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Abstract. We revisit the previous work of Arshad et al. (CODASPY 2014) about the security of
redactable graph hashing schemes. Such schemes, introduced in a series of works by Devanbu et al. (DBSec
2000, CCS 2001, Algorithmica 2004), allow to hash graphs and to release sub graphs which can be verified
against the original hash value. Arshad et al. introduce security notions for collision resistance and privacy
of graphs, where the latter should capture the infeasibility to reconstruct the full graph from the hash
value of a redacted one.

We discuss here that the original security notions of Arshad et al. are too weak. Our argument is by
virtue of intuitively insecure examples which are deemed secure according to their notion. We therefore
present stronger security definitions. We also point out the differences in the privacy notions with respect
to redactable and sanitizable schemes: In the former case anyone can produce verifiable data from the
graph, whereas in the latter case only a designated party can. Sanitizable schemes allow for stronger
privacy guarantees. We finally discuss instantiation possibilities for the various security notions.

1 Introduction
Cryptographic primitives are often used to protect static data. But with the growth of outsourcing compu-
tations and data maintenance, the need to have primitives supporting operations on the secured data has
also increased. For instance, the breakthrough construction of fully homomorphic encryption [15] allows
in principle to run now computations on encrypted data, ensuring the privacy of the data towards the
evaluating party. Even earlier, for authenticity and integrity the ideas of redactable or sanitizable signature
schemes [24, 18, 2] have introduced the possibility to sign data in such a way that external parties can
prove authenticity of partial data. This may require to protect the privacy of the redacted data, e.g., when
handing out partial medical data [3, 25, 5, 4].

1.1 Redactable Graph Hashing

In this work we look at the notion of redactable graph hashing. The idea is that one can create a hash value
of a graph such that one can later verify the hash against any (redacted) sub graph, yet possibly requiring
some additional information for the verification. The idea has been introduced by Martel et al. [20] for
(directed) acyclic graphs, with a focus on designing solutions. Recently, Arshad et al. [1] extended the
approach to cyclic graphs and augmented the security considerations by more formal definitions and claims.

The approach of redactable graph hashing is highly convincing for designing functional cryptographic
schemes. First, graphs are very general concepts such that devising constructions for graphs immediately
gives solutions for a variety of other data structures. Second, redactable hash functions instantaneously
yield redactable signature schemes. For this, one merely applies the common hash-then-sign paradigm,
where the signer signs the graph hash value with a regular signature scheme. Redaction on the graph,

1



which supposedly leaves the hash value untouched, then does not require to change the signature part for
updating the cryptographic data.

1.2 Defining Security

Arshad et al. [1] present security definitions for collision-resistance and privacy of redactable graph hashing,
as well as constructions and performance results. The former security property should guarantee that one
cannot efficiently find distinct graphs with identical hash values, and the latter one should prevent leakage
of information about the redacted parts. While Arshad et al. clearly deserve credit for putting forward the
formal requirements of such schemes, our starting point is to note that their formal security notions do not
seem to appropriately capture the desired properties. For instance, we point out that their definition of
collision resistance only captures adversaries which faithfully create hash values and redactions according
to the scheme. In general, however, adversaries may choose such data maliciously, and we indeed present a
scheme which is intuitively insecure, but provides collision resistance according to their definition.

We therefore present new definitions for the security properties, following similar approaches for
redactable and sanitizable signatures [7, 8]. Our notion of collision resistance of graph hashing demands
that the adversary cannot output a hash value and different graphs G,G′ such that they both verify against
the hash value. Of course, neither of the graphs can be a sub graph of the other one, since otherwise an
adversary could simply redact G to G′ to get different graphs for the same hash value. But the exact
formalization is even a bit more tricky, since the adversary may derive both G and G′ form a common
super graph with the same hash value.

Another shortcoming in [1] refers to the privacy notion. If one adopts the common idea of privacy from
the domain of redactable signatures, then privacy should guarantee that one cannot deduce any information
about the original graph from the redacted version. We demonstrate that the privacy definition in [1] does
not capture this property. That is, we present a scheme where redaction clearly leaks information about
the original graph, but is deemed secure according to their notion. We therefore give a new definition of
privacy in the spirit of redactable and sanitizable signatures.

1.3 Redactable Graph Hashes, or Sanitizable Graph Commitments?

An important conceptual observation we make here is that graph hashing may come in two flavors. One
flavor follows the idea of hashing more closely, and assumes that anyone can re-hash the graph in question
and check the graph against a given hash value. This usually assumes that the randomness in the hashing
step, if any at all, is made public. Redaction can then be performed by anyone. The other option is to view
the hash of a graph rather as a commitment, involving some secret randomness. This means that only a
designated party, usually called the sanitizer, can use the secret randomness to provide a verifiable proof
for redacted graphs.

Both approaches, redactable graph hashing and sanitizable graph commitments, are valid strategies in
order to give out partial and authenticated information about the full graph. In both cases the owner of
the graph may publish (a signed version of) the hash value or commitment, and subsequently give out sub
graphs, whose correctness with respect to the initial value can be verified with the help of additional data.
In the sanitization case, however, this step can be only done by a designated party holding some auxiliary
secret data. Indeed, Martel et al. [20] implicitly consider this option when they speak of a publisher for
the authenticated partial data, and made this even more explicit in a previous works [13, 12, 14]. We note
that Arshad et al. [1] purely consider graph hashing schemes.

The advantage of the commitment approach is that it facilitates the hiding of the redacted parts of
the graph. In the graph hashing setting any reasonable notion of privacy, arguing that the adversary
cannot deduce information about the original graph from seeing a redacted version, inevitably requires
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some non-trivial form of uncertainty (i.e., entropy) in the graph. The reason is that the adversary could
otherwise determine the full graph by matching the given hash value against (publicly computable) hash
values of potential super graphs.

The terminology in our paper will be general enough to capture both cases simultaneously. Only for
privacy we need to make a slight distinction. For sake of simplicity we will subsume both notions under
the term redactable graph hashing.

1.4 Constructions

Finally, we show that our security properties can be met. Our construction follows the approach of Arshad
et al. [1] by decomposing the graph into nodes and edges, and hashing all these components individually
with a cryptographic hash function. Yet, while the approach in [1] requires a special treatment of edges
violating the common tree structure, we do not make a fine-grained distinction.

Interestingly, our basic construction works for all of the aforementioned security properties by switching
to a different component for the cryptographic hash function. If one is only interested in collision resistance,
but not privacy, for the redactable hashing scheme, then a common collision-resistant cryptographic hash
function for the individual hashes suffices. If one is interested in privacy for the hashing scheme, then we
show that a strong form of perfectly one-way hash function [9, 10] works. We also argue that this function
can be built easily from a random oracle. Finally, if one is interested in privacy for a sanitizable graph
commitment scheme, then one can use a non-interactive commitment scheme for processing the nodes and
edges. The commitment in turn can be derived from a collision-resistant hash function. In all cases we
prove the constructions to be secure according to our notions.

In all cases, however, the size of a hash becomes quite large. This also holds for the solution in [1]. We
therefore also discuss how one can shrink the size by using Merkle hash trees [21] with a collision-resistant
hash function. This version preserves our corresponding security properties.

1.5 Comparison to Related Concepts

As mentioned before, our work is inspired by the work of Arshad et al. [1] about security notions for
redactable hashing of general graphs. This work itself is based on preliminary work in this area of Martel
et al. [20] and Devanbu et al. [13, 12, 14]. The idea of being able to redact (or to sanitize) structured data
appears in many different contexts, e.g., [19, 6, 16, 22, 23].

The idea of redactable graph hashing is clearly related to the notion of redactable signature schemes.
Such signature schemes, however, often operate on strings and message blocks instead of graphs. Still they,
too, often apply ideas like Merkle hash trees for constructions. Yet, they usually do not consider collision
resistance (of graph hashing) as an abstract security goal itself and thus do not define this property. Also,
when processing strings, there is no need to distinguish explicitly between privacy of the structure and
privacy of the content.

The idea of sanitizable graph commitments is related to the notion of sanitizable signatures. The
same discussion about the difference between redactable graph hashes and redactable signature schemes
applies here: Collision resistance and privacy of the more complex structure are usually not considered for
sanitizable signatures. For sanitizable graph commitments we do not consider additional security properties
sometimes discussed for sanitizable sigantures. This refers to properties such as unlinkability, an even
stronger form of privacy guaranteeing that one cannot link redactions of the same graph, or accountability,
saying that one can provide a proof who sanitized the graph.
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2 Preliminaries
Graphs. A directed labeled graph G = (V,E, content) is a set of nodes (or vertices) V and a set of
edges E ⊆ V ×V , where each edge has a source and a destination node. The content (or labeling) function
content : V ∪ E → C maps the nodes and edges to some string in the content space C ⊆ {0, 1}∗. In
the following we sometimes write e(u, v) to denote the edge e with source node u and destination node
v. We usually denote the number of nodes by |V | = n and the number of edges by |E| = m. A sub graph
Gsub = (Vsub, Esub, contentsub) of G, written Gsub ⊆ G, is itself a graph and satisfies Vsub ⊆ V and
Esub ⊆ E ∩ Vsub × Vsub, as well as contentsub(x) = content(x) for all x ∈ Vsub ∪ Esub.

For hashing the graph it is convenient to associate an absolute order on the nodes and edges. That
is, we assume that there exists an implicit injective mapping order : V ∪ E → {1, 2, . . . ,m + n}. For
example, for some order on the nodes v1, . . . , vn and the edges e1, . . . , em, e.g., according to their position in
the digital representation, the function could be defined by order(vi) = i and order(ei) = n+ i. This
ordering also allows us to identify each node and edge with a number between 1 and m+ n. In addition,
for privacy reasons we also use a random order in the sense that we introduce a random permutation
π : {1, 2, . . . ,m+ n} → {1, 2, . . . ,m+ n}. Composing this with the ordering order this gives a bijection
orderπ = π ◦ order from V ∪ E to {1, 2, . . . ,m+ n}.

Redactable Graph Hashing. Recall that we treat both redactable graph hashes as well as sanitizable
graph commitments integratively, and only speak of redactable graph hashes. The difference between the
two cases shows in the approach below when already the hashing algorithm outputs some secret information
vo, called verification object in [20, 1], necessary to create verification data vosub for a sub graph Gsub.

The key generation and hashing algorithms HKGen and Hash follow the common approach for defining
hash functions. In addition, we introduce a redaction algorithm HRedact. Since we consider randomized
outputs for both hash values and commitments, we cannot necessarily recompute the hash value of some
input and compare it to a given value. We therefore more abstractly introduce a verification algorithm HVf
which checks the validity of a hash value. To define a reasonable notion of collision-resistance later, we need
to distinguish the cases that the verification algorithm HVf checks for a full hash value or for a redacted
value, and hence pass the operation mode vfmode ∈ {hashed, redacted} as additional input to HVf.

Definition 2.1 (Redactable Graph Hashing) A redactable graph hashing scheme H = (HKGen, Hash,
HRedact,HVf) consists of four probabilistic polynomial-time algorithms:

Key Generation: The key generation algorithm, on input the security parameter 1n, outputs a public
hash key, hk←$ HKGen(1n).

Hashing: On input the hash key hk and a graph G, the (probabilistic) hashing algorithm returns a hash
value, together with a (potentially empty) verification object, (gh, vo)←$ Hash(hk, G).

Redaction: On input the hash key hk, a hash value gh, a graph G, a sub graph Gsub ⊆ G, and possibly empty
data vo, the (probabilistic) redaction algorithm returns a proof, vosub←$ HRedact(hk, gh, G,Gsub, vo).

Verification: On input the hash key hk, a hash value gh, a graph G, a (potentially empty) proof vo,
and a mode identifier vfmode ∈ {hashed, redacted}, the verification algorithm returns a decision bit,
d←$ HVf(hk, gh, G, vo, vfmode).

We assume the usual correctness property that genuine hash values of graphs are accepted, i.e., for any
security parameter n, any hk←$ HKGen(1n), any graph G, and any hash value (gh, vo)←$ Hash(hk, G), we
have HVf(hk, gh, G, vo, hashed) = 1 with probability 1. Furthermore, the same holds recursively for properly
redacted values, i.e., for any n, any hk←$ HKGen(1n), any triple (gh, G, vo) with HVf(hk, gh, G, vo, vfmode) =
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ExpCR
H,A(1n)

1 : hk←$ HKGen(1n)
2 : (gh, G,G′, vo, vo′)←$A(hk)
3 : return 1 if
4 : G′ 6⊆ G and HVf(hk, gh, G, vo, hashed) = 1
5 : and HVf(hk, gh, G′, vo′, vfmode′) = 1 for some vfmode′ ∈ {hashed, redacted}

Figure 1: Collision-Resistance Experiment for Graph Hashing

1 for some vfmode ∈ {hashed, redacted}, for any Gsub ⊆ G and any vosub←$ HRedact(hk, hval,G,Gsub, vo),
we also have HVf(hk, gh, Gsub, vosub, redacted) = 1 with probability 1.

3 Security Properties
In this section we define our notions of collision resistance and of privacy. The latter comes in two fla-
vors, depending on whether one considers graph hashing or graph commitments. We also scrutinize the
shortcomings of the definitions in [1] at the end of this section.

3.1 Collision Resistance

The underlying idea behind defining collision resistance is that the adversary should neither be able to find
different graphs which verify under the same hash value, nor to make the verifier accept a graph which is
not a sub graph of the graph belonging to the hash value. The latter already includes the case of different
graphs, such that there is no need to distinguish the two events below.

The redaction property introduces some additional complications with the above approach. Assume
that the adversary creates the hash value gh for some graph G, and then redacts this graph with the hash
value twice, for two distinct sub graphs Gsub, G

′
sub. By construction both graphs would result in the same

hash value gh, only the verification objects would differ, but they are a means to an end, similar to the
randomizer for computing the hash value.

One option to prevent “trivial” redaction attacks would be to declare the adversary to lose if there
exists a common super graph to the colliding graphs. But there may always exist such a graph for the hash
function with shrinking output, such that we rather ask the adversary to specify the super graph. That is,
we let the adversary win if one of the graphs verifies as a full hash, and the other graph may either verify
as a full hash or a redacted one. In any case, the second graph must not be a sub graph of the former one.

To given an argument for the appropriateness of our notion of collision resistance consider once more
the setting where a party outputs the (signed) hash as a commitment to the full graph G. Then the party
should not be able to later present a graph for the hash value which is not a sub graph of G. This is indeed
captured by our notion of collision resistance.

We give our definition in terms of asymptotic security; a concrete statement is easy to deduce.

Definition 3.1 (Collision-Resistance) A redactable graph hashing scheme H is collision-resistant if
for any probabilistic polynomial-time algorithm A the probability

Prob
[
ExpCR

H,A(1n)
]
≈ 0

for the experiment ExpCR
H,A(1n) in Figure 1 is negligible.
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3.2 Privacy

Privacy can be divided according to the two views on graph redaction schemes, one time if viewed as a
hash value, and the other time if seen as a commitment. The difference between the privacy is roughly as
follows: Suppose that you see a redacted graph and its hash value gh. In the hashing setting, if you have
high confidence that the graph originates from a super graph then you can check the super graph against
the public hash value gh to achieve certainty. In the commitment case, however, you would not be able to
decide between two possible super graphs, since you cannot recompute the commitment without knowledge
of the secret randomness. We hence need to distinguish between privacy notions for the two settings.

Content-Privacy for Hash Values. For the hash scenario we follow the approach of Canetti et al. [9, 10]
of so-called perfectly one-way hash functions. Arshad et al. [1] have also based their definitions on this
idea. Such hash functions assume that the input value x carries enough entropy such that searching for
the right pre-image to the (randomized) hash value (r, h(y; r)) is infeasible. The hiding property of such
hash functions demands that t hash values of the same input y (with fresh randomness r1, . . . , rt) are
indistinguishable from t hash values of completely independent inputs (yi, ri). Canetti et al. [10] show
that for t = 2 this already implies “semantic” privacy in the sense that, from a hash value, one cannot
non-trivially compute anything about the pre-image.

We call our notion for redactable graph hashing here content privacy, because it relies on the individual
entropy in the content value of nodes and edges and does not aim to hide the structure of the graph.
Intuitively, the following notion of non-trivial entropy says that one cannot predict efficiently the content of
a redacted element, even if one sees all the content of the rest of the graph.1 Formally, we say that a graph
G has non-trivial entropy with respect to a sub graph Gsub if for each element x ∈ (V ∪E) \ (Vsub ∪Esub)
the conditional min-entropy

H∞(content(x)|content((V ∪ E) \ {x}) = ω(logn)

is super-logarithmic in the security parameter n. Here the probability is over the choice of (the randomness
for) content, and content((V ∪ E) \ {x}) is the sequence (y, content(y)) for all elements y in
(V ∪ E) \ {x}.

To define privacy we assume that the adversary picks a (sub) graph Gsub and an efficiently samplable
distribution G which generates super graphs of Gsub such that the generated graph G ← G(1n) always
satisfies Gsub ⊆ G, G has a non-trivial entropy with respect to Gsub, and all graphs G have the same super
sets V and E. We call such distributions G well-formed with respect to Gsub. Then, the adversary either
gets to see t hashes of the same random graph G, or we generate t independent graphs Gi ← G(1n) and
return hashes of these graphs. In the definition below we assume that t is a fixed polynomial in the security
parameter. The adversary’s goal is to decide which kind of hashes the challenger has created.

Definition 3.2 (Content-Privacy) A redactable graph hashing scheme H is t-content private if for any
probabilistic polynomial-time algorithm A the probability

Prob
[
ExpContPriv

H,A,t (1n)
]
≈ 1

2
for the experiment ExpContPriv

H,A,t (1n) in Figure 2 is negligibly close to 1
2 .

Note that, by construction, the well formedness of the distribution G ensures that all potential super
graphs have the same sets V and E, such that our privacy experiment does not aim to hide the structure
of the original graph.

1One could merely ask for non-trivial entropy in all redacted elements together, but leaving the choice about the sub graph
to the adversary, and in particular over all sub graphs with one element missing, implies the above notion of individual entropy.
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ExpContPriv
H,A,t (1n)

1 : hk←$ HKGen(1n)
2 : (st, Gsub,G)←$A(hk) // distribution G must be well-formed

3 : b← {0, 1}
4 : if b = 0 then
5 : G← G(1n)
6 : for i = 1..t do (ghi, voi)← Hash(hk, G) endfor
7 : else
8 : for i = 1..t do
9 : Gi ← G(1n)

10 : (ghi, voi)← Hash(hk, Gi)
11 : endfor
12 : fi
13 : a← A(st, gh1, voi, . . . , ght, vot)
14 : return 1 if a = b

Figure 2: Content-Privacy Experiment for Graph Hashing. A distribution G is well-formed with respect to Gsub if it generates
only super graphs of Gsub which have the same super sets V and E, and which have non-trivial entropy with respect to Gsub.

Also observe that we assume that edges are labeled, too, and that the content of a redacted edge has
non-trivial entropy (even if one is given the contents of the start and end node). This is necessary for
a general definition, since the redacted part could only remove some edges. In this case if there was no
uncertainty in the edge, e.g., if its content is defined by the content of the two nodes, then the adversary
could again check whether the edge has been there or not.

Graph-Privacy for Commitments. Next we look at the privacy of graph commitments. Here we drop
the requirement on the entropy of the graph, and instead assume that the adversary chooses Gsub, G0, G1
at will, with the only stipulation that Gsub ⊆ G0, G1 and that G0, G1 have the same number of nodes and
edges. The adversary then gets to see the commitment to either of the graphs, but not the verification
objects vo. The adversary also receives the decommitment vosub to the subgraph. Graph privacy demands
now that the adversary cannot identify the original graph better than with the guessing probability. It
suffices here to consider a single challenge commitment since, contrary to content privacy for graph hashes,
the privacy for multiple commitments here follows from the single case via a hybrid argument.

Definition 3.3 (Graph-Privacy) A redactable graph hashing scheme H is graph-private if for any prob-
abilistic polynomial-time algorithm A the probability

Prob
[
ExpGraphPriv

H,A (1n)
]
≈ 1

2

for the experiment ExpGraphPriv
H,A (1n) in Figure 3 is negligibly close to 1

2 .

3.3 Evaluation of the Definitions of Arshad et al. [1]

In this section we evaluate the security definitions of Arshad et al. [1], after some obvious corrections for
typos and stated within our terminology.

7



ExpGraphPriv
H,A (1n)

1 : hk←$ HKGen(1n)
2 : (st, Gsub, G0, G1)←$A(hk) // Gsub ⊆ G0, G1

3 : b← {0, 1}
4 : (gh, vo)← Hash(hk, Gb)
5 : vosub←$ HRedact(hk, gh, Gb, Gsub, vo)
6 : a← A(st, gh, vosub)
7 : return 1 if a = b

Figure 3: Graph-Privacy Experiment for Graph Commitments. The graphs G0, G1 must have the same number of nodes and
edges.

Collision Resistance. For the randomized hashing the definition in [1] includes a sampling algorithm
R which outputs a random string rnd for the hash evaluation. We denote the hashing step for graph G
and fixed randomness as Hrnd

hk (hk, G). The adversary gets to see this randomness before deciding upon the
graphs. The adversary wins if it outputs distinct graphs G,G′ with sub graphs Gsub, G

′
sub, such that either

the faithfully computed hash values gh, gh′ of G and G′ coincide, or if a genuine redaction yields a valid
response for the other hash value, i.e., Gsub and vosub match gh′, or if G′sub and vo′sub match gh.2

The main drawback of the definition in [1] is that it only covers honestly generated values for gh, vo, vosub
etc. Start with a scheme which is collision-resistant according to their definition. Modify the redaction
algorithm such that verification objects vosub, generated by HRedact, always carry a bit ‘0’ in front. The
modified verifier (in mode redacted) will always accept a given hash if the first bit in the input vosub is ‘1’,
and else runs the original verification procedure. This modified scheme would still be a correct redactable
graph hash scheme. But an adversary could easily output vosub with a leading ‘1’ to make the verifier
accept any redacted graph and hash value, making it easy to find collisions. The security model in [1],
however, would exclude such an attack by definition, because genuine values always start with ‘0’. The
scheme would indeed preserve collision resistance in the sense of the definition, showing that the notion is
not strong enough to capture admissible attacks.

We stress that in our collision-resistance experiment the adversary may choose arbitrary hash values
and verification objects, such that the above successful adversary would correctly confirm that the scheme
is indeed not collision-resistant according to our notion.

Privacy. Arshad et al. [1] describe two privacy experiments in their work. The first one is similar to our
content-privacy experiment and says that the adversary cannot determine if it is given two hash values of
either the same graph or different graphs. Yet, their experiment only considers full hash values and does
not look at the privacy of redacted graphs. More precisely, the adversary is given two hashes, either of the
same random graph G, of the second hash value is computer over a different random graph G′, the choice
depending on a secret bit b. The adversary should output a guess for b.3

The second privacy experiment in [1] considers a random graph G with two random sub graphs
Gsub,0, Gsub,1. One first computes the hash of G and then two redacted hash values of either Gsub,0, or one

2In our version here we corrected a flaw in the experiment in [1] where one mistakenly compares a hash value against the
output of the verification algorithm.

3Interestingly, in the experiment the bit b is actually not used in the data communicated to the adversary, such that no
adversary can do better than guessing and hence any scheme would satisfy this notion of privacy. From the description it
seems reasonable to assume that our interpretation here actually complies with the intention of the authors. We also ignore
the fact that the exact requirements on the distribution on the graphs are not specified.
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of Gsub,0 and one of Gsub,1, the choice again made according to a secret bit b. It should be now be hard to
decide which case has occurred.4

Let us first argue that the two definitions of privacy do not seem to guarantee the usual notion of
privacy of the redacted parts of the original graph. Assume that we have a redactable graph hashing scheme.
Modify the redaction algorithm HRedact now such that, on input G,Gsub (and potentially the hash value
gh of G), it creates the verification object vo as before, but now also appends some information about
original graph G in clear to vo, e.g., for sake of concreteness suppose it appends the edges and the contents
of redacted nodes.

As for privacy note that, if one sees the redacted graph with the augmented verification object, then this
clearly leaks information about the original graph. At the same time, if the underlying scheme satisfies the
two privacy experiments before, then so does the modified scheme for some “natural” graph distributions.
The reason is that the first security experiment only considers full hash values —which remain unchanged—
and the sub graphs in the second experiment both start from the same original graph, such that they
contain the same data in the verification object.

Consider for example distributions generating complete graphs where the content of each node is
determined by an independent random string from {0, 1}n, and where the sub graphs remove a distinct
node (say, the first one in some fixed order) and all edges from or to this node. Then we can formally prove
privacy of redacted graphs for such distributions for our modified scheme via reduction to the privacy of
the original scheme. The reduction can easily simulate the information about the redacted node by picking
a random content and adding it and the edges to the verification object vosub, such that privacy according
to the definitions would be preserved. Since, on the other hand, actual data is leaked, the example shows
that the two privacy requirements are too weak.

Let us again emphasize that content privacy according to our definition is easy to violate by picking the
well-formed distribution which augments the sub graph to a complete super graph with random content.
Then putting the redacted information into the verification object, as in the scheme above, allows to
distinguish different graph with overwhelming probability.

4 Constructions
In this section we describe our construction of a redactable graph hashing scheme.

4.1 Basic Construction

The basic construction is similar to the idea [1] and first hashes all nodes and edges individually. Then one
can use advanced structures like iterated hash function evaluations or Merkle hash trees to combine these
hash values into a shorter representation. We outline the second step in Section 4.6 but focus on the basic
hashing step for now.

The hashing is based on a cryptographic hash function (for redactable graph hashing) or on a com-
mitment (for sanitizable graph commitments). To capture all possibilities simultaneously, randomized
hash functions, random oracle based solutions, and commitments, we abstractly speak of a cryptographic
hash function CHash = (CHKGen,CHash,CHVf). This function consists of a key generation algorithm
chk← CHKGen(1n), the (probabilistic) hash function (ch, cvo)← CHashRO(chk, y), having possibly access
to a random oracle RO : {0, 1}∗ → {0, 1}n and possibly generating some additional verification object, as

4The same discussion as in the first experiment about the misplaced secret bit b and the under-specified graph distributions
applies here as well. We also note that Arshad et al. [1] define privacy to hold if the probability that the adversary wins the
first or the second experiment is negligibly close to 1

2 . However, note that an adversary outputting a coin toss would win in at
least one of the experiments with probability 3

4 , such that no scheme could achieve the notion in [1]. The obvious correction,
which we also assume from now on, is that for both experiments the individual probability is negligibly close to 1

2 .
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well as the verification algorithm d ← CHVfRO(chk, ch, cvo, y). Note that this also captures commitment
schemes where cvo corresponds to the (initially secret) decommitment. We discuss the required security
properties when presenting the concrete instantiations for the different cases.

Our construction of the redactable graph hashing schemeH = (HKGen,Hash,HRedact,HVf) is as follows.
Key Generation HKGen(1n): The key of our graph hashing scheme is given by the key of the crypto-

graphic hash function hk = chk← CHKGen(1n).

Hashing HashRO(hk, G): To hash a graph G = (V,E, content) we first pick a random permutation π
over {1, 2, . . . ,m+ n} for the ordered entries in V and E. Then we go through the nodes and edges.
For each node v ∈ V we compute with the cryptographic hash function the value

(chv, cvov)← CHashRO(chk, 0||v||content(v)).

For each edge e ∈ E we compute the hash value

(che, cvoe)← CHashRO(chk, 1||e||content(e)).

In both case we assume that the node or edge identifier is represented with some fixed-length encoding
(in the sum of numbers n of nodes and m of edges).
The overall hash value gh of the graph is given by the individual hash values chx of all elements
x ∈ V ∪E according to the random order orderπ. Note that this in particular means that the hash
value reveals the number of elements |V | + |E| of the graph. The verification object vo consists of
(a description of) the random permutation π and all individual verification objects cvo in the same
order orderπ. For sake of concreteness we assume that the description of π is given by the sequence
(π(1), . . . , π(m+ n)). Then we have

gh← (chorder−1
π (1), . . . , chorder−1

π (n+m))

vo← (π, cvoorder−1
π (1), . . . , cvoorder−1

π (n+m)).

Redaction HRedactRO(hk, gh, G,Gsub, vo): To redact a hash value gh, consisting of a sequence of hash
values ch, first check that Gsub really is a sub graph of G and that the hash values ch for all nodes
and edges in the sub graph are correct. If so, then replace all verification objects cvo in vo of nodes
and edges which do not appear in Gsub by a special symbol ⊥. The position can be easily determined
with the help of the random order orderπ. Then, also redact the description of the permutation π
by creating πsub : Vsub∪Esub → {1, 2, . . . ,m+n} which coincides with the values of π for all elements
x in the sub graph:

π(order(x)) = πsub(ordersub(x))
for the implicit order ordersub for the sub graph. In particular, the description of πsub consists of a
sequence of |Vsub|+ |Esub| distinct numbers from {1, 2, . . . ,m+ n}. Let vosub be the redacted object.

Verification HVfRO(hk, gh, G, vo, vfmode): The algorithm first checks that G has at most the same num-
ber of nodes and edges as there are entries ch in gh = (ch1, . . . , chm+n). If so, then recover the order
orderπ from the verification object vo = (π, cvo1, · · · cvom+n). For each node v in G check for the
orderπ(v)-th entries chorderπ(v) (in gh) and cvoorderπ(v) (in vo) that

cvoorderπ(v) 6= ⊥ and CHVfRO(chk, chorderπ(v), 0||v||content(v), cvoorderπ(v)) = 1.

For each edge e in G check for the orderπ(e)-th entry chorderπ(e) and cvoorderπ(e) that

cvoorderπ(e) 6= ⊥ and CHVfRO(chk, chorderπ(e), 1||e||content(e), cvoorderπ(e)) = 1.

Finally, for mode vfmode = hashed also check that there is no entry cvo = ⊥ in vo. If all these tests
succeed, then output 1; else return 0.
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4.2 Collision Resistance of the Basic Construction

We first argue collision resistance of the basic construction, based on the security properties of the underlying
cryptographic hash function CH. Assume that this hash function is collision-resistant in the sense that
for any probabilistic polynomial-time algorithm C the probability that (ch, ch′, cvo, cvo′, y, y′) ← CRO(hk)
satisfies y 6= y′, CHVfRO(hk, ch, cvo, y) = CHVfRO(hk, ch′, cvo′, y′) = 1 is negligible, where the probability
is taken over the choice hk ← CHKGen(1n) and C’s internal coin tosses. Denoting this experiment by
ExpColl

CH,C(1n) we thus require that
Prob

[
ExpColl

CH,C(1n)
]
≈ 0

for any probabilistic polynomial-time algorithm C.

Theorem 4.1 If CH is a collision-resistant hash function, then our redactable graph hashing scheme in
Section 4.1 is collision-resistant. That is, for each probabilistic polynomial-time adversary A there exists a
probabilistic polynomial-time adversary C such that

Prob
[
ExpCR

H,A(1n)
]
≤ Prob

[
ExpColl

CH,C(1n)
]
.

Proof. Assume that we have an adversary A against the collision resistance of the graph hashing scheme.
In particular, A on input hk = chk outputs (gh, G,G′, vo, vo′) such that G verifies (as a full hash in mode
hashed), and G′ verifies in an arbitrary mode, but such that G′ 6⊆ G. It is straightforward to build an
adversary C against the underlying hash function. Adversary C receives a key chk as input and invokes A
on input hk = chk to obtain A’s output (gh, G,G′, vo, vo′). Algorithm C produces its collision as described
next, where C always succeeds in finding a collision if A succeeds for the graphs.

Note that G verifies in mode hashed. This means that all entries ch in gh are valid hash values of
the corresponding node or edge. Next, observe that G′ = (V ′, E′, content′) is not a sub graph of
G = (V,E, content). It must thus have a node v′ ∈ V ′\V or an edge e′ ∈ E′\E, or, alternatively, it must
have a different content content′(x) 6= content(x) for one of the elements x ∈ (V ′ ∪ E′) ⊆ (V ∪ E).

In the first case, a fresh node v′ /∈ V , verification of the redacted graph in our scheme can only succeed
if the value 0||v′||content′(v′) verifies under the cryptographic hash function CH for one of the entries.
Since all entries for G are hash values of different nodes v 6= v′, or start with a bit ‘1’ for edges, this can
only happen if adversary A produces a collision.5 This collision can be easily identified and output by
adversary C. The second case, a fresh edge e′ /∈ E, follows analogously.

The final case is that the graph G′ has a different content in some element x. If the permutation π′ in the
verification object vo′ of G′ points to a different position in the hash value than for G, we immediately get a
collision as in the previous cases. Else, both permutations map this element x to the same unique position.
Verification can now only succeed if both (distinct) values ξx||x||content(x) 6= ξ′x||x||content′(x)
verify under the same hash value ch, where ξx and ξ′x are 0 (for a node) and 1 (for an edge). This collision
is again easy to find for adversary C. �

4.3 Content-Privacy of the Basic Construction

We next argue content-privacy of our basic construction. Recall that in the experiment the adversary
chooses a sub graph Gsub and a well-formed distribution G, meaning that all randomly generated graphs
are super graphs of Gsub, have the same sets V and E, and have non-trivial entropy with respect to G. The
adversary then gets to see t hashes (and verification objects) of the same super graph, or of t independent
super graphs, and should decide which is the case.

5Let us stress here that prepending the bit ‘0’ or ‘1’ excludes confusion of hashes when V ′ may have a non-empty intersection
with E.

11



For the content privacy we need that the underlying hash function is t-valued perfectly one-way [10].
This means that for a non-trivial input distribution Y one cannot distinguish t (randomized) hash values
of the same pre-image y ← Y(1n) from t hashes of independent samples y1, . . . , yt ← Y(1n). More formally,
let (st,Y) ← D(chk) and d ← D(st, ch1, vo1, . . . , cht, vot) where, depending on a random bit b ← {0, 1},
either (chi, voi)← CHash(chk, y) for y ← Y(1n), or (chi, voi)← CHash(chk, yi) for y1, . . . , yt ← Y(1n). The
probability, over the choice of chk, the sampling of b, y resp. y1, . . . , yt, the hashing steps, and D’s internal
randomness, that b = d should be negligible close to 1

2 . For any well-formed distribution Y, i.e., which has
super-logarithmic min-entropy.

For our theorem we actually need a multi-dimensional version of the above property, saying that the
distribution Y outputs a vector (x1, . . . , xs) of values, where each xi has super-logarithmic min-entropy,
even when seeing the other values. Each entry is hashed individually (with fresh randomness), and the
adversary gets to see either t hashes of the same vector, or of t independently sampled vectors. Denoting
the experiment by ExpPOW

CH,D,s,t(1n) we thus require that

Prob
[
ExpPOW

CH,D,s,t(1n)
]
≈ 1

2

for any probabilistic polynomial-time algorithm D. We call such functions (s, t)-valued perfectly one-way
hash function and argue later how to instantiate them.

Theorem 4.2 If CH is a (s, t)-valued perfectly one-way hash function, then our redactable graph hashing
scheme in Section 4.1 is content-private for parameter t. That is, for each probabilistic polynomial-time
adversary A there exists a probabilistic polynomial-time adversary D such that

Prob
[
ExpContPriv

H,A,t (1n)
]
≤ Prob

[
ExpPOW

CH,D,s,t(1n)
]

where s is bounded by the number of elements V ∪ E in graphs generated according to distribution G for
security parameter n.

Proof. Assume that we have an adversary A against the content-privacy of the graph hashing scheme. We
build an adversary D against the multi-valued perfectly one-way hash function. Our adversary D against
CH receives a hash key chk and forwards this to A. Adversary A outputs stA, Gsub and a well-formed
distribution G. Our adversary D generates a distribution Y which samples a graph G according to G and
then outputs the values ξx||x||content(x) according to the order of elements, but only for those
elements x which are not in Gsub. Here ξx is again the bit indicating whether the element is a node or
an edge. Since we assume that G is well-formed, each content value content(x) has super-logarithmic
min-entropy, even given the other values, such that the distribution Y is admissible.

Our adversary D augments each of the t vectors of values by locally computing the values (chx, cvox)←
CHash(chk, ξx||x||content(x)) for all x in the sub graph. For each of these augmented t vectors of now
m+ n elements our adversary picks a random permutation πi and creates the hash value and verification
objects according to the scheme’s description. Adversary D hands over stA and all hashes ghi, voi for
i = 1, 2, . . . , t to adversary A. When A returns a bit a, then our algorithm D, too, returns this bit.

For the analysis note that if the challenger in the perfectly one-wayness experiment creates the t hash
vectors according to a single sample from Y, then this perfectly mimics the content-privacy game where
the same graph is used. Analogously, if we obtain independent hashes, then this perfectly mimics the
content-privacy experiment in this case. This is true since all possible super graphs have the same structure
V and E, such that the elements of the sub graphs appear at the same ordered positions, in both cases.
Therefore, the actual random positions of the elements in the sub graph together with the information
about π do not reveal anything about the super graph.6 �

6This would not be true if the distribution G could generate different structures, because the adversary could then identify
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4.4 Graph-Privacy of the Basic Construction

Graph privacy says that the adversary, picking Gsub and super graphs G0, G1 of the same number of
elements, cannot distinguish redacted hash values (and the redacted verification object) when we start
with either G0 or with G1 and redact to Gsub. Note that the adversary does not get to see the original
verification object.

For the security we need the hash function to be a commitment scheme, having the same collision
resistance property as before (also called binding property in the context of commitments) and also the
hiding property. The latter says that any adversary H, upon input chk determining two inputs y0, y1,
and receiving the hash value chk of (chk, cvo) ← CHash(chk, yb) for random bit b ← {0, 1} but not the
verification object (aka. decommitment), cannot predict b significantly better than by guessing. More
formally, let (st, y0, y1) ← H(chk) and h ← H(st, ch) where, depending on a random bit b ← {0, 1},
either (ch, cvo)← CHash(chk, yb). Denoting the experiment by ExpHide

CH,H(1n) we thus require for a hiding
commitment scheme that

Prob
[
ExpHide

CH,H(1n)
]
≈ 1

2

for any probabilistic polynomial-time algorithm H, where the probability is defined over the choice of chk,
the bit b, and H’s internal randomness.

We note that, via a standard hybrid argument, it is also hard to distinguish sequences of commitments,
either all for “left” values x0,1, . . . , x0,t or all for “right” values x1,1, . . . , x1,t, both sequences chosen by the
adversary. The advantage (over the guessing probability 1

2) in distinguishing such sequences versus the
advantage for a single commitment, is at most a factor t larger. In our setting, t = m+n will be polynomial
such that the advantage is still negligible.

Theorem 4.3 If CH is a hiding commitment scheme, then our redactable graph hashing scheme in Sec-
tion 4.1 is graph-private. That is, for each probabilistic polynomial-time adversary A there exists a proba-
bilistic polynomial-time adversary D such that

Prob
[
ExpGraphPriv

H,A (1n)
]
≤ 1

2 + (n+m) ·
∣∣∣∣Prob

[
ExpHide

CH,H(1n)
]
− 1

2

∣∣∣∣ .
Proof. Consider again an adversary A against the graph privacy, outputting Gsub, G0, G1 after having seen
hk, and being able to predict the bit b from the redacted hash value for graph Gb. From A we construct an
adversary H against the hiding property of the commitment scheme (where we assume that H receives a
sequence of at most m+ n commitments).

Algorithm H initially receives the commitment key chk and forwards it to A. It then gets graphs
Gsub ⊆ G0, G1 (and some state information stA). Algorithm H picks a random order orderπ for the two
graphs G0, G1 (with the same number of elements). To prepare the simulated commitment of the graph for
A, for each element x in Gsub algorithm H computes (chx, cvox)← CHash(chk, ξx||x||content(x)) locally,
where the bit ξx is 0 or 1, depending on whether x is a node or an edge. For all the other elements x in
graph G0 it prepares the sequence of values ξ||x||content(x), leaving out elements in Gsub. Denote this
sequence of t = m+n−|Vsub|−|Esub| entries as X0. The order here is irrelevant. Prepare the (equal-length)
sequence X1 for G1 analogously. Algorithm H outputs X0, X1 for the commitment challenge.

WhenH receives a sequence (ch1, . . . , cht) as a challenge, it creates the (redacted) value in the simulation
of A as follows. First it permutes the values ch1, . . . , cht randomly. Then it “mixes in” the locally computed
values for elements in Gsub at random positions. Collect this mapping of the elements in the sub graph
in a random mapping πsub. This yields a hash value gh. For the verification object of the redacted graph

via π where the elements of the sub graph appear in the order of the super graph. These positions usually vary for t independent
samples.
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compute a vector (⊥, . . . ,⊥) and insert the locally computed objects cvo for elements in Gsub at the right
positions according to πsub, such that together with πsub one obtains vosub.

Continue A’s execution on stA, gh, vosub to obtain a bit a. Return a as the prediction for the secret bit
b in the commitment game, too.

For the analysis note that if the commitment challenger commits to the sequence X0, i.e., b = 0, then
we obtain a perfect simulation of a sanitized commitment of graph G0. The reason is that the initial hash
computation according to the graph-privacy experiment would randomly permute the entries in the hash
value and place the elements of the sub graph at random positions. The redacted verification object would
thus, besides the decommitments of such elements, also contain a random position for each element. This
is identical to our construction.

The argument for b = 1, when receiving commitments to X1, is identical and shows that A’s view is
perfectly simulated as in the game where G1 is redacted. Hence, A’ prediction capabilities from the graph
privacy experiment immediately transfer to H’s attack against the commitment scheme, we only lose the
factor m+ n due to the fact that we use multiple commitments. �

4.5 Instantiations

The above general construction does not specify the underlying cryptographic hash function. We discuss
here potential instantiations for the hash function.

Collision-Resistance. If we are purely interested in a collision-resistant redactable graph hashing, then
any common collision-resistant hash function will work. Here, a deterministic collision-resistant function
suffices, where the verification object is empty and verification is performed by re-computing the hash value
and comparing it to the given value.

Content-Privacy. If we are interested in content-privacy then it is tempting to take a t-valued perfectly
one-way hash function. Such hash functions can be built from regular collision-resistant hash functions [10].
Yet, we need a multi-dimension version of it, and in general it is not known if a t-values function has this
property. The reason is that the input may have sufficient individual min-entropy, but it may be highly
correlated, such that a common hybrid argument may thus not be immediately applicable.

A random oracle based solution works, though. For this define CHashRO(hk, y) to return the random
oracle value RO(r||y) together with the fixed-length randomness r ∈ {0, 1}n. Then the function is collision-
resistant, since a random oracle has this property. Also, the individual super-logarithmic min-entropy
ensures that the adversary most likely does not query any of the unknown pre-images, except with negligible
probability. But then the hash values (of the same y or distinct y1, . . . , yt) are perfectly indistinguishable
for the adversary, for any polynomial number of samples.

Graph-Privacy. For graph-privacy any (non-interactive) commitment scheme processing arbitrary input
lengths suffices. As a concrete example one can use the one based on collision-resistant hashing [11, 17].
Alternatively, one can use a random oracle based solution via RO(r||y), where r ∈ {0, 1}n together with y
serves as the verification object/decommitment.

4.6 Deploying Hash Trees

Our basic solution is quite expensive in terms of the length of hash values. The hash values are linear in
|V | + |E|. We note that one can build a Merkle hash tree [21] on top to shrink hash values to a single
element. That is, starting from the given individual hash values, one progressively hashes together two
values from the previous stage in a tree structure, till one reaches a single root node.
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To avoid collisions with the hashing of nodes an edges we propose domain separation and let each hash
computation in the tree start with ‘2’, where it is understood that now the numbers ‘0’ and ‘1’ in the basic
construction are represented with two bits. Furthermore, the construction requires that one can actually
re-compute a hash value ch from the input and the verification object. This is usually the case for hash
functions with public randomness.

4

32

1
5 6

7

8
a = h1 b = h2 c = h3 d = h4 e = h5 f = h6 g = h7 h = h8

i = H(2||a||b) j = H(2||c||d) k = H(2||e||f) l = H(2||g||h)

m = H(2||i||j) n = H(2||k||l)

r = H(2||m||n)

Figure 4: Example generation of the Merkle hash tree for the graph on the left hand side. The numbers in the graph correspond
to the random order orderπ. In the hash tree we have (hi, voi) ← CHash(chk, ξ||order−1

π (i)||content(order−1
π (i))),

and the hash function H may also be taken to be CHash(chk, ·). The graph hash function’s output is the root value r of the
tree. The verification object of the graph hash is given by π and all the verification objects vo1, . . . , vo8 of the hash values at
the leaves.

The verification object for an original hash value of an element would then need to include the verification
object as before, but also all intermediate hash values in the tree on the path to the root for sub trees
which are redacted. The idea is displayed in Figures 4 and 5 for a simple example. We note that the size
of the verification object cannot increase by more than the size of the hash value in our basic construction,
since we include at most the original hash values of all leaves, but potentially even less for large redacted
sub trees.

4

32

1
6

b = vo+
1 e = vo+

2a = h1 c = h3 d = h4 f = h6

i = H(2||a||b) j = H(2||c||d) k = H(2||e||f) l = vo+
3

m = H(2||i||j) n = H(2||k||l)

r = H(2||m||n)

Figure 5: Redaction example for the graph in Figure 4. The redacted graph consists of the elements with random order numbers
1, 3, 4, and 6. The original verification object is given by vosub = (πsub, vo1,⊥, vo3, vo4,⊥, vo6,⊥,⊥) but is augmented by the
additional objects vo+

1 = h2, vo+
2 = h5 (with dotted lines) and vo+

3 = H(2||h7||h8) (with double line).

5 Conclusion
We propose strong security notions for collision resistance and privacy for redactable graph hashing (or
sanitizable graph commitments), as well as constructions achieving the notions. One of the most interesting
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aspects to be investigated is to improve the efficiency of such solutions. Our constructions produce quite
large hash values, albeit this can be alleviated by applying common strategies like Merkle hash trees.
Getting even shorter solutions is an interesting research topic. Alternatively, one may be able to show lower
bounds for the size of hash values and verification objects for general redaction schemes.

Then, our redaction is quite general in the sense that one can also, say, redact edges for a graph. Suppose
that nodes correspond to persons in a social network and the edges represent the contacts. Then one may
be interested in seeing only the data for some persons/nodes, but such that all edges for such nodes are
preserved, e.g., to accurately count the number of contacts. It would be interesting to derive schemes with
specific redaction procedures, such as the projection onto nodes (with edges being preserved). While such
procedures can be easily implemented with our general approach, they pose additional security requirements,
e.g., in the example it must be guaranteed that edges for nodes cannot be dropped. Interestingly, and
connecting to the first point, one may be even able to provide more efficient constructions for such specialized
redaction schemes.
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