model.

The secret key of a party i ∈ U equals ski = si, where si corresponds
to a word of weight w (common for all parties) in the code Ci defined by
the (n − k) × n parity check matrix Hi, which represents the public key
pki = Hi. Note that finding such a non-zero vector si with wt(si) ≤ w for
a given matrix Hi so that His

T
i = 0 holds, relates to the minimum distance

problem, which is assumed to be hard for this scheme.
First, the signers create a ring public key in form of an N(n− k)×Nn

matrix H defined as the direct sum of all ring members’ public keys H =
⊕Ni=1Hi. The matrix H, resulting from the direct sum, has the matrices Hi

in the diagonal such that Hi is at position (i, i) and all other entries are 0.
The actual signature scheme results from applying the Fiat-Shamir trans-

formation on a generalized version of Stern’s identification protocol, which
is a three-move HVZK scheme and works as follows:

1. ∀i ∈ RI: Set yi←$Fn2 , set πi to a random permutation of {1, . . . , n},
and compute the commitments with si ← 0 for i ∈ NI:
c1,i ← H(πi‖Hiy

T
i), c2,i ← H(πi(yi)), c3,i ← H(πi(yi ⊕ si)).

2. Set Σ to a random constant n-block permutation onN blocks {1, . . . , N}
and compute and send the master commitments to the verifier:
C1 ← H(Σ‖c1,1‖ . . . ‖c1,N), C2 ← H(Σ(c2,1‖ . . . ‖c2,N),

C3 ← H(Σ(c3,1‖ . . . ‖c3,N)).

3. The verifier sends a challenge b←$ {0, 1, 2} to the signers.

4. The signers set Π ← Σ ◦ π with π ← (πi)i∈RI, y ← (yi)i∈RI, and
s← (si)i∈RI, and answer the verifier:

• If b = 0: Send y and Π.

• If b = 1: Send y ⊕ s and Π.

• If b = 2: Send Π(y) and Π(s).

5. The verifier checks that:

44

• If b = 0: Π is a n-block permutation and that C1 and C2 were
created correctly.

• If b = 1: Π is a n-block permutation and that and that C1 and
C3 were created correctly.

• If b = 2: C2 and C3 were created correctly, that Π(s) has a weight
of tw and is formed of N blocks of length n of weigth w or 0.

Notice that this HVZK protocol has a cheating probability or soundness
error of 2/3, thus it needs to be repeated until the required security level is
reached.

However, the authors did not elaborate on how exactly one would apply
the Fiat-Shamir transform on this HVZK scheme to obtain a non-interactive
signature scheme. A possible approach would be that the signers have
to repeat the first two steps K times (depending on the desired security
level), to obtain K rows of master commitments (Ck1 , C

k
2 , C

k
3)Kk=1. Then,

all challenges are computed using a hash function H′ : {0, 1}∗ → {0, 1, 2}K
as b1, . . . , bK ← H′(msg‖(Ck1 , Ck2 , Ck3)Kk=1)), where the respective responses
have to be included in the signature.

Besides, Cayrel et al. [CLRS10b] later proposed a lattice-based thring
signature scheme as a modification of this scheme with a reduced cheating
probability of 1/2 per round. This improvement is achieved by relying on
the short integer solution (SIS) problem and by applying the CLRS identi-
fication protocol [CLRS10a] instead of Stern’s protocol. Nevertheless, the
way the signers are hidden among the ring is still similar as in the scheme
by Aguilar Melchor.

Classification The signing process is interactive (IS) and TA-independent
(TAI).

Anonymity This scheme provides unconditional anonymity for the sign-
ers. To see this, we have to analyze the three openings the signers reveal
depending on the challenge. If b = 0, the signers reveal the random vectors y
and the n-block permutation Π, where both do not contain any information
about the signers’ public- or secret keys. If b = 1, the signers reveal y ⊕ s
and Π. Since y is randomly sampled and kept secret, y ⊕ s corresponds to
a one-time pad of the secret keys s. If b = 2, the signers reveal Π(y) and
Π(s). At first, each secret key si is permuted using the random permutation
π, and those blocks are again permuted using the random constant n-block
permutation Σ. Both permutations are kept secret, and only the results of
applying the block permutation Π on s and y are published. Furthermore,
this list of blocks Π(s) hides the signers relying on the fact that every party’s
secret key has the null common syndrome and all have the same weight w.
Hence, the t blocks of weight w only prove that t parties made use of their

45

secret keys, but neither can an adversary reconstruct them nor tell which
ring members they belong to.

We can also argue the zero-knowledge property using a simulator Sim
who does not know any secret key but can create a valid proof and therefore
a valid signature when foretelling/controlling the challenge b. In all cases, Π
is set to a random n-block permutation and y to a list of random vectors. If
b = 0 or b = 2, Sim sets s to a list of random vectors, where t of which have
a weight of w and all others are equal to 0. Otherwise, if b = 1, Sim sets
s to 0. It is trivial to see that in all cases the checks for the corresponding
commitments verify.

Efficiency and Signature Size In this scheme by Aguilar Melchor, syn-
drome decoding is the computationally most expensive operation and KN
are needed for signing and averagely 2/3KN for verifying.

Each public key Hi has a size of n2/2 bits, whereas double-circulant
matrices would reduce the description of Hi to n/2 bits.

In comparison, the lattice-based variant by Cayrel et al. needs KN
matrix- vector multiplications for signing and averagely 1/2KN for verify-
ing.

Regarding the signature size, for a security level of 2−80, the scheme by
Aguilar Melchor et al. requires 140 rounds, while the scheme by Cayrel et al.
requires only 80 rounds. Nevertheless, according to Petzoldt [PBB13], when
considering a ring size of 100, the signature size results to 1.4 MBytes for
the coding-based scheme by Aguilar Melchor et al., but for the lattice-based
scheme by Cayrel et al., the size results to 26.7 MBytes.

6.2.2 Based on the MQP

By extending the multivariate identification scheme of Sakumoto et al.
[SSH11], Petzoldt et al. [PBB13] proposed a thring signature and identifica-
tion scheme that is based on the MQ-problem and on a secure commitment
scheme Com.

The public- and secret key-pair of a party i ∈ U corresponds to (pki, ski) =
(Pi, si), where P is a random quadratic system Pi : Fn2 → Fm2 such that for
the secret vector si ∈ Fn2 , it holds that Pi(si) = 0. In order to simulate the
the non-signers’ parts of the signature without knowing their secret keys, Pi
must not contain any constant terms such that Pi(0) is also a valid solution.

For a multivariate system P, its polar form G is defined as G(x1, x2) =
P(x1 + x2) − P(x1) − P(x2). The bilinearity of G enables the creation
of zero-knowledge proofs about the secret vector s. When dividing s into
s = r0 + r1, it holds that 0 = P(r0) + P(r1) + G(r0, r1). Since this terms
contain both, r0 and r1, r0 is further divided into r0 = t0 + t1, and P(r0)
into P(r0) = e0 +e1. Then, one can rewrite this equation to 0 = (G(t0, r1)+
e0)+(P(r1)+G(t1, r1)+e1). Hence, knowing such a tuple (r0, r1, t0, t1, e0, e1)

46

proves the knowledge of the secret key s, whereas this proof is extended to
the threshold scenario in a three-move HVZK protocol.

Similarly as in [AMCG08] discussed in 6.2.1, a signature is created by
applying the Fiat-Shamir transform on an interactive HVZK identification
protocol, which follows the above observation and works as follows:

1. ∀i ∈ RI : Set r
(i)
0 , t

(i)
0 ←$Fn2 , e

(i)
0 ←$Fm2 and compute r

(i)
1 ← si − r(i)

0 ,

t
(i)
1 ← r

(i)
0 − t

(i)
0 , and e

(i)
1 ← Pi(r

(i)
0)− e(i)

0 with si ← 0 for i ∈ NI.

2. ∀i ∈ RI : Compute the commitments c
(i)
0 ← Com(r

(i)
1 ,G(t0, r1) + e

(i)
0),

c
(i)
1 ← Com(t

(i)
0 , e

(i)
0), c

(i)
2 ← Com(t

(i)
1 , e

(i)
1), c

(i)
3 ← Com(r

(i)
0), and

c
(i)
4 ← Com(r

(i)
1).

3. Set Σ to a random permutation of {1, . . . , N} and compute and send

the master commitments to the verifier: C0 = Com(c
(1)
0 , . . . , c

(N)
0),

C1 = Com(Σ, c
(1)
1 , . . . , c

(N)
1), C2 = Com(c

(1)
2 , . . . , c

(N)
2),

C3 = Com(Σ(c
(1)
3 , . . . , c

(N)
3)), C4 = Com(Σ(c

(1)
4 , . . . , c

(N)
4)).

4. The verifier sends a challenge b←$ {0, 1, 2, 3} to the signers.

5. The signers set r0 ← (r
(i)
0)i∈RI, r1 ← (r

(i)
1)i∈RI, t0 ← (t

(i)
0)i∈RI, t1 ←

(t
(i)
1)i∈RI, e0 ← (e

(i)
0)i∈RI, and e1 ← (e

(i)
1)i∈RI and answer the verifier:

• If b = 0: Send (r0, t1, e1).

• If b = 1: Send (r1, t1, e1).

• If b = 2: Send (r1, t0, e0).

• If b = 3: Send (Σ(c
(1)
3 , . . . , c

(N)
3),Σ(c

(1)
4 , . . . , c

(N)
4)).

6. The verifier checks the commitments:

• If b = 0: ∀i ∈ RI: Compute c̃
(i)
1 ← Com(r

(i)
0 − t

(i)
1 ,Pi(r(i)

0)− e(i)
1),

c̃
(i)
2 ← Com(t

(i)
1 , e

(i)
1), c̃

(i)
3 ← Com(r

(i)
0) and check the correctness

of C1, C2, and C3.

• If b = 1: ∀i ∈ RI: Compute c̃
(i)
0 ← Com(r

(i)
1 ,−Pi(r(i)

1)−Gi(t(i)1 , r
(i)
1)−

e
(i)
1), c̃

(i)
2 ← Com(t

(i)
1 , e

(i)
1), and check the correctness of C0 and

C2.

• If b = 2: ∀i ∈ RI: Compute c̃
(i)
0 ← Com(r

(i)
1 ,Gi(t(i)0 , r

(i)
1) + e

(i)
0),

c̃
(i)
1 ← Com(t

(i)
0 , e

(i)
0), c̃

(i)
4 ← Com(r

(i)
1) and check the correctness

of C0, C1, and C4.

• If b = 3: Check the correctness of C3 and C4, and that there are

at least t indices in i ∈ RI s.t. c
(Σ(i))
3 6= c

(Σ(i))
4 .

47

This HVZK has a cheating probability of 3/4 and therefore needs to repeated
K times depending on the the expected security level. The Fiat-Shamir
transform is analogously performed as in the approach shown for 6.2.1.

Classification The resulted signature scheme has an interactive signing
phase (IS) and is TA-independent (TAI).

Anonymity The signers of a thring signature are perfectly hidden since
this transformed identification protocol is zero-knowledge assuming that the
commitment scheme Com is statistically hiding. First of all, every signers’

secret key si is divided into r
(i)
0 and r

(i)
1 , while r

(i)
0 is again divided into

t
(i)
0 and t

(i)
1 . Since no response contains both r

(i)
0 and r

(i)
1 or t

(i)
0 , t

(i)
1 and

r
(i)
1 , it is not possible to recalculate the secret key si. Also, given a triple

corresponding to one of the first three responses, it is impossible to tell if it

belongs to a signer or a non-signer. This is due to the fact that every r
(i)
1

vector is a random element of Fn2 regardless of whether si is set to 0 or is
an actual secret key, which is also just a random element of Fn2 ; both are

subtracted with the randomly sampled r
(i)
0 vector. Also, t

(i)
1 and e

(i)
1 are

randomly distributed over Fn2 for every ring signer due to r
(i)
0 , t

(i)
0 , and e

(i)
0 .

For b = 3, the commitments c
(i)
3 and c

(i)
4 are different for every signer and

equal for every non-signer because their si vector is set to 0 so that r
(i)
0 and

r
(i)
1 are equal, too. Therefore, the random permutation Σ ensures that the

signers’ indices remain unknown among the ring; the verifier can only check

that there are at least t indices, where c
(Σ(1))
3 and c

(Σ(1))
4 are unequal and

belong to a signer in the ring.
Similarly to [AMCG08] analyzed in 6.2.1, one can further prove the zero-

knowledge property of this protocol by constructing a simulator Sim that can
produce a valid HVZK transcript and hence a valid signature without know-
ing any secret key. It only needs know beforehand which challenge b will not

be chosen in each repetition of the protocol. e
(i)
1 ← Pi(r

(i)
0)−G(t0, r1)− e(i)

0

Regarding the signature scheme, Sim needs to be able to control the output
of the random oracle used for the Fiat-Shamir transformation.

Efficiency and Signature Size Here, evaluating quadratic- multivariate
polynomials for each Pi system is the operation with the highest compu-
tational costs. The authors claim that multivariate cryptosystems tend to
be faster than classical public-key schemes such as RSA. For signing, 4KN
system evaluations of m equations in N variables are required and approxi-
mately 7/4KN for verifying.

The signature size is in O(KN) and specifically results to 160+K(464+
266N) bits using a slightly optimized version of the protocol, according
to the authors. For instance, for a security level of 2−80, 193 rounds are

48

required, and with a ring size of 100, the signature size is 0.64 MBytes.

7 Conclusion

In the last chapter we summarize the results of this work and discuss some
observable trends for thring signatures and possible future work .

7.1 Results

The results of our analysis can be found in Table 1. Note that the columns
regarding the classification represent the most favorable properties in terms
of anonymity, as we discussed in Section 3.4.1.

We identified three different major construction types of thring signa-
tures, where the principle of how the signers are hidden among the ring is
similar for the schemes of each type. Of course, the precise way of ensuring
anonymity may still vary depending on the specific scheme; hence we also
examined various approaches for each construction type.

Secret Sharing: For the first construction type using Shamir’s secret shar-
ing, each ring member’s share of the signature lies on a polynomial. While
the non-signers’ shares have been used to interpolate the polynomial, the
signers’ shares have been computed using the polynomial evaluation with
the aid of the signers’ secret keys. The principle idea of why the signers are
hidden is that it is impossible to tell which shares have been used for the
interpolation- or have been obtained by evaluating the randomly generated
polynomial.

Two exemplary schemes that employ Shamir’s secret sharing using trap-
door permutations are the first scheme by Bresson et al. [BSS02] and the
code-based scheme by Dallot and Vergnaud [DV09]. The scheme [BSS02]-1
uses RSA-trapdoor permutations, thus the computationally most expensive
operations are modular exponentiations. The scheme [DV09] uses trapdoor
permutations based on the syndrome decoding problem (SDP) that is be-
lieved to be post-quantum secure [CM10], thus syndrome computations and
syndrome decodings (for the signing phase) are required.

A different approach has been chosen by Chow et al. [CHY05] and Haque
et al. [HS20]; in both cases, all shares are included in a hash digest for the
initial point of the polynomial and after its interpolation, the signers adjust
other values that are connected to their fixed shares. In the case of the
identity based scheme [CHY05], the correctness of the signature is verified
using bilinear pairings, whereas their evaluation also corresponds to the
most expensive operation. Even though their scheme provides unconditional
anonymity, the required trusted authority can cause a risk for anonymity,
from which every party needs to request their secret key before being able to
sign. For example, if the trusted authority logs every party that requested

49

its secret key and this log gets revealed, an adversary can exclude signer
candidates of a ring if they never requested their secret keys.

The post-quantum secure scheme [HS20], is based on trapdoor com-
mitments, whereas the signers use their trapdoor to adapt their openings.
Therefore its anonymity is reduced to the trapdoor indistinguishability of
the instantiated trapdoor commitment scheme.

Ring Hashing: For the second construction type using ring hashing, all
ring members’ shares of the signature contribute to the fulfillment of a cyclic
ring equation that is constructed using hash functions. To create a signature,
each signer must compute a hash digest in advance, hash along the ring, and
eventually use its secret key to close the ring. However, this closing step is
not recognizable as an outsider; one can only verify the signature’s validness,
i.e., that the ring equation verifies.

While extending this construction type to the threshold scenario is straight-
forward for linkable schemes, the fact that a verifier can only check the cor-
rectness of a ring equation demands additional techniques to ensure that a
signature has been created by at least t distinct signers while simultaneously
providing unlinkability.

For instance, the thring signature by Liu et al. [LWW04] consists of t
linkable 1-out-of-N signatures such that a t-out-of-N signature is only valid
if all t 1-out-of-N signatures are valid and unlinked to each other. A benefit
of this method is that the signing phase is non-interactive, so the t signers do
not have to communicate with one another to create a signature. Besides the
hardness of the discrete logarithm problem (DLP), which is the assumption
needed for its underlying public-key cryptosystem, the anonymity of each 1-
out-of-N signature is reduced to a stronger assumption, the decisional Diffie-
Hellman problem (DDHP). Modular exponentiations are the most expensive
operations of this scheme.

Okamoto et al. [OTYO18] achieved a non-interactive signing phase in a
similar way but by remaining unlinkable. However, their approach requires
a trusted authority that distributes and saves short-time keys for each ring-
message combination, which further allows previously non-signers to extend
an existing t-out-of-N thring signature to a t+1-out-of-N signature. If those
short-time keys are revealed for a specific ring- message combination, the
signers can be identified for this signature but only for this signature since
their long-time keys are not connected to their short-time keys. Also for this
scheme, the most expensive operations are modular exponentiations.

A different approach using message block sharing, which also requires
a trusted authority, can be found in the lattice-based scheme proposed by
Chen et al. [CHGL19]. In their scheme, the signers cannot sign any arbi-
trary messages, but a trusted authority must first preprocess and distribute
chosen messages to all users in the system. This technique ensures that
only coalitions of more or equal than t users can reconstruct the original

50

message and thus are able to create a thring signature on this message. The
actual signing phase is based on a family of hash functions proposed by
Lyubashevsky [Lyu08], whereas their collision resistance can be reduced to
the shortest vector problem (SVP), which is believed to be secure against
quantum attacks [CCKK15]. Here, calculating polynomial vector products
is the computationally most expensive operation.

Finally, an unlinkable thring signature scheme, which does not require
any trusted authority, has been proposed with the second scheme by Bres-
son et al. [BSS02]-2 using fair partitions. The signature consists of 2t logN
partitions, each of which having t sub-rings, such that every combination
of t possible signers has a fair partition, i.e., that there exists a signer in
each sub-ring. The actual signers can then close a so-called super-ring using
their own signer partition. If this super-ring equation holds, a verifier can
be convinced that at least t signers have participated in the signing proce-
dure. However, since there is a fair partition for all possible signer subsets,
all those subsets are equally likely to be the true signer group. Due to RSA
trapdoor permutations, modular exponentiations are the most expensive op-
erations. A disadvantage of this approach is the large signature size, which
results in O

(
2tN logN

)
.

Zero-Knowledge Proofs: For the third construction type using zero-
knowledge proofs, the signers employ a zero-knowledge proof about the
thring signature’s correctness, whereas the zero-knowledge property is used
to ensure the anonymity of the signers among the ring.

Two exemplary linkable thring signature schemes, which both applied
zero-knowledge proofs of knowledge (PoK) for creating the signature, were
proposed by Tsang et al. [TWC+05] and Fujisaki et al. [FS07]. In both
cases, the signers prove that for at least t values contained in the signa-
ture, the discrete logarithm equals the secret key of the corresponding ring
member. This type of joint zero-knowledge requires interaction between the
signers. Due to the provided linkability, the anonymity of both schemes is
reduced to the DDHP and the assumption of their public-key cryptosys-
tem, strong RSA for [TWC+05] and the DLP for [FS07]. Furthermore, both
schemes require modular exponentiations, and the signature size grows lin-
ear with the ring size.

More recently, Munch-Hansen et al. [MHOY20] and Haque et al. [HKSS20]
presented two linkable thring signatures with a signature size that is, for the
first time, sub-linear to the ring size. In both schemes, a t-out-of-N sig-
natures consists of t 1-out-of-N signatures, resulting in a non-interactive
signing phase. While in [MHOY20], constant-sized membership witnesses
of the ring are realized with accumulators, [HKSS20] uses somewhere per-
fectly binding hashing to achieve logarithmic-sized witnesses. Furthermore,
in [MHOY20], every signer needs to use its secret key as the exponent of a
hash digest during the signing phase, which ensures linkability and reduces

51

the anonymity to the DDHP. In contrast, [HKSS20] uses verifiable random
functions and a public key encryption scheme, reducing the anonymity to
the security properties of these instantiated primitives. Lastly, [MHOY20]
utilizes a non-interactive zero-knowledge argument of knowledge, whereas its
language consists of statements about the knowledge of discrete logarithms.
However, such proof requires a common-reference-string, which has to be
generated in a trusted setup; the non-interactive witness indistinguishable
proof used in [HKSS20], in contrast, does not require any trusted setup but
operates on a more complex language.

Regarding unlinkable thring signature schemes under this construction
type, we examined three schemes, where all of which are based on quantum
secure problems. Furthermore, all schemes modified an honest-verifier zero-
knowledge identification protocol to the threshold scenario and transformed
it into a signature scheme using the Fiat-Shamir heuristic. The first code-
based scheme by Aguilar Melchor [AMCG08] essentially hides the signers
using one-time-pads and random permutations; it relies on the minimal dis-
tance problem (MDP) and requires syndrome decodings. The lattice-based
scheme by Cayrel et al. [CLRS10b] can be considered as an improvement of
the [AMCG08] scheme with a reduced soundness error per round and by re-
lying on the short-integer solution problem (SIS) while having matrix- vector
multiplications as the most expensive operation. Lastly, the multivariate-
based scheme by Petzoldt et al. [PBB13] hides the signers by using the mul-
tivariate system’s polar-form and a statistically hiding commitment scheme.
It is further based on the MQ-problem and requires evaluating quadratic-
multivariate polynomials.

A disadvantage of this common approach is that the underlying identifi-
cation protocol need many repetitions to ensure an adequate security level,
which affects both, the amount of data the signers must exchange, as well
as the signature size since all rounds (commits, challenges, and responses)
have to be included in the final signature.

Pairings: Another currently rather rare construction type we have ob-
served for only two thring signature schemes so far, namely [YLA+11] and
[YLA+13], both by Yuen et al., is based on pairings. These thring sig-
natures are verified by checking multiple equations using bilinear pairings
that prove their correctness. This type of verification has already been
seen in the examined scheme by Chow et al. [CHY05]; however, the crucial
method for constructing their thring signature is Shamir’s secret sharing. As
standard pairing-based signature schemes such as [BB04, YLTZ09, SOO09]
and group signature schemes [BW06, ACHdM05] were proposed that do
not require the random oracle model, thereupon pairing-based ring signa-
tures schemes [SW07, CLWY05, Fuj11, GW18] and thring signature schemes
[YLA+11, YLA+13] without random oracles were also presented. As a down-
side, both thring signature schemes under this construction type require a

52

common reference string generated during a trusted setup. Apart from a
trusted setup, both schemes do not need a trusted authority (TAI).

The thring signature by Yuen et al. [YLA+13] is constructed using t link-
able 1-out-of-N signatures (LA) based on the linkable ring signature scheme
by Fujisaki [Fuj11] resulting in a non-interactive signing phase (NIS). Using
the signature scheme by Boneh and Boyen [BB04], each signer signs both
an event-id and a verification key of a generic one-time signature scheme
with which the actual message is then signed with. The anonymity of each
1-out-of-N signature is reduced to a variant of the DDHP, the so-called Q-
decisional Diffie-Hellman inversion problem. It further achieves a sub-linear

signature size in O
(
t
√
N
)

.

The unlinkable thring signature scheme by Yuen et al. [YLA+11] (ULA)
is an extension of the ring signature scheme by Shacham and Waters [SW07].
A signature contains a commitment for every ring member, which either
equals the encryption of a signer’s public key or the identity element in the
case of a non-signer. Since these values belong to different (sub-)groups,
ensuring anonymity requires that the subgroup decision problem is hard.
The scheme’s signing phase is interactive (IS), and the resulting signature
size is in O(N).

7.2 Trends and Future Work

One observable trend is that more recent schemes are leveraging multiple
building blocks to enable compact ring membership witnesses resulting in
a reduced signature size independent of- or sub-linear in the ring size N .
While this may not seem directly connected to the scheme’s anonymity, in
practice, larger signature sizes that are at least linear in N lead to the choice
of smaller ring sizes, simultaneously reducing the signers’ anonymity to this
smaller set. Especially in ad-hoc or distributed networks, smaller signature
sizes are a significant aspect. For instance, the cryptocurrency Monero,
which uses a ring signature scheme based on the work of [FS07] to hide the
actual sender of a transaction, has fixed the ring size to only 11 members 4.

Here, unlinkable thring signature schemes with a signature size sub-linear
in N that provide unconditional anonymity would be promising, whereas
such signature sizes are most likely only possible to achieve under the con-
struction type using zero-knowledge proofs. Besides, the implementation,
analysis, and possible optimization regarding the efficiency and concrete
signature size of various thring signature schemes would also be interesting
for future research.

Furthermore, linkable (threshold) ring signatures have gained increasing
attention due to their more practical applicability in many areas such as
e-voting, cryptocurrencies, or e-cash in general. They provide anonymity

4https://www.getmonero.org/resources/moneropedia/ring-size.html

53

https://www.getmonero.org/resources/moneropedia/ring-size.html

for honest users, but it can be detected if parties vote more than once or try
to spend their same funds multiple times. However, a downside of linkable
thring signatures is that they can only provide computational anonymity,
i.e., the anonymity is based on complexity assumptions. This follows from
their inherent culpability addressed in Section 3.4.1; on the one hand, non-
signers can prove that they are not part of the signer group by creating
another signature that appears to be unlinked to the signature in question.
On the other hand, the signers can prove that they have created this sig-
nature. Hence, as soon as an adversary has calculated the secret key of a
signer or signer subset, the adversary can create a signature on its own and
check whether this signer (subset) is indeed the creator of a given signature
by checking if those signatures are linked.

As the anonymity of all linkable thring signatures based on non-generic
building blocks examined in this work is reduced to the decisional Diffie-
Hellman problem, it may also be suggestive to design linkable thring signa-
tures where the anonymity is reduced to a weaker assumption. The scheme
by Haque et al. [HKSS20] with concrete instantiations of the required build-
ing blocks may be such a solution.

In contrast, for the initial use-case envisaged by Rivest et al. [RST01] or
Bresson et al.[BSS02], leaking secrets or whistleblowing, unlinkable (thresh-
old) ring signatures that provide unconditional anonymity are more suitable.
With unconditional anonymous thring signatures, no ring member can prove
that it was not part of this exposure, and also, the signers themselves cannot
readily attest to be the creators of this signature. Even if the underlying
public-key cryptosystem is no longer secure such that the secret keys can be
computed efficiently, e.g., through breakthroughs in quantum computing,
such schemes still perfectly hide the signers.

Additionally, for thring signature schemes that are based on quantum-
resistant complexity assumption while requiring the standard random oracle
model, a transformation to obtain their security provable in the quantum
random oracle model would be promising for the post-quantum age.

54

References

[ACHdM05] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and
Breno de Medeiros. Practical group signatures without random
oracles. IACR Cryptology ePrint Archive, 2005:385, 01 2005.

[AMCG08] Carlos Aguilar Melchor, Pierre-Louis Cayrel, and Philippe Ga-
borit. A new efficient threshold ring signature scheme based
on coding theory. In Johannes Buchmann and Jintai Ding,
editors, Post-Quantum Cryptography, pages 1–16, Berlin, Hei-
delberg, 2008. Springer Berlin Heidelberg.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without ran-
dom oracles. In Christian Cachin and Jan L. Camenisch, edi-
tors, Advances in Cryptology - EUROCRYPT 2004, pages 56–
73, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[BDH+19] Michael Backes, Nico Döttling, Lucjan Hanzlik, Kamil Klucz-
niak, and Jonas Schneider. Ring signatures: Logarithmic-size,
no setup—from standard assumptions. In Yuval Ishai and Vin-
cent Rijmen, editors, Advances in Cryptology – EUROCRYPT
2019, pages 281–311, Cham, 2019. Springer International Pub-
lishing.

[BdM94] Josh Benaloh and Michael de Mare. One-way accumulators: A
decentralized alternative to digital signatures. In Tor Helleseth,
editor, Advances in Cryptology — EUROCRYPT ’93, pages
274–285, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[BKM06] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring sig-
natures: Stronger definitions, and constructions without ran-
dom oracles. In Shai Halevi and Tal Rabin, editors, Theory of
Cryptography, pages 60–79, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[Bon98] Dan Boneh. The decision diffie-hellman problem. In IN THIRD
ALGORITHMIC NUMBER THEORY SYMPOSIUM, LNCS
1423, pages 48–63. Springer-Verlag, 1998.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practi-
cal: A paradigm for designing efficient protocols. In Proceedings
of the 1st ACM Conference on Computer and Communications
Security, CCS ’93, page 62–73, New York, NY, USA, 1993. As-
sociation for Computing Machinery.

[BS20] Dan Boneh and Victor Shoup. A graduate course in applied
cryptography. Draft 0.5, 2020.

55

[BSS02] Emmanuel Bresson, Jacques Stern, and Michael Szydlo.
Threshold ring signatures and applications to ad-hoc groups.
In Moti Yung, editor, Advances in Cryptology — CRYPTO
2002, pages 465–480, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

[BW06] Xavier Boyen and Brent Waters. Compact group signatures
without random oracles. In Serge Vaudenay, editor, Advances
in Cryptology - EUROCRYPT 2006, 25th Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, St. Petersburg, Russia, May 28 - June 1, 2006,
Proceedings, volume 4004 of Lecture Notes in Computer Sci-
ence, pages 427–444. Springer, 2006.

[CCKK15] Dong Pyo Chi, Jeong Woon Choi, Jeong San Kim, and Taewan
Kim. Lattice based cryptography for beginners. IACR Cryptol.
ePrint Arch., 2015:938, 2015.

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and
Prashant Puniya. Merkle-damg̊ard revisited: How to construct
a hash function. In Victor Shoup, editor, Advances in Cryptol-
ogy – CRYPTO 2005, pages 430–448, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[CHGL19] Jiangshan Chen, Yupu Hu, Wen Gao, and Hong-Liang Li.
Lattice-based threshold ring signature with message block shar-
ing. KSII Trans. Internet Inf. Syst., 13(2):1003–1019, 2019.

[CHY05] Sherman S. M. Chow, Lucas C. K. Hui, and S. M. Yiu. Iden-
tity based threshold ring signature. In Choon-sik Park and
Seongtaek Chee, editors, Information Security and Cryptol-
ogy – ICISC 2004, pages 218–232, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[CLRS10a] Pierre-Louis Cayrel, Richard Lindner, Markus Rückert, and
Rosemberg Silva. Improved zero-knowledge identification with
lattices. In Swee-Huay Heng and Kaoru Kurosawa, edi-
tors, Provable Security, pages 1–17, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[CLRS10b] Pierre-Louis Cayrel, Richard Lindner, Markus Rückert, and
Rosemberg Silva. A lattice-based threshold ring signature
scheme. In Michel Abdalla and Paulo S. L. M. Barreto, editors,
Progress in Cryptology – LATINCRYPT 2010, pages 255–272,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

56

[CLWY05] Sherman S. M. Chow, Joseph K. Liu, Victor K. Wei, and
Tsz Hon Yuen. Ring signatures without random oracles. IACR
Cryptol. ePrint Arch., 2005:317, 2005.

[CM10] Pierre-Louis Cayrel and Mohammed Meziani. Post-quantum
cryptography: Code-based signatures. In Tai-hoon Kim and
Hojjat Adeli, editors, Advances in Computer Science and In-
formation Technology, pages 82–99, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[CPS08] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin.
The random oracle model and the ideal cipher model are equiv-
alent. In David Wagner, editor, Advances in Cryptology –
CRYPTO 2008, pages 1–20, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[CvH91] David Chaum and Eugène van Heyst. Group signatures. In
Donald W. Davies, editor, Advances in Cryptology — EURO-
CRYPT ’91, pages 257–265, Berlin, Heidelberg, 1991. Springer
Berlin Heidelberg.

[DHS15] David Derler, Christian Hanser, and Daniel Slamanig. Revisit-
ing cryptographic accumulators, additional properties and re-
lations to other primitives. Cryptology ePrint Archive, Report
2015/087, 2015. https://eprint.iacr.org/2015/087.

[DS16] Yuanxi Dai and John Steinberger. Indifferentiability of 8-round
feistel networks. In Proceedings, Part I, of the 36th Annual In-
ternational Cryptology Conference on Advances in Cryptology
— CRYPTO 2016 - Volume 9814, page 95–120, Berlin, Hei-
delberg, 2016. Springer-Verlag.

[DSKT16] Dana Dachman-Soled, Jonathan Katz, and Aishwarya Thiru-
vengadam. 10-round feistel is indifferentiable from an ideal
cipher. In Marc Fischlin and Jean-Sébastien Coron, editors,
Advances in Cryptology – EUROCRYPT 2016, pages 649–678,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[DV09] Léonard Dallot and Damien Vergnaud. Provably secure code-
based threshold ring signatures. In Matthew G. Parker, editor,
Cryptography and Coding, pages 222–235, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and
witness hiding protocols. In Harriet Ortiz, editor, Proceedings
of the 22nd Annual ACM Symposium on Theory of Computing,

57

https://eprint.iacr.org/2015/087

May 13-17, 1990, Baltimore, Maryland, USA, pages 416–426.
ACM, 1990.

[FS07] Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signa-
ture. In Tatsuaki Okamoto and Xiaoyun Wang, editors, Public
Key Cryptography – PKC 2007, pages 181–200, Berlin, Heidel-
berg, 2007. Springer Berlin Heidelberg.

[Fuj11] Eiichiro Fujisaki. Sub-linear size traceable ring signatures with-
out random oracles. In Aggelos Kiayias, editor, Topics in
Cryptology – CT-RSA 2011, pages 393–415, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[GM17] Jens Groth and Mary Maller. Snarky signatures: Minimal
signatures of knowledge from simulation-extractable snarks.
In Jonathan Katz and Hovav Shacham, editors, Advances in
Cryptology – CRYPTO 2017, pages 581–612, Cham, 2017.
Springer International Publishing.

[GW18] Ke Gu and Na Wu. Constant size traceable ring signature
scheme without random oracles. IACR Cryptol. ePrint Arch.,
2018:288, 2018.

[HIL99] Johan H̊astad, Russell Impagliazzo, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM
Journal on Computing, 28, 02 1999.

[HKSS20] Abida Haque, Stephan Krenn, Daniel Slamanig, and Christoph
Striecks. Logarithmic-size (linkable) threshold ring signatures
in the plain model. IACR Cryptol. ePrint Arch, 683:2020, 2020.

[HS20] Abida Haque and Alessandra Scafuro. Threshold ring signa-
tures: New definitions and post-quantum security. In IACR
International Conference on Public-Key Cryptography, pages
423–452. Springer, 2020.

[HW15] Pavel Hubáček and Daniel Wichs. On the communication com-
plexity of secure function evaluation with long output. pages
163–172, 01 2015.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern
Cryptography, Second Edition. Chapman & Hall/CRC, 2nd
edition, 2014.

[LWW04] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable
spontaneous anonymous group signature for ad hoc groups. In

58

Huaxiong Wang, Josef Pieprzyk, and Vijay Varadharajan, edi-
tors, Information Security and Privacy, pages 325–335, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[Lyu08] Vadim Lyubashevsky. Towards practical lattice-based cryptog-
raphy. PhD thesis, UC San Diego, 2008.

[MBB+13] Carlos Aguilar Melchor, Slim Bettaieb, Xavier Boyen, Laurent
Fousse, and Philippe Gaborit. Adapting lyubashevsky’s signa-
ture schemes to the ring signature setting. In International
Conference on Cryptology in Africa, pages 1–25. Springer,
2013.

[McC90] Kevin S McCurley. The discrete logarithm problem. In Proc.
of Symp. in Applied Math, volume 42, pages 49–74. USA, 1990.

[Men09] Alfred Menezes. An introduction to pairing-based cryptogra-
phy. Recent trends in cryptography, 477:47–65, 2009.

[MHOY20] Alexander Munch-Hansen, C. Orlandi, and Sophia Yakoubov.
Stronger notions and a more efficient construction of threshold
ring signatures. IACR Cryptol. ePrint Arch., 2020:678, 2020.

[MVR99] Silvio Micali, Salil Vadhan, and Michael Rabin. Verifiable ran-
dom functions. In Proceedings of the 40th Annual Symposium
on Foundations of Computer Science, FOCS ’99, page 120,
USA, 1999. IEEE Computer Society.

[OTYO18] Takeshi Okamoto, Raylin Tso, Michitomo Yamaguchi, and Eiji
Okamoto. A k-out-of-n ring signature with flexible participa-
tion for signers. IACR Cryptol. ePrint Arch., 2018:728, 2018.

[PBB13] Albrecht Petzoldt, Stanislav Bulygin, and Johannes Buch-
mann. A multivariate based threshold ring signature scheme.
Applicable Algebra in Engineering, Communication and Com-
puting, 24, 08 2013.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak
a secret. In Colin Boyd, editor, Advances in Cryptology —
ASIACRYPT 2001, pages 552–565, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM,
22(11):612–613, November 1979.

[SOO09] Chifumi Sato, Takeshi Okamoto, and Eiji Okamoto. Strongly
unforgeable id-based signatures without random oracles. In

59

Feng Bao, Hui Li, and Guilin Wang, editors, Information Secu-
rity Practice and Experience, pages 35–46, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[SSH11] Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari.
Public-key identification schemes based on multivariate qua-
dratic polynomials. In Phillip Rogaway, editor, Advances in
Cryptology – CRYPTO 2011, pages 706–723, Berlin, Heidel-
berg, 2011. Springer Berlin Heidelberg.

[Ste94] Jacques Stern. A new identification scheme based on syndrome
decoding. In Douglas R. Stinson, editor, Advances in Cryptol-
ogy — CRYPTO’ 93, pages 13–21, Berlin, Heidelberg, 1994.
Springer Berlin Heidelberg.

[SW07] Hovav Shacham and Brent Waters. Efficient ring signatures
without random oracles. In Tatsuaki Okamoto and Xiaoyun
Wang, editors, Public Key Cryptography – PKC 2007, pages
166–180, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[TWC+05] Patrick P. Tsang, Victor K. Wei, Tony K. Chan, Man Ho Au,
Joseph K. Liu, and Duncan S. Wong. Separable linkable thresh-
old ring signatures. In Anne Canteaut and Kapaleeswaran
Viswanathan, editors, Progress in Cryptology - INDOCRYPT
2004, pages 384–398, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[Unr15] Dominique Unruh. Non-interactive zero-knowledge proofs in
the quantum random oracle model. In Elisabeth Oswald
and Marc Fischlin, editors, Advances in Cryptology - EU-
ROCRYPT 2015, pages 755–784, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[vS13] Nicolas van Saberhagen. Cryptonote v 2.0. 2013.

[YLA+11] Tsz Hon Yuen, Joseph K. Liu, Man Ho Au, Willy Susilo, and
Jianying Zhou. Threshold ring signature without random or-
acles. In Proceedings of the 6th ACM Symposium on Infor-
mation, Computer and Communications Security, ASIACCS
’11, page 261–267, New York, NY, USA, 2011. Association for
Computing Machinery.

[YLA+13] Tsz Hon Yuen, Joseph K. Liu, Man Ho Au, Willy Susilo, and
Jianying Zhou. Efficient linkable and/or threshold ring signa-
ture without random oracles. Comput. J., 56(4):407–421, 2013.

60

[YLTZ09] Yumin Yuan, Da Li, Liwen Tian, and Haishan Zhu. Certificate-
less signature scheme without random oracles. In Jong Hyuk
Park, Hsiao-Hwa Chen, Mohammed Atiquzzaman, Changhoon
Lee, Tai-Hoon Kim, and Sang-Soo Yeo, editors, Advances in
Information Security and Assurance, Third International Con-
ference and Workshops, ISA 2009, Seoul, Korea, June 25-27,
2009. Proceedings, volume 5576 of Lecture Notes in Computer
Science, pages 31–40. Springer, 2009.

61

T
ab

le
1:

C
om

p
ar

is
on

of
an

al
y
ze

d
th

ri
n

g
si

gn
at

u
re

sc
h

em
es

S
ch

em
e

N
IS

T
A

I
U

L
A

A
ss

u
m

p
ti

on
s

B
u

il
d

in
g

B
lo

ck
s

A
n

on
y
m

it
y

S
iz

e

C
on

st
ru

ct
io

n
w

it
h

S
ec

re
t

S
h

ar
in

g

[B
S

S
02

]-
1

N
o

Y
e
s

Y
e
s

IC
M

,
R

O
M

,
R

S
A

T
P

U
n

co
n

d
it

io
n

al
O
(N2)

[C
H

Y
05

]
N

o
N

o
Y

e
s

IC
M

,
R

O
M

,
C

D
H

P
B

il
in

ea
r

P
ai

ri
n

gs
T

A
,

U
n

co
n

d
it

io
n

al
O

(N
)

[D
V

09
]

N
o

Y
e
s

Y
e
s

R
O

M
,

S
D

P
†

T
P

U
n

co
n

d
it

io
n

al
O

(N
)

[H
S

20
]

N
o

Y
e
s

Y
e
s

Q
R

O
M

T
C
‡,

F
‡

T
ra

p
d

o
or

in
d

is
ti

n
gu

is
h

ab
il

it
y,

F
h

id
in

g
O

(K
m
N

)∗

C
on

st
ru

ct
io

n
w

it
h

R
in

g
H

as
h

in
g

[B
S

S
02

]-
2

N
o

Y
e
s

Y
e
s

R
O

M
,

R
S
A

T
P

,
F

ai
r

P
ar

ti
ti

on
s

U
n

co
n

d
it

io
n

al
O
(2t
N

lo
g
N
)

[L
W

W
0
4
]

Y
e
s

Y
e
s

N
o

R
O

M
,

D
L

P
D

D
H

P
O

(t
N

)

[O
T

Y
O

18
]

Y
e
s

N
o

Y
e
s

R
O

M
,

D
L

P
S

h
or

t-
T

im
e

K
ey

s
T

A
,

U
n

co
n

d
it

io
n

al
O

(t
N

)

[C
H

G
L

1
9]

N
o

N
o

Y
e
s

R
O

M
,

S
V

P
†

M
es

sa
ge

B
lo

ck
S

h
ar

in
g

U
n

co
n

d
it

io
n

al
O

(N
)

C
on

st
ru

ct
io

n
w

it
h

Z
er

o-
K

n
ow

le
d

ge
P

ro
of

s

[T
W

C
+

0
5
]

N
o

Y
e
s

N
o

R
O

M
,

D
D

H
P

,
S

tr
o
n

g
R

S
A

H
V
Z
K

P
oK

S
tr

on
g

R
S

A
,

D
D

H
P

O
(N

)

[F
S

07
]

N
o

Y
e
s

N
o

R
O

M
,

D
L

P
N
IZ
K
‡

D
D

H
P

,
N
IZ
K

ze
ro

-k
n

ow
le

d
ge

O
(N

)

[A
M

C
G

0
8]

N
o

Y
e
s

Y
e
s

R
O

M
,

M
D

P
†

H
V
Z
K

ID
-p

ro
to

co
l

U
n

co
n

d
it

io
n

al
O

(K
N

)∗
[C

L
R

S
10

b
]

N
o

Y
e
s

Y
e
s

R
O

M
,

S
IS
†

H
V
Z
K

ID
-p

ro
to

co
l

U
n

co
n

d
it

io
n

al
O

(K
N

)∗
[P

B
B

1
3]

N
o

Y
e
s

Y
e
s

R
O

M
,

M
Q

P
†

H
V
Z
K

ID
-p

ro
to

co
l,
C
om
‡

C
om

st
at

is
ti

ca
ll

y
h

id
in

g
O

(K
N

)∗

[M
H

O
Y

2
0
]

Y
e
s

Y
e
s

N
o

R
O

M
,

D
L

P
,

R
S

A
,

C
R

S
N
IZ
K
A
oK
‡,

A
C
C

D
D

H
P

,
N
IZ
K
A
oK

ze
ro

-k
n

ow
le

d
ge

O
(t

)

[H
K

S
S

20
]

Y
e
s

Y
e
s

N
o

N
IW

I‡
,
V
R
F
‡,

S
P
B
‡,

P
K
E
‡,

F
‡

V
R
F

p
se

u
d

or
an

d
om

,
ke

y
-p

ri
va

cy
;

S
P
B

in
d

ex
-h

id
in

g;
P
K
E

ke
y
-p

ri
va

cy
,

C
P

A
-s

ec
u

re
;

N
IW

I
w

it
n

es
s-

in
d

is
ti

n
gu

is
h

ab
il

it
y

O
(t

lo
g
(N

))

*
K

an
d
m

ar
e

st
at

is
ti

ca
l

se
cu

ri
ty

p
ar

am
et

er
s.

†
P

os
t-

q
u

an
tu

m
se

cu
re

p
ro

b
le

m
.

‡
G

en
er

ic
b

u
il

d
in

g
b

lo
ck

.

62

	Introduction
	Preliminaries
	Notations
	Complexity Assumptions
	Random Oracle Model
	Ideal Cipher Model
	Discrete Logarithm Problem
	(Strong) RSA Assumption
	Computational and Decisional Diffie-Hellman Problem
	Problems in Coding Theory
	Lattice Problems
	Problems in Multivariate Cryptography

	Building Blocks
	Hash Functions
	Bilinear Pairings
	Public Key Encryption
	Trapdoor Permutations
	Trapdoor Commitments
	Accumulators
	Verifiable Random Functions
	Somewhere Perfectly Binding Hashing
	Zero-Knowledge Proofs
	Shamir's Secret Sharing

	Threshold Ring Signature Definitions
	Threshold Ring Signature Definition
	Linkable Threshold Ring Signature Definition
	Traceable Threshold Ring Signature

	Threshold Ring Signature Security Definitions
	Classification
	Considerations regarding Anonymity

	Construction with Secret Sharing
	Linkable Variants
	Unlinkable Variants
	Based on Trapdoor Permutations
	Based on Bilinear Pairings
	Based on Trapdoor Commitments

	Construction with Ring Hashing
	Linkable Variants
	Based on the DLP

	Unlinkable Variants
	Based on Trapdoor Permutations
	Based on Short-Time Keys
	Based on Message Block Sharing

	Construction with Zero-Knowledge Proofs
	Linkable Variants
	Based on RSA
	Based on the DLP
	Based on VRFs

	Unlinkable Variants
	Based on the MDP
	Based on the MQP

	Conclusion
	Results
	Trends and Future Work

