
A preliminary version appears in Advances in Cryptology — Crypto 2006, Lecture Notes in Computer Science, Springer-Verlag.

Round-Optimal Composable Blind Signatures
in the Common Reference String Model

Marc Fischlin?

Darmstadt University of Technology, Germany
marc.fischlin@ gmail.com www.fischlin.de

Abstract We build concurrently executable blind signatures schemes in the common
reference string model, based on general complexity assumptions, and with optimal
round complexity. Namely, each interactive signature generation requires the requesting
user and the issuing bank to transmit only one message each. We also put forward
the definition of universally composable blind signature schemes, and show how to
extend our concurrently executable blind signature protocol to derive such universally
composable schemes in the common reference string model under general assumptions.
While this protocol then guarantees very strong security properties when executed
within larger protocols, it still supports signature generation in two moves.

1 Introduction

Blind signatures, introduced by Chaum [Cha83], allow a bank to interactively issue signa-
tures to users such that the signed message is hidden from the bank (blindness) while at
the same time users cannot output more signatures than interactions with the bank took
place (unforgeability). Numerous blind signature schemes have been proposed, mostly un-
der specific number-theoretic assumptions, some relying also on the random oracle model
[PS00,Abe01,BNPS03,Bol03] and some forgoing random oracles [CKW04,KZ05,Oka06]. Only
the work by Juels et al. [JLO97] addresses the construction of blind signatures under general
assumptions explicitly, and deploys general two-party protocols and oblivious transfer based
on trapdoor permutations.

Interestingly, almost all of the aforementioned blind signature schemes require three or
more moves (most of them even in the random oracle model) and concurrent executions of
the signature generation protocol are often a concern (cf. [Poi98,PS00,Oka06]). For instance,
making the solution by Juels et al. [JLO97] concurrently secure would require a high round
complexity. This follows from results by Lindell [Lin03,Lin04] showing, among others, that
in the plain model the number of rounds in blind signature schemes with black-box security
proofs is bounded from below by the number of concurrent executions.

A notable exception to the problems with interleaving executions are schemes with an op-
timal two-move signature generation protocol, solving the concurrency problem immediately.
This includes Chaum’s original RSA-based blind signature protocol and the pairing-based
discrete-log version thereof [Bol03]. Unfortunately, the security proofs [BNPS03,Bol03] for
these schemes need the random oracle model —by which they can bypass Lindell’s lower
bound for the plain model— and rely on the so-called one-more RSA or one-more discrete-log
assumptions, which are less investigated than the corresponding standard problems.

? This work was supported by the Emmy Noether Program Fi 940/2-1 of the German Research
Foundation (DFG).

Here we show that one can build secure blind signature schemes with a two-move sig-
nature generation protocol under general assumptions (namely, trapdoor permutations and,
depending on the level of unforgeability, also collision-resistant hash functions). Our scheme
does not rely on random oracles, yet to bridge the lower bound on the number of rounds we
work in the common reference string model. We note that instead of falling back on general
multi-party paradigms as in [JLO97] and inheriting the round complexity of the underlying
oblivious transfer protocols for general assumptions we give a dedicated solution to the blind
signature problem.

Construction Idea. The basic (and simplified) construction idea of our blind signature scheme
is as follows. The user commits to the message m and sends this commitment U to the bank.
The bank signs U with a (strongly unforgeable) signature scheme and sends the signature B
back to user. The user finally derives the blind signature for m by computing a commitment1

C of U ||B and proving with a non-interactive zero-knowledge proof π (based on the common
reference string) that this commitment C contains a valid signature B for U and that U itself
is a commitment of the message m. The blind signature to m is given by the commitment C
and the proof π.

Using standard non-interactive zero-knowledge (NIZK) proofs our protocol above would
provide a weaker unforgeability notion than postulated in [PS00,JLO97]. That is, a malicious
user could easily generate several signatures from a single interaction with the bank by gen-
erating multiple proofs π1, π2, . . . for the same commitment C. All these pairs C||πi would be
valid blind signatures for the same message m, while the standard unforgeability definition
asks that a malicious user cannot create more signatures than interactions happened.

Fortunately, we can indeed turn the above idea into a scheme supporting the desired un-
forgeability level by using so-called unique non-interactive zero-knowledge (UNIZK) proofs,
recently introduced by Lepinski et al. [LMS05] and shown to be realizable under the quadratic
residuosity assumption. For such unique proof systems there is a bijection between the wit-
nesses w to a theorem x and the valid zero-knowledge proofs π, guaranteeing together with
the uniqueness of the commitment C that there is only a single valid proof for each signature
interaction.

Here we only need a relaxation to so-called single-theorem unique zero-knowledge (sUNIZK)
proofs, in which uniqueness and zero-knowledge hold simultaneously for one theorem only (but
each property individually remains true for an unbounded sequence of theorems), As briefly
mentioned in [LMS05], this relaxation enables constructions of such proofs for 3SAT based
on trapdoor permutations, and here we show how to build such proofs under the same as-
sumption for CircuitSAT. Since we deploy such sUNIZK proofs mainly as a tool to achieve the
strong security guarantees of our blind signature protocol, most of the details about sUNIZK
proofs are delegated to the appendix.

Universal Composition. As explained, our two-move signature generation protocol overcomes
the concurrency problem effortlessly. More general a slight variation of our scheme yields a
secure blind signature scheme in the universal composition (UC) framework [Can01]. Secure
schemes in this UC framework enable interdependent executions with other protocols while
preserving the main security characteristics. Our modified scheme now requires the same
assumptions as before as well as a simulation-sound NIZK proof of knowledge, which can also
be derived from trapdoor permutations [Sah99,DDO+01].
1 For the security proof we require that the commitment C is actually done through an encryption

scheme.

2

Towards proving the universal composability result we first formalize an ideal functionality
FBlSig, prescinding the basic requirements of blind signatures such as completeness, unforge-
ability and blindness. Since such UC blind signatures can be used to build UC commitments
it follows from an impossibility result in [CF01] that UC blind signatures cannot be realized
through two-party protocols in the plain model. But, as our solution shows, augmenting the
model by common reference strings one can build UC blind signatures (against non-adaptive
corruptions) under general assumptions. Compared to general feasibility results in the UC
framework [CLOS02], showing that essentially any functionality can be securely realized in
the common random string, our solution still needs only two-moves to generate signatures.

2 Blind Signatures in the Common Reference String Model

In this section we briefly introduce the underlying tool, single-theorem UNIZK proofs, and
their construction for CircuitSAT; more details can be found in Appendix A. We then recall
the security definition of blind signatures and finally present our two-move solution and prove
its security.

2.1 Single-Theorem UNIZK Proofs

Lepinski et al. [LMS05] recently introduced the notion of unique non-interactive zero-knowl-
edge (UNIZK) proofs. For such unique proof systems the prover in mode key first gener-
ates a public-key PK and then uses the corresponding secret key in mode prove to generate
zero-knowledge proofs πi for an unbounded (but polynomial) number of subsequently chosen
statements xi and witnesses wi. Uniqueness says that, once the key PK has been chosen, for
each statement xi there is exactly one valid proof πi per witness wi.

Here we consider single-theorem unique zero-knowledge (sUNIZK) proofs, briefly touched
in [LMS05], where the prover’s public key PK allows to prove exactly one theorem x such
that the proof is zero-knowledge and unique at the same time. Uniqueness still holds if
several statements for the same key PK are proven but then the proofs may not be zero-
knowledge anymore. Vice versa, the system should still be multiple zero-knowledge in the
sense of [FLS99], i.e., one can proof several statements xi in zero-knowledge for the same
common random string, but then the prover must choose a new key PKi for each proof (and
each proof is individually unique with respect to PKi).

Single-theorem UNIZK proofs obey first of all the three basic properties of regular NIZK
proofs: completeness, soundness and (unbounded) zero-knowledge. We omit a formal definition
of these properties as they are standard. To formalize the (single-theorem) uniqueness we
follow [LMS05] and define uniqueness by a bijection between witnesses and valid proofs (if
any). To this end we parameterize the underlying NP relation R by the common reference (or
random) string crs, generated by an algorithm C, and the public key PK. These parameters are
both themselves determined according to a complexity parameter n, and for such parameters
Rcrs,PK takes as inputs x ∈ {0, 1}χ(n) and w ∈ {0, 1}ω(n), where x,w may depend on crs,PK.
Let Wcrs,PK(x) =

{
w ∈ {0, 1}ω(n)

∣∣ Rcrs,PK(x,w) = 1
}

denote the set of witnesses to x with
respect to crs and PK.

Definition 1 (Single-Theorem Unique Zero-Knowledge). A NIZK proof (C,P,V) for
relation R is a single-theorem unique NIZK proof system if the following holds:

Uniqueness. With overwhelming probability over the choice of crs← C(1n), for any PK and
any x, if the set Πcrs,PK(x) = {π | V(crs, x,PK, π) = 1} of accepted proofs in not empty,

3

then there exists a bijection τcrs,PK,x between the set Πcrs,PK(x) and the set Wcrs,PK(x) =
{w | (x,w) ∈ Rcrs,PK } of witnesses.

As pointed out in [LMS05] such sUNIZK proofs are easier to construct than general UNIZK
proofs, and an appropriate modification of the NIZK protocol with preprocessing in [DMP88]
gives a solution for 3SAT which obeys single-theorem uniqueness under general assumptions.
Our construction instead follows the one by Damgȧrd [Dam93] for CircuitSATwhere one should
decide for a given circuit Cn and value x ∈ {0, 1}χ(n) whether a satisfying input w ∈ {0, 1}ω(n)

for Cn(x, ·) exist. The advantage of CircuitSAT over 3SAT, pointed out in [Dam93], is that it
allows to prove NP statements directly without reductions to 3SAT. Yet, compared to the
solution in [Dam93] using the quadratic residuosity assumption to derive possibly ambiguous
proofs, our goal is to use general assumptions and to achieve uniqueness. Details can be found
in Appendix A; here we merely state the main result:

Proposition 1. Let C = (Cn)n∈N be a sequence of circuits Cn : {0, 1}χ(n) × {0, 1}ω(n) →
{0, 1}. Single-theorem unique non-interactive zero-knowledge proof systems for relation RC ={
(x,w) ∈ {0, 1}χ(n)+ω(n)

∣∣ Cn(x,w) = 1
}

in the common random string model exist if (reg-
ular) non-interactive zero-knowledge proof systems for NP in the common random string
model and one-way permutations exist.

The proposition holds for both bounded and unbounded provers. For efficient provers
it follows that sUNIZK proofs for CircuitSAT exist if trapdoor permutations exist, and for
unbounded provers they can be built from any one-way permutation [FLS99].

2.2 Blind Signatures and Their Security

For the interactive signature generation protocol of a blind signature scheme we introduce the
following notation. For two interactive algorithms X , Y we denote by (a, b) ← 〈X (x),Y(y)〉
the joint execution of X for input x and Y for input y, where X ’s private output at the
end of the execution equals a and Y’s private output is b. For an algorithm Y we write
Y〈X (x),·〉∞ if Y can invoke an unbounded number of executions of the interactive protocol
with X in arbitrarily interleaved order. Accordingly, X 〈·,Y(y0)〉1,〈·,Y(y1)〉1 can invoke arbitrarily
interleaved executions with Y(y0) and Y(y1) but interact with each algorithm only once.

Definition 2 (Blind Signature Scheme). A blind signature scheme (in the common ref-
erence string model) consists of a tuple of efficient algorithms BS = (CBS,KGBS, 〈B,U〉 ,VfBS)
where

CRS generation. CBS on input 1n outputs a common reference (or random) string crsBS.

Key Generation. KGBS(crsBS) generates a key pair (skBS, pkBS).

Signature Issuing. The joint execution of algorithms B(crsBS, skBS) and U(crsBS, pkBS,m)
generates an output S of the user, (⊥, S)← 〈B(crsBS, skBS),U(crsBS, pkBS,m)〉.

Verification. VfBS(crsBS, pkBS,m, S) outputs a bit.

It is assumed that the scheme is complete, i.e., for any crsBS ← CBS(1n), any (skBS, pkBS)←
KGBS(crsBS), any message m ∈ {0, 1}n and any S output by U in the joint execution of
B(crsBS, skBS) and U(crsBS, pkBS,m) we have VfBS(crsBS, pkBS,m, S) = 1.

Security of blind signatures consists of two requirements [PS00,JLO97]. Unforgeability
says that it should be infeasible for a malicious user U∗ to generate k + 1 valid signatures

4

given that k interactions with the honest bank took place (where the adversary adaptively
decides on the number k of interactions). Blindness says that it should be infeasible for a
malicious bank B∗ to determine the order in which two messages m0,m1 have been signed
in executions with an honest user. This should hold, of course, as long as the interactive
signature generation produces two valid signatures and the bank B∗ for example does not
abort deliberately in one of the two executions.

Definition 3 (Secure Blind Signature Scheme). A blind signature scheme BS = (CBS,
KGBS, 〈B,U〉 ,VfBS) in the common reference string model is called secure if the following
holds:

Unforgeability. For any efficient algorithm U∗ the probability that experiment ForgeBS
U∗(n)

evaluates to 1 is negligible (as a function of n) where

Experiment ForgeBS
U∗(n)

crsBS ← CBS(1n)
(skBS, pkBS)← KGBS(crsBS)
((m1, S1), . . . , (mk+1, Sk+1))← U∗〈B(crsBS,skBS),·〉∞(crsBS, pkBS)
Return 1 iff

(mi, Si) 6= (mj , Sj) for 1 ≤ i < j ≤ k + 1, and
VfBS(crsBS, pkBS,mi, Si) = 1 for all i = 1, 2, . . . , k + 1, and
at most k interactions with 〈B(crsBS, skBS), ·〉∞ were initiated.

Blindness. For any efficient algorithm B∗ (working in modes find, issue and guess) the prob-
ability that experiment BlindBS

B∗(n) evaluates to 1 is negligibly close to 1/2, where

Experiment BlindBS
B∗(n)

crsBS ← CBS(1n)
(pkBS,m0,m1, βfind)← B∗(find, crsBS)
b← {0, 1}
βissue ← B∗〈·,U(crsBS,pkBS,mb)〉1,〈·,U(crsBS,pkBS,m1−b)〉1(issue, βfind)

and let Sb, S1−b denote the (possibly undefined) local outputs
of U(crsBS, pkBS,mb) resp. U(crsBS, pkBS,m1−b).

b∗ ← B∗(guess, S0, S1, βissue)
Return a random bit if S0 = ⊥ or S1 = ⊥, else return 1 iff b = b∗.

In a partially blind signature scheme [AF96] the bank and the user first agree on some
information info which is attached to the blind signature. There, unforgeability demands that
a malicious user cannot find k + 1 distinct but valid tuples (infoi,mi, Si). The definition of
blindness then allows a malicious bank to determine info together with the messages m0,m1

such that the bank still cannot decide the order in which the users execute the issuing protocol
for info,m0 and info,m1, respectively. Jumping ahead we note that we can easily turn our
blind signature scheme into a partially blind one.

In a weaker unforgeability requirement we only demand that the messages m1, . . . ,mk+1

output by the malicious user are distinct (instead of stipulating distinct message-signature
pairs). Clearly, the unforgeability notion in Definition 3 implies this weaker requirement. For
our scheme this relaxation also allows to dismiss unique zero-knowledge proofs and to use
regular NIZK proofs instead.

5

2.3 Construction

The high-level idea of our blind signature protocol is as follows. To obtain a blind signature
from the bank the user commits to the message m and sends this commitment U to the bank
(where the commitment has the additional property of unique randomness). The bank signs
the commitment with a regular but strongly unforgeable signature scheme (KGSig,Sig,VfSig)
and returns the signature B to the user. The user derives the blind signature for m by
computing another commitment C of the signature B together with U , and a unique non-
interactive zero-knowledge proof π showing the validity of C.

We have already remarked that single-theorem UNIZK proofs are sufficient for our pur-
pose. This is because we can let the user generate a new key PK at the beginning of each
interaction and have PK included in the commitment U . The twist here is that we use a hash
function H from a family H to hash down the key PK to a short string of length h(n). This
is necessary as we later use PK in the statement x for the zero-knowledge proof and because
the length of PK is determined as a function of the length of x itself. Using the h(n)-bit hash
value overcomes this dependency.

For the same reason as in the case of PK we also assume that the signature scheme is length-
invariant, i.e., that public keys pkSig as well as signatures for security parameter n are all of the
same length s(n). We note that this can always be achieved by standard padding techniques,
and strongly unforgeable, length-invariant signature schemes exist if one-way functions exist
[NY89,Rom90,Gol04].

We furthermore assume that the commitment scheme (CCom,Com) in the common ran-
dom string model, given by algorithms CCom generating the string crsCom and algorithm
Com(crsCom, ·, ·) : {0, 1}2n+h(n)×{0, 1}n → {0, 1}c(n) mapping strings from {0, 1}2n+h(n) with
n-bit randomness to commitments, is length-invariant, too. That is, the reference strings as
well as commitments are all of length c(n) for parameter n. We also need that the com-
mitment scheme has unique openings, i.e., with overwhelming probability over the choice of
crsCom ← C(1n) there do not exist (z, r) 6= (z′, r′) with Com(crsCom, z; r) = Com(crsCom, z′; r′).
Such commitment schemes can be derived for instance from one-way permutation based pseu-
dorandom generators.

In order to turn the above idea into a provably secure scheme the proof π needs to allow
extraction of U and B encapsulated in C. We accomplish this by using an IND-CPA secure
encryption scheme (KGEnc,Enc,Dec) to “commit” to U ||B in C, where the public key pkEnc

of the encryption algorithm becomes part of the common reference string.2 We presume that
the encryption scheme is also length-invariant and that public keys pkEnc and ciphertexts
C ← Enc(pkEnc, U ||B; v) for U ||B ∈ {0, 1}c(n)+s(n) and randomness v ∈ {0, 1}n are all of
length e(n). This is again without loss of generality.

The circuit CBS
n for parameter n we consider for the sUNIZK proof takes as input strings

x = C||pkEnc||crsCom||pkSig||H(PK)||m of bit length χ(n) = c(n)+2e(n)+h(n)+ s(n)+n and
w = u||v||B of length ω(n) = 2n + s(n), and returns an output bit which is determined as
follows. The circuit is built from the descriptions of algorithms Com,Enc,VfSig and checks for
the signature’s verification algorithm that VfSig(pkSig,Com(crsCom,m||H(PK)||v;u), B) = 1
and that the value C equals the ciphertext Enc(pkEnc,Com(crsCom,m||H(PK)||v;u)||B; v). If
and only if both tests evaluate to true then the circuit outputs 1. The corresponding relation
is given by RBS

crs,PK =
{
(x,w) ∈ {0, 1}χ(n) × {0, 1}ω(n)

∣∣ CBS
n (x,w) = 1

}
.

2 We can also assume that we have dense public-key schemes [DP92] and that the common random
string contains such a public key.

6

Construction 1 (Blind Signature Scheme). Let (KGSig,Sig,VfSig) be a signature scheme,
(KGEnc,Enc,Dec) be an encryption scheme, (CCom,Com) be a commitment scheme, H be a hash
function family and let (Cuni,P,V) be a non-interactive zero-knowledge proof system for RBS.
Define the following four procedures:

CRS Generation. Algorithm CBS(1n) runs crsuni ← Cuni(1n), crsCom ← CCom(1n) and
(pkEnc, skEnc)← KGEnc(1n). It outputs crsBS ← (crsuni, crsCom, pkEnc).

Key Generation. The bank’s key generation algorithm KGBS(crsBS) generates a signature
key pair (pkSig, skSig)← KGSig(1n) and also picks a hash function H ← H(1n). It returns
(pkBS, skBS)← ((pkSig,H), skSig).

Signature Issue Protocol. The interactive signature issue protocol is described in Figure 1.

Signature Verification. The verification algorithm VfBS(crsBS,m, S) parses the signature
S as S = C||PK||π and returns the output Vuni(crsuni,PK, x, π) for the value x =
C||pkEnc||crsCom||pkSig||H(PK)||m.

Bank B crsBS, pkBS User U

signing key skSig message m ∈ {0, 1}n

choose u, v ← {0, 1}n
let (PK,SK)← Puni(key, crsBS)
let U ← Com(crsCom, m||H(PK)||v; u)

U←−−−−−−−
let B ← Sig(skSig, U)

B−−−−−−−→ abort if VfSig(pkSig, U, B) 6= 1
compute C ← Enc(pkEnc, U ||B; v)
set x← C||pkEnc||crsCom||pkSig||H(PK)||m
set w ← u||v||B
let π ← Puni(prove, crsuni, x, w,SK)
Output S ← C||PK||π

Figure 1. Blind Signature Scheme: Issue Protocol

Theorem 2. Let (KGSig,Sig,VfSig) be a length-invariant signature scheme which is strongly
unforgeable against adaptive chosen-message attacks, (KGEnc,Enc,Dec) be a length-invariant
IND-CPA secure encryption scheme, (CCom,Com) be a length-invariant non-interactive com-
mitment scheme with unique openings in the common random string model, and H be a
collision-intractable hash function family. Let (Cuni,Puni,Vuni) be a single-theorem unique
non-interactive zero-knowledge proof system for RBS. Then the scheme defined in Construc-
tion 1 is a secure blind signature scheme.

Proof. We first show unforgeability and then blindness.

7

Unforgeability. Assume that there exists an adversary U∗ such that with noticeable probability
the following holds. On input crsBS, pkBS the adversary U∗ manages to output k + 1 valid
signatures Si = Ci||PKi||πi for messages mi after at most k interactions with the honest bank
B (and where the pairs (mi, Si) are pairwise distinct). Given such an adversary we construct
a successful adversary A against the security of the signature scheme (KGSig,Sig,VfSig).

Adversary A is given as input a public key pkSig of the signature scheme and is granted
oracle access to a signature oracle Sig(skSig, ·). This adversary first generates crsuni ← Cuni(1n)
for the zero-knowledge proof, crsCom ← CCom(1n) for the commitments, picks a hash function
H ← H(1n) and (pkEnc, skEnc) ← KGEnc(1n) and sets crsBS ← (crsuni, crsCom, pkEnc). It next
invokes a black-box simulation of U∗ for input (crsBS, (pkSig,H)). Each time the user U∗
initiates the issue protocol with the bank, algorithm A uses the signature oracle to answer
the request U by a signature B ← Sig(skSig, U). When the adversary finally outputs the
message/signature pairs (mi, Si) algorithm A parses each Si as Si = Ci||PKi||πi and decrypts
each Ci to Ui||Bi. Algorithm A outputs the first one of these pairs (Ui, Bi) which has not
been the result of one of the interactions with the signing oracle (or returns ⊥ if no such pair
exist).

For the analysis assume that U∗ succeeds with noticeable probability. Since k + 1 pairs
(mi, Si) are valid, all the proofs πi in Si = Ci||PKi||πi are valid as well. Hence, with over-
whelming probability over the choice of crsuni each Ci is a valid ciphertext of some Ui||Bi

under pkEnc, and each Ui commits to the corresponding message mi and to the hash value of
PKi. Moreover, Ui also commits to randomness vi with which Ui||Bi is encrypted in Ci.

Suppose that there exist (Ui, Bi) = (Uj , Bj) for i 6= j but such that the two distinct
message/signature pairs (mi, Ci||PKi||πi) and (mj , Cj ||PKj ||πj) are valid. But then the values
Ui, Uj specify the same unique tuple (mi,H(PKi), vi) = (mj ,H(PKj), vj) and, because of
unique openings, also the same randomness ui = uj , and thus Ci = Cj . We can furthermore
assume that no collisions H(PKi) = H(PKj) for PKi 6= PKi for any i, j occur, else this would
contradict the collision-resistance of H. Therefore, PKi = PKj and the only place where these
message/signature pairs can differ is for πi and πj . But by the uniqueness property of the
zero-knowledge proof we conclude that there cannot exist valid proofs πi 6= πj for the same
theorem

x = Ci||pkEnc||crsCom||pkSig||H(PKi)||mi = Cj ||pkEnc||crsCom||pkSig||H(PKj)||mj

and the same witness
w = ui||vi||Bi = uj ||vj ||Bj ,

with overwhelming probability over the choice of the common random string crsuni. It follows
that no such pairs (Ui, Bi) = (Uj , Bj) for i 6= j can exist (except for negligible probability).

Given that all (Ui, Bi) are distinct, we can sort out those among these pairs where the
bank has signed Ui with Bi. Because of the uniqueness of the pairs there must still be one
Ui left which has not been signed by the bank with Bi. Hence, with noticeable probability
adversary A produces a (strong) forgery.

Blindness. To prove blindness we consider an adversarial controlled bank B∗ in experiment
BlindBS

B∗(n). We gradually transform the way the signatures S0 = C0||PK0||π0 and S1 =
C1||PK1||π1 are computed such that, at then end, they are completely independent of bit b.

In the first step we replace all the steps involving the prover by the output of the zero-
knowledge simulator. That is, consider the following modified procedures of the blind signature
scheme (key generation and verification remain unchanged):

8

CRS Generation. Algorithm CBS(1n) runs (crsuni, σ) ← Zuni(crs, 1n), crsCom ← CCom(1n)
and (pkEnc, skEnc)← KGEnc(1n). It outputs crsBS ← (crsuni, crsCom, pkEnc).

Signature Issue Protocol. For the signature issuing the user now also picks u, v ← {0, 1}n,
but lets (PK,SK) ← Zuni(key, σ) instead. The user again sends the commitment U ←
Com(crsCom,m||H(PK)||v;u) to the bank B∗ which replies with some B. The user aborts
if VfSig(pkSig, U, B) 6= 1 and else computes C ← Enc(pkEnc, U ||B; v) as well as π ←
Zuni(prove, σ, x,SK). Output S ← C||PK||π.

Denote the modified scheme by BS′. It follows easily from the zero-knowledge property that
experiments BlindBS

B∗(n) and BlindBS′

B∗ (n) return 1 with the same probability (except for a
negligible probability).

In the next step we further modify the signature scheme by replacing the commitments U
by commitments to all-zero strings. More precisely, we change the signature issue protocol of
the blind signature scheme BS′ as follows (recall that this modified scheme already uses the
zero-knowledge simulator to prepare the signatures):

Signature Issue Protocol. The user picks u, v ← {0, 1}n, sets (PK,SK) ← Zuni(key, σ)
as before, but now sends U ← Com(crsCom, 02n+h(n);u) to the bank to get a signa-
ture B (which is also checked). It then computes again C ← Enc(pkEnc, U ||B; v), π ←
Zuni(prove, σ, x,SK) and outputs S ← C||PK||π.

We call this modified scheme BS′′. It is easy to see that, by the secrecy of the commitment
scheme, the difference in the output distributions of experiments BlindBS′

B∗ (n) and BlindBS′′

B∗ (n)
is negligible.

Finally, we replace the encryption of U and B by an encryption of the all-zero string, i.e.,
we modify the signature issuing protocol from BS′′ further to obtain:

Signature Issue Protocol. The user selects u, v ← {0, 1}n as before and again computes
(PK,SK)← Zuni(key, σ) and U ← Com(crsCom, 02n+h(n);u). For the bank’s reply B to U
it checks validity and this time sets C ← Enc(pkEnc, 0c(n)+s(n); v), π ← Zuni(prove, σ, x,SK)
and outputs S ← C||PK||π.

We call this modified scheme by BS′′′. By the IND-CPA security of the encryption scheme
we conclude that the difference in the output distributions of experiments BlindBS′′

B∗ (n) and
BlindBS′′′

B∗ (n) is also negligible.
In experiment BlindBS′′′

B∗ (n) the signatures S = C||PK||π are independent of the data U,B
in the signature generation protocol. Hence, the adversary B∗ cannot predict b better than
with probability 1/2. Conclusively, the probability of the original experiment BlindBS

B∗(n) to
return 1 must be negligibly close to 1/2, proving blindness. ut

To get a partially blind signature scheme, where the signer and the user share some public
information info to be included in the blind signature, we let the bank simply sign the user’s
commitment U together with info, i.e., B ← Sig(sk, info||U) and also let the user base the
correctness proof π on info. The security proof carries over straightforwardly.

Also, to get a weakly unforgeable blind signature scheme where the malicious user only
succeeds when outputting k + 1 distinct messages we can drop the requirement on the strong
unforgeability of the bank’s signature scheme and use a regular signature scheme guaranteeing
basic unforgeability only, and we can also dismiss the requirement on unique randomness for
the commitment scheme and merely need statistically-binding commitments. Furthermore,

9

we can then also switch to regular (not necessarily unique) zero-knowledge proofs. The latter
implies that the user does not have to pick a public key PK before the first move and that one
may think of PK as being the empty string. Consequently, the hash function becomes obsolete
and we get such blind signatures under the sole assumption that trapdoor permutations exist.

3 Universally Composable Blind Signatures

As mentioned, the blind signature scheme in the previous section allows concurrent executions
of the signature generation protocol, i.e., when the protocol is interleaved with itself. More
generally, one would like to have a guarantee that such a scheme still supports the basic secu-
rity properties, even when run as a building block within larger protocols, independently how
the execution is intertwined with other steps. Such a guarantee is provided by the universal
composition (UC) framework [Can01].

In the UC framework one defines an idealized version of the primitive in question, capturing
the desired security properties in an abstract way and ensuring that the functionality is
secure in interdependent settings. Given an appropriate formalization of some functionality
F in the UC framework, one next shows that this functionality can be securely realized by
an interactive protocol between the parties (without the trusted interface). Here, securely
realizing means that, in any environment (modeled through an algorithm Z) in which the
protocol may be run, for this environment executions of the interactive protocol in presence of
an adversary A are indistinguishable from executions in the ideal model with the trustworthy
functionality F and an ideal-model adversary S. The UC framework, notably the composition
theorem, then ensures that the protocol can indeed be securely deployed as a subroutine in
more complex protocols and environments.

A formal introduction to the UC framework is beyond the scope of our paper; we refer to
[Can01] to a comprehensive definition. We remark that we consider non-adaptive adversaries
here which corrupt parties at the beginning of executions only.

3.1 Definition

Our definition of an ideal blind signature functionality FBlSig follows the one FSig of regular
signature schemes given by Canetti [Can04]. The definition of FSig essentially lets the adver-
sary choose the public verification key and determine the signature value S upon a signing
request (Sign, sid,m). Verification requests for previously generated signatures are always
accepted and otherwise the adversary is again allowed to specify whether a tested signature
S to a message m is valid or not. See [Can04] for a discussion of this definition.

The formal description of the blind signature functionality is given in Figure 2. It is partly
a verbatim copy of the functionality FSig in [Can04]. An important difference for blind signa-
tures is that the adversary should not learn the message of honest users and the signatures
must not be linkable to the signing request. To ensure this we let the adversary (instead of
the bank, analogously to the choice of the public verification key in FSig) in FBlSig provide
(the description of) a stateless, possibly probabilistic algorithm BlSig to the ideal functionality
FBlSig. This is already done in the key generation step where the adversary chooses the public
verification key, such that BlSig is used in all subsequent signature generation runs. Whenever
an honest user later requests a signature for a message m this algorithm BlSig(m) generates
a signature S but without disclosing the message m to the adversary, enforcing unlinkability
of signatures.

10

If a corrupt user —that is, the adversary on behalf of the corrupt user— requests a
signature, however, the ideal functionality does not run BlSig. Instead it asks the adversary
about the potential signature S this user could produce from an interaction with the bank.
Note that a corrupt user may not output any signature right after an interaction with the
bank (or ever), the interaction merely guarantees that this user can generate this signature
in principle. Hence, the functionality does not return the adversary’s potential signature S to
the user.

Finally, for any signature request we inform the bank B about the request, but without
disclosing the actual message m nor the signature. This captures the fact that signature
generations require active participation of the bank.

Functionality FBlSig

Key Generation: Upon receiving a value (KeyGen, sid) from a party B, verify that
sid = (B, sid′) for some sid′. If not, then ignore. Else, hand (KeyGen, sid) to the ad-
versary. Upon receiving (VerificationKey, sid, pkBS, BlSig) from the adversary, output
(VerificationKey, sid, pkBS) to B and record the pair (B, pkBS, BlSig).

Signature Generation: Upon receiving a value (Sign, sid, m, pkBS) for m ∈ {0, 1}n from
some party U , verify that sid = (B, sid′) for some sid′. If not, then ignore. Else, do the
following:

– If the user U is honest then inform B and the adversary through (Signature, sid)
that a signature request takes place and then generate S ← BlSig(m) and output
(Signature, sid, m, S) to U .

– If the user U is corrupt then send (Sign, sid, m) to the adversary to obtain
(Signature, sid, m, S); abort if (m, S, pkBS, 0) has been recorded before. Send
(Signature, sid) to B.

In either case record (m, S, pkBS, 1).

Signature Verification: Upon receiving a value (Verify, sid, m, S, pk′
BS) from some party

P hand (Verify, sid, m, S, pk′
BS) to the adversary. Upon receiving (Verified, sid, m, S, φ)

from the adversary do:

1. If pkBS = pk′
BS and the entry (m, S, pkBS, 1) is recorded, then set f = 1 (completeness

condition).
2. Else, if pkBS = pk′

BS, the bank is not corrupt, and no entry (m, S, pkBS, 1) is recorded,
then set f = 0 and record the entry (m, S, pkBS, 0) (unforgeability condition).

3. Else, if there is an entry (m, S, pk′
BS, f ′) recorded, then let f = f ′ (consistency condi-

tion).
4. Else, let f = φ and record the entry (m, S, pk′

BS, φ).

Output (Verified, sid, m, S, f) to P.

Figure 2. Blind Signature Functionality FBlSig

It follows quite easily that one can realize universally composable commitment schemes
in the presence of functionality FBlSig. As a consequence of the hardness of constructing such
commitments [CF01,DG03] we conclude:

11

Proposition 2. Bilateral and terminating (i.e., only two parties are active and honest parties
faithfully give output) universally composable blind signature schemes securely realizing FBlSig

in the plain model do not exist. Furthermore, blind signature schemes securely realizing FBlSig

in the common reference string model imply key agreement, and imply oblivious transfer in
the common random string model. This all holds for non-adaptive corruptions.

Proof. Given functionality FBlSig we build a universally composable commitment scheme in
the FBlSig-hybrid model. The commitment step is as follows. The receiver calls functionality
FBlSig with (KeyGen, sid) to generate a public key (VerificationKey, sid, pkBS). It sends
pkBS to the committer. The committer with message m calls functionality FBlSig about
(Sign, sid,m, pkBS) to get a signature (Signature, sid,m, S). This completes the commit-
ment phase. To decommit the committer sends m,S to the receiver who accepts if and only
if FBlSig on (Verify, sid,m, S, pkBS) returns (Verified, sid,m, S, 1) and if it has received at
most one notification (Signature, sid).

It is not hard to see that this protocol above implements the universally composable
commitment functionality Fcom. Hence, if there was a bilateral, terminating blind signature
protocol for FBlSig then this protocol above would realize functionality Fcom according to the
composition theorem. This, however, contradicts the impossibility result in [CF01]. Moreover,
the result in [DG03] about the consequence of protocols realizing Fcom the common random
string model shows that such blind signatures imply key agreement. ut

By the general feasibility results of Canetti et al. [Can01,CLOS02] functionality FBlSig

can be realized in the multi-party setting for honest majorities (in the plain model) and
dishonest majorities (in the common random string model). Instead of relying on the general
construction in [CLOS02] we construct a simpler two-move scheme in the common reference
string model directly, based on the scheme in the previous section.

3.2 Construction

The construction in the standard model gives a good starting point for a solution in the UC
framework. We augment the scheme by the following steps. First, we let the user in the first
round when sending U also encrypt all the data from which the proof is later derived. This
ciphertext E should contain the sUNIZK prover’s secret SK as well as randomness u, v and
message m. The encryption scheme itself needs to be IND-CPA secure and we simply use the
same scheme as for the computation for C ← Enc(pkEnc, U ||B; v) but with an independent
key pair (pk′Enc, sk

′
Enc).

In addition to the ciphertext E the user should prove with another NIZK proof that the
data is valid and matches the data committed to by U . For this we require simulation-sound
NIZK proofs [Sah99,DDO+01] where a malicious prover is not able to find an accepted proof
for an invalid statement, even if it sees proofs of the zero-knowledge simulator before (possibly
for invalid but different theorems):

Simulation-Soundness. A regular NIZK proof (C,P,V) for relation R is called simulation-
sound if for the zero-knowledge simulator Z and for any efficient algorithm P∗ the fol-
lowing holds. Let (crs, σ) ← Z(crs, 1n) and (x, π) ← P∗O(crs), where oracle O for the
i-th call xi computes πi ← Z(prove, σ, xi) and returns πi. Then the probability that
V(crs, x, π) = 1 and x /∈ LR(crs) and (x, π) 6= (x1, π1), (x2, π2), . . . is negligible (as a
function of n).

12

In our case here the underlying relation Rss is defined by (a sequence of) circuits Css
n eval-

uating to 1 if and only if for statement x = U ||E||pk′Enc||crsCom||crsuni it holds that E =
Enc(pk′Enc,m||PK||u||SK||v;u′) and U = Com(crsCom,m||H(PK)||v;u) and there exist a ran-
dom string ρ with (PK,SK) ← Puni(key, crsuni; ρ). Note that the length of the statement
as well as the size of the witness are bounded by some fixed polynomial in n, because the
length of the data for the sUNIZK proof can be described by a some polynomial in n, c(n),
e(n), h(n) and s(n). Such simulation-sound NIZK proofs exist if trapdoor permutations exist
[DDO+01].

The final step is to make the signature algorithm Sig of the bank’s strongly unforgeable
signature scheme deterministic. This can be accomplished by adding a key of a pseudorandom
function to the secret signing key. Each time a signature for U is requested the signing algo-
rithm first applies the pseudorandom function to U to get the randomness s with which the
signature B ← Sig(skSig, U ; s) is computed deterministically. The advantage of this modifica-
tion, which does not require an additional complexity assumption, is that identical requests
are now also answered identically. For the same consistency reason we also presume that the
verification algorithm of the sUNIZK proof is deterministic (as for example in our construc-
tion).

Bank B crsBS, pkBS User U

signing key skSig message m ∈ {0, 1}n

choose u, v, u′ ← {0, 1}n
let (PK,SK)← Puni(key, crsuni; ρ)
let U ← Com(crsCom, m||H(PK)||v; u)
let E ← Enc(pk′

Enc, m||PK||v||SK||u; u′)
let xss ← U ||E||pk′

Enc||crsCom||crsuni

let wss ← m||PK||u||SK||v||u′||ρ
compute πss ← Pss(crsss, xss, wss)

U, E, πss←−−−−−−−−−−−
xss ← U ||E||pk′

Enc||crsCom||crsuni

abort if Vss(crsss, xss, πss) 6= 1
let B ← Sig(sk, U)

B−−−−−−−−−−−→ abort if VfSig(pkSig, U, B) 6= 1
compute C ← Enc(pkEnc, U ||B; v)
set x← C||pkEnc||crsCom||pkSig||H(PK)||m
set w ← u||v||B
let π ← Puni(prove, crsuni, x, w,SK)
set S ← C||PK||π

Figure 3. UC Blind Signature Scheme: Issue Protocol

We note that our protocol is defined in the common reference string model. In contrast
to the case of UC commitments in [CF01] where a fresh common reference string for each

13

commitment through FCom is required, in our case the once generated common reference
string can be used for several signature generations by different users; we merely need an
independent common reference string for each party taking the role of a bank.

Construction 3 (Universally Composable Blind Signatures). Let (KGSig,Sig,VfSig) be
a signature scheme, (KGEnc,Enc,Dec) be an encryption scheme, (CCom,Com) be a commitment
scheme, and H be a hash function family. Let (Cuni,Puni,Vuni) be a non-interactive zero-
knowledge proof system for RBS and let (Css,Pss,Vss) be a non-interactive zero-knowledge
proof system for Rss. Define the following four procedures:

CRS Generation. Algorithm CBS on input 1n runs crsuni ← Cuni(1n), crsCom ← CCom(1n),
crsss ← Css(1n) and pairs (pkEnc, skEnc), (pk′Enc, sk

′
Enc) ← KGEnc(1n). It outputs crsBS ←

(crsuni, crsCom, pkEnc, pk
′
Enc, crsss).

Key Generation. If party B with access to crsBS receives the input (KeyGen, sid) it checks
that sid = (B, sid′) for some sid′. If not, it ignores. Else it generates a signature key pair
(pkSig, skSig) ← KGSig(1n) and picks a hash function H ← H(1n). It sets (pkBS, skBS) ←
((pkSig,H), skSig), stores skBSand outputs (VerificationKey, sid, pkBS).

Signature Issue Protocol. If party U is invoked with input (Sign, sid,m, pkBS) for sid =
(B, sid′) it initiates a run of the interactive protocol in Figure 3 with the bank B, where
the user gets m and pkBS as input and the bank uses skBS as input. The user outputs
(Signature, sid,m, S) for the derived signature value S.

Signature Verification. If a party receives (Verify, sid,m, S, pk′BS) it parses S as S =
C||PK||π, computes φ ← V(crs,PK, x, π) for x = C||pkEnc||crsCom||pkSig||H(PK)||m and
outputs (Verified, sid,m, σ, φ).

Theorem 4. Let (KGSig,Sig,VfSig) be a length-invariant signature scheme which is strongly
unforgeable against adaptive chosen-message attacks and for which Sig is deterministic. Let
(KGEnc,Enc,Dec) be a length-invariant IND-CPA secure encryption scheme, (CCom,Com) be
a length-invariant non-interactive commitment scheme with unique openings in the com-
mon reference string model. Also let H be a collision-intractable hash function family and
(Cuni,Puni,Vuni) be a single-theorem unique non-interactive zero-knowledge proof system for
RBS with deterministic verifier Vuni. Let (Css,Pss,Vss) be a (regular) simulation-sound non-
interactive zero-knowledge proof for Rss. Then the scheme defined in Construction 3 securely
realizes functionality FBlSig for non-adaptive corruptions.

The idea of the proof is as follows. Algorithm BlSig for functionality FBlSig, supposed to
be determined by the ideal-model adversary and to create signatures for honest users, ignores
its input m entirely, but instead prepares a dummy encryption C ← Enc(pkEnc, 0c(n)+s(n); v)
and appends a fake correctness proof PK||π generated by the zero-knowledge simulator. The
output C||PK||π is thus indistinguishable from genuinely generated signatures of honest users
in the actual scheme. On the other hand, the additional encryption E and the simulation-
sound zero-knowledge proof allows the ideal-model adversary to extract potential signatures
C||PK||π of malicious users (in black-box simulations), and to provide them to the function-
ality. The completeness and consistency condition of FBlSig is realized by the completeness
of the underlying scheme, and unforgeability follows as for the basic scheme with concurrent
security.

Proof. (of Theorem 4) We have to show that for each adversary A attacking the real-world
protocol there exist an ideal-model adversary (aka. simulator) S in the ideal world with

14

dummy parties and functionality FBlSig such that no environment Z can distinguish whether
it is facing an execution in the real world with A or one in the ideal world with S.

We build the ideal-model adversary S by black-box simulation of A, relaying all communi-
cation between the environment Z and the (simulated) adversary A, and acting on behalf of
the honest parties in this simulation. Algorithm S also corrupts a dummy party in the ideal
model whenever A asks to corrupt the corresponding party in the simulation. By assumption
this is only done before the execution starts.

The ideal-model simulator S first generates a reference string crsBS for the black-box
simulation by picking encryption keys (skEnc, pkEnc), (sk

′
Enc, pk

′
Enc) ← KGEnc(1n), generating

crsCom ← CCom(1n) and running the zero-knowledge simulators to generates crsss as well as
crsuni for the unique zero-knowledge proof. It outputs crsBS = (pkEnc, pk

′
Enc, crsss, crsCom, crsuni).

We next describe the simulation of the honest parties in the black-box simulation:

– Suppose the simulator is woken up through a call (KeyGen, sid) from FBlSig in the ideal
model where sid = (B, sid’). Then the simulator generates (pkBS, skBS) ← KGBS(1n)
as specified by the scheme’s description and lets BlSig be the algorithm that on input
m ∈ {0, 1}n computes the encryption C ← Enc(pkEnc, 0c(n)+s(n); v), (PK,SK)← Z(key, σ)
and π through the zero-knowledge simulator for relation RBS where the statement x is
defined by x ← C||pkEnc||crsCom||pkSig||H(PK)||m, and finally outputs S ← C||PK||π.
Simulator S returns (VerificationKey, sid, pkBS,BlSig) to FBlSig in the ideal model. In
the black-box simulation it sends pkBS to all parties.

– Suppose that the adversary lets a corrupt user in the black-box simulation initiate a
protocol run with the honest bank by sending values (U,E, πss). Then the simulator
first checks the validity of the proof πss; if this check fails then it ignores this message.
Else, S uses the secret key sk′Enc to recover m||PK||v||SK||u from E (and aborts if it
fails) and submits (Sign, sid,m, pkBS) on behalf of the user to the ideal functionality. It
immediately receives a request (Signature, sid,m) from FBlSig. To answer, S computes
the signature B ← Sig(skSig, U) under the strongly unforgeable signature scheme, an
encryption C ← Enc(pkEnc, U ||B; v) and a proof π ← P(crsuni, x, w,SK) for the extracted
values and sends (Signature, sid,m, S) for S ← C||PK||π back to the functionality. It
also returns B in the black-box simulation to the corrupt user.

– If an honest user requests a signature (Sign, sid,m, pkBS) in the ideal model and waits
to receive (Signature, sid,m, S), generated by the functionality through algorithm BlSig,
then the ideal-model adversary generates strings U ← Com(crsCom, 02n+h(n);u), E ←
Enc(pkEnc, 0 . . . 0;u′) and a proof πss via the zero-knowledge simulator of the simulation-
sound scheme and lets the user in the black-box simulation send these values (U,E, πss). If
the bank is honest, then S uses the secret signing key skSig to compute B ← Sig(skSig, U),
else it waits to receive a value B from the adversarial controlled bank.

– If S in the ideal model gets a request (Verify, sid,m, S, pk′BS) then it computes φ ←
V(crs,PK, x, π) and returns (Verified, sid,m, S, φ).

This gives a full description of the ideal-model simulator. For the analysis note that there are
two main differences between the ideal-model and the black-box simulation compared to an
actual attack on the protocol. First, in the black-box simulation we use fake values (commit-
ments and encryptions of zero-strings, simulated proofs etc.). The second point to address
is that the verification algorithm in the ideal model returns 0 if there is no recorded pair
(m,S, pkBS, 1) while in the real-life protocol VfBS may output 1; for any other verification
requests the answers are identical as the verification algorithm VfBS merely runs the deter-

15

ministic verification algorithm of the unique NIZK system (and thus guarantees completeness
and, especially, consistency).

We claim that the differences are undetectable for the environment Z. This is proven
through a sequence of games transforming an execution in the ideal-model scenario into one
which is equal to the one of the actual protocol. In these games we will have full control over
the setting, in particular over the functionality and, in contrast to the ideal-model adversary,
we will also read the inputs of Z to honest users. This is admissible since our goal is to emulate
Z’s environment and to use differences in the output behavior to contradict the security of
the underlying cryptographic primitives.

– Experiment Game0(n) describes the original attack of Z on the ideal-model simulation
(including the black-box simulation of A).

– In Game1(n) we change the way the commitments U on behalf of honest users are com-
puted in A’s black-box simulation. Originally, the simulator S computes a fake commit-
ment U ← Com(crsCom, 02n+h(n);u). Now, whenever the simulator is supposed to create
such a commitment, we let U ← Com(crsCom,m||H(PK)||v;u) for the right value m (given
as input to the honest user by Z), (PK,SK) generated by the zero-knowledge simulator
for the sUNIZK proof and u, v ← {0, 1}n picked at random. Because of the secrecy of
Com it is easy to see that Z’s output behavior will not change significantly when facing
Game1(n) instead of Game0(n).

– Next, in Game2(n), we replace every encryption C ← Enc(pkEnc, 0c(n)+s(n); v) in the
computations of algorithm BlSig through an encryption of the actual values U ||B, i.e.,
C ← Enc(pkEnc, U ||B; v), where we provide the values U and B transmitted in the black-
box simulation “adaptively” to algorithm BlSig. By the security of the encryption scheme
this is indistinguishable from the environment’s viewpoint.

– In Game3(n) we replace every steps of the zero-knowledge proof in the computation
of BlSig through steps of the actual proof system, i.e., generation of crsuni through
crsuni ← Cuni(1n), and every generation of PK and π through the prover (for the now
genuine witness w = u||v||B). By the zero-knowledge property this substitution is (com-
putationally) indistinguishable for the environment Z.

– Now we turn to the difference between the ideal-model verification through list compar-
isons and the real-life verification through VfBS. In Game4(n) every time the verification al-
gorithm in Game3(n) was called by some honest user about input (Verify, sid,m, S, pkBS)
then we run the verification VfBS(crsBS, pkBS,m, S) instead (the case pk′BS 6= pkBS is
treated as before).
Consider in Game3(n) the event that some user requests the functionality to verify a
signature (Verify, sid,m, S, pkBS) such that there is no entry (m,S, pkBS, 1) stored by
the functionality (and the bank B is honest) but such that VfBS returns 1. This would
clearly allow to distinguish the two games (note that the other direction, that VfBS yields 0
but there is an entry, cannot happen by the completeness of the blind signature scheme).
We claim that if such a request should occur with noticeable probability this would
contradict the unforgeability of the blind signature scheme in the previous section (there,
unforgeability was proven for arbitrary, strongly unforgeable signature scheme for the
bank, and thus holds for the deterministic one we consider here as well).
Specifically, we show how to turn a run of Game3(n) withA and Z into an attack according
to experiment ForgeBS

U∗(n). For this we run the same experiment as in Game3(n) but
this time we are use the oracle access to the bank’s signing oracle Sig(skSig, ·) instead
of generating the key pair (skSig, pkSig) ourselves (recall that the bank is assumed to be
honest). Each time an honest user receives input (Sign, sid,m, pkBS) we generate U,E, πss

16

as in Game3(n), including a valid commitment U ← Com(crsCom,m||H(PK)||v;u), and
submit U to the bank to receive B. From this answer we honestly compute the signature
S ← C||PK||π with the help of SK. We memorize the pair (m,S) and the values (U,B).
If a corrupt user submits U,E, πss in the black-box simulation then we also check the
proof πss (and do nothing if it is invalid). If the proof is accepted then we check if we have
stored a pair (U,B) for some B. If so, we return the same B as before in the black-box
simulation but without contacting the bank in the attack ForgeBS

U∗(n) (since the bank’s
signature would be identical we answer consistently). If there is no such pair (U,B) we use
sk′Enc to extract appropriate values m||PK||v||SK||u. By the simulation soundness of the
NIZK this extraction works with overwhelming probability (because U has never appeared
for an honest user in the execution before). We submit U to the bank’s signature oracle
to receive a value B, which we return to the corrupt user in the black-box simulation. We
also deduce the signature S with the help of the extracted values and record (m,S) and
(U,B).
Suppose now that a user at some point sends a request (Verify, sid,m, S, pkBS) for a pair
(m,S) which we have not stored but for which VfBS accepts. Then we immediately stop
and output all previously stored k message/signature pairs together with (m,S). Note
that this implies that all our k + 1 pairs are accepted by VfBS, although we only had k
interactions with the bank. Hence, if a mismatch in Game3(n) happens with noticeable
probability it would refute the unforgeability of the blind signature scheme of the previous
section. It follows that Game3(n) and Game4(n) are indistinguishable.

– In Game5(n) we can omit the extraction step where the ideal-model simulator decrypts
E from submissions of corrupt users, in particular, we do not need to know the se-
cret key sk′Enc anymore for the simulation. This is so since the verification now only
relies on VfBS instead of lists. Furthermore every time we gave a dummy encryption
E ← Enc(pk′Enc, 0 . . . 0;u′) for an honest user, we now encrypt the true values E ←
Enc(pk′Enc,m||PK||v||SK||u;u′) to prepare the correct values U and C. By the security
of the encryption scheme this is indistinguishable for the environment.

– In Game6(n) we replace the simulation of proofs πss for honest users through proofs
computed by the prover’s algorithm for witness m||PK||v||SK||u (with respect to a truly
random string crsss). The zero-knowledge property ensures that this will not significantly
affect the environment’s output.

All the steps in the final game now are exactly as in an attack on the real protocol with
adversary A. Therefore, the environment’s output in the ideal-model simulation (Game0(n))
and the real-world execution (Game6(n)) are indistinguishable. ut

Similarly to the case of the underlying blind signature scheme we can weaken the security
requirement on the unforgeability and allow a malicious user to be able to generate multiple
blind signature for a message. In this case we first have to change the the verification step 2
in the definition of FBlSig as follows:

2. Else, if pkBS = pk′BS, the bank is not corrupt, and no entry (m, ?, pkBS, 1) is recorded,
then set f = 0 and record the entry (m,S, pkBS, 0) (unforgeability condition).

As in the case of our concurrently secure scheme we can then assume that the bank’s signing
algorithm is unforgeable in the weaker sense (but still deterministic) and drop the requirement
on the uniqueness of the NIZK proof and remove the hash function. The corresponding scheme
then realizes this weaker notion of FBlSig.

17

Moreover, we can also extend the functionality FBlSig to handle partially blind signatures.
For this we let the user provide some public information info together with the message m for
signature requests (Sign, sid,m, pkBS). This information is then forwarded to the adversary
and to the bank by the functionality, and we include this information info as part of the
maintained records. We can realize this functionality by starting with the partially blind
version of our concurrently-secure blind signature scheme and adding the encryption and the
simulation-sound proof as before.

Acknowledgment

We thank the anonymous reviewers for comprehensive comments.

References

[Abe01] Masayuki Abe. A Secure Three-Move Blind Signature Scheme for Polynomially Many
Signatures. Advances in Cryptology — Eurocrypt 2001, Volume 2045 of Lecture Notes
in Computer Science, pages 136–151. Springer-Verlag, 2001.

[AF96] Masayuki Abe and Eiichiro Fujisaki. How to Date Blind Signatures. Advances in Cryptol-
ogy — Asiacrypt’96, Volume 1163 of Lecture Notes in Computer Science, pages 244–251.
Springer-Verlag, 1996.

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive
Zero-Knowledge. SIAM Journal on Computing, 20(6):1084–1118, 1991.

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko.
The One-More-RSA-Inversion Problems and the Security of Chaum’s Blind Signature
Scheme. Journal of Cryptology, 16(3):185–215, 2003.

[Bol03] Alexandra Boldyreva. Efficient Threshold Signatures, Multisignatures and Blind Signa-
tures Based on the Gap-Diffie-Hellman-Group Signature Scheme. Public-Key Cryptog-
raphy (PKC) 2003, Volume 2567 of Lecture Notes in Computer Science, pages 31–46.
Springer-Verlag, 2003.

[Can01] Ran Canetti. Universally Composable Security: A new Paradigm for Cryptographic
Protocols. Proceedings of the Annual Symposium on Foundations of Computer
Science (FOCS) 2001. IEEE Computer Society Press, for an updated version see
eprint.iacr.org, 2001.

[Can04] Ran Canetti. On Universally Composable Notions of Security for Signature, Certification
and Authentication. Proceedings of Computer Security Foundations Workshop (CSFW)
2004. IEEE Computer Society Press, for an updated version see eprint.iacr.org, 2004.

[CF01] Ran Canetti and Marc Fischlin. Universally Composable Commitments. Advances in
Cryptology — Crypto 2001, Volume 2139 of Lecture Notes in Computer Science, pages
19–40. Springer-Verlag, 2001.

[Cha83] David Chaum. Blind Signatures for Untraceable Payments. Advances in Cryptology —
Crypto’82, pages 199–203. Plemum, New York, 1983.

[CKW04] Jan Camenisch, Maciej Koprowski, and Bogdan Warinschi. Efficient Blind Signatures
Without Random Oracles. Security in Communication Networks, Volume 3352 of Lecture
Notes in Computer Science, pages 134–148. Springer-Verlag, 2004.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally Composable
Two-Party and Multi-Party Secure Computation. Proceedings of the Annual Symposium
on the Theory of Computing (STOC) 2002, pages 494–503. ACM Press, 2002.

[Dam93] Ivan Damgȧrd. Non-Interactive Circuit Based Proofs and Non-Interactive Perfect Zero-
knowledge with Proprocessing. Advances in Cryptology — Eurocrypt’92, Volume 658 of
Lecture Notes in Computer Science, pages 341–355. Springer-Verlag, 1993.

18

[DDO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and
Amit Sahai. Robust Non-interactive Zero Knowledge. Advances in Cryptology — Crypto
2001, Volume 2139 of Lecture Notes in Computer Science, pages 566–598. Springer-
Verlag, 2001.

[DG03] Ivan Damgȧrd and Jens Groth. Non-interactive and Reusable Non-Malleable Commit-
ment Schemes. Proceedings of the Annual Symposium on the Theory of Computing
(STOC) 2003, pages 426–437. ACM Press, 2003.

[DIO98] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-interactive and Non-
Malleable Commitment. Proceedings of the Annual Symposium on the Theory of Com-
puting (STOC) 1998, pages 141–150. ACM Press, 1998.

[DMP88] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-Interactive Zero-Knowledge
with Preprocessing. Advances in Cryptology — Crypto’88, Volume 403 of Lecture Notes
in Computer Science, pages 269–282. Springer-Verlag, 1988.

[DP92] Alfredo De Santis and Giuseppe Persiano. Zero-Knowledge Proofs of Knowledge Without
Interaction. Proceedings of the Annual Symposium on Foundations of Computer Science
(FOCS)’92, pages 427–436. IEEE Computer Society Press, 1992.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple NonInteractive Zero Knowledge
Proofs Under General Assumption. SIAM Journal on Computing, 29(1):1–28, 1999.

[Gol04] Oded Goldreich. The Foundations of Cryptography, Volume 2. Cambridge University
Press, 2004.

[JLO97] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of Blind Digital Signatures. Ad-
vances in Cryptology — Crypto’97, Volume 1294 of Lecture Notes in Computer Science,
pages 150–164. Springer-Verlag, 1997.

[KZ05] Aggelos Kiayias and Hong-Sheng Zhou. Two-Round Concurrent Blind Signatures without
Random Oracles. Number 2005/435 in Cryptology eprint archive. eprint.iacr.org,
2005.

[Lin03] Yehuda Lindell. Bounded-Concurrent Secure Two-Party Computation Without Setup As-
sumptions. Proceedings of the Annual Symposium on the Theory of Computing (STOC)
2003, pages 683–692. ACM Press, 2003.

[Lin04] Yehuda Lindell. Lower Bounds for Concurrent Self Composition. Theory of Cryptogra-
phy Conference (TCC) 2004, Volume 2951 of Lecture Notes in Computer Science, pages
203–222. Springer-Verlag, 2004.

[LMS05] Matt Lepinski, Silvio Micali, and Abhi Shelat. Fair Zero-Knowledge. Theory of Cryp-
tography Conference (TCC) 2005, Volume 3378 of Lecture Notes in Computer Science,
pages 245–263. Springer-Verlag, 2005.

[NY89] Moni Naor and Moti Yung. Universal One-Way Hash Functions and Their Crypto-
graphic Applications. Proceedings of the Annual Symposium on the Theory of Comput-
ing (STOC) 1989, pages 33–43. ACM Press, 1989.

[Oka06] Tatsuaki Okamoto. Efficient Blind and Partially Blind Signatures Without Random
Oracles. Theory of Cryptography Conference (TCC) 2006, Volume 3876 of Lecture
Notes in Computer Science, pages 80–99. Springer-Verlag, 2006.

[Poi98] David Pointcheval. Strengthened Security for Blind Signatures. Advances in Cryptology
— Eurocrypt’98, Volume 1403 of Lecture Notes in Computer Science, pages 391–405.
Springer-Verlag, 1998.

[PS00] David Pointcheval and Jacques Stern. Security Arguments for Digital Signatures and
Blind Signatures. Journal of Cryptology, 13(3):361–396, 2000.

[Rom90] John Rompel. One-Way Functions are Necessary and Sufficient for Secure Signatures.
Proceedings of the Annual Symposium on the Theory of Computing (STOC) 1999, pages
387–394. ACM Press, 1990.

[Sah99] Amit Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security. Proceedings of the Annual Symposium on Foundations of Computer
Science (FOCS) 1999. IEEE Computer Society Press, 1999.

19

A Single-Theorem Unique NIZK Proofs for CircuitSAT

In this section we first recall the definition of unique zero-knowledge from [LMS05] and adapt
it to the single-theorem case. We then present our construction of single-theorem unique zero-
knowledge proofs. For this we first give the precise definition of such proofs, then describe the
construction idea and tools, and finally present the construction and its security.

A.1 Definition

In the definition below we follow the classical approach of non-interactive zero-knowledge
proofs where a public string crs is available to all parties. Here we use the more general
definition of an algorithm C(1n) generating this string crs, which is either called the common
random string (if crs is a uniformly distributed bit string of polynomial length in n) or the
common reference string (if the string has an arbitrary distribution).

Single-theorem UNIZK proofs obey first of all the two basic properties completeness (the
verifier V accepts all honestly generated proofs of the prover P) and soundness (no malicious
prover can make the verifier accepts proofs for invalid statements). In addition, the proof
should be multiple zero-knowledge, i.e., the following two cases are indistinguishable: In the
first case each invocation of the prover starts P in mode key to generate a public key PKi,
together with a secret key SKi, and then P learns the valid theorem xi and the witness wi

and generates the proof πi from xi, wi and SKi in mode prove. In the other case a simulator
Z (which is also allowed to generated crs instead of C) like the prover first generates PKi

and SKi in mode key but then only gets to see xi (but not the witness) and is supposed to
output a proof πi in mode prove. In both cases the parties can be invoked an unbounded, but
polynomially number of times.

Uniqueness now says that for each PK, even if maliciously chosen, for any x there exist one
and only one proof π for each witness w. This should hold with overwhelming probability over
the choice of crs ← C(1n). Following [LMS05] we define uniqueness by a bijection between
witnesses and valid proofs (if any).

For the sUNIZK proofs we parameterize the underlying NP relation R by the common
reference string crs and the public key PK. These parameters are both themselves determined
according to a complexity parameter n, and for such parameters Rcrs,PK takes as inputs
x ∈ {0, 1}χ(n) and w ∈ {0, 1}ω(n), where x,w may depend on crs,PK. Let Wcrs,PK(x) ={
w ∈ {0, 1}ω(n)

∣∣ Rcrs,PK(x,w) = 1
}

denote the set of witnesses to x with respect to crs and
PK, and by LR(crs,PK) =

{
x ∈ {0, 1}χ(n)

∣∣ Wcrs,PK(x) 6= ∅
}

the inputs in the language (for
parameters crs,PK).

Definition 4 (Single-Theorem Unique Zero-Knowledge). A single-theorem unique non-
interactive zero-knowledge (sUNIZK) proof system for an efficient relation R in the common
reference string model is a tuple (C,P,V) of efficient algorithms such that the following holds.

Completeness. For any parameter n ∈ N, any crs ← C(1n), any (PK,SK) ← P(key, crs),
any (x,w) ∈ Rcrs,PK and any π ← P(prove, crs, x, w,SK) we have V(crs, x,PK, π) = 1.

Soundness. For any efficient algorithm P∗ the following holds. Let crs ← C(1n) and let
(PK, x, π)← P∗(crs). Then the probability of V(crs, x,PK, π) = 1 despite x /∈ LR(crs,PK)
is negligible (as a function of n).

Zero-Knowledge. There exists a probabilistic polynomial-time algorithm Z such that for all
probabilistic polynomial-time algorithms D the following random variable (as functions of
n) are computationally indistinguishable:

20

– Let crs ← C(1n), (PK1,SK1) ← P(key, crs) and output d ← DO(crs,PK1), where
(stateful) oracle O for the i-th call (xi, wi) first computes a genuine proof πi ←
P(prove, crs, xi, wi,SKi) if (xi, wi) ∈ Rcrs,PKi and sets πi ← ⊥ else, and also com-
putes (PKi+1,SKi+1)← P(key, crs), and the oracle returns (πi,PKi+1).

– Let (crs, σ) ← Z(crs, 1n), (PK1,SK1) ← Z(key, σ) and output d ← DO(crs,PK1),
where (stateful) oracle O for the i-th call (xi, wi) computes a simulated proof πi ←
Z(prove, σ, xi, wi,SKi) if (xi, wi) ∈ Rcrs,PK and sets πi ← ⊥ else, and also computes
(PKi+1,SKi+1)← Z(key, σ), and the oracle returns (πi,PKi+1).

Uniqueness. With overwhelming probability over the choice of crs← C(1n), for any PK and
any x, if the set Πcrs,PK(x) = {π | V(crs, x,PK, π) = 1} of accepted proofs in not empty,
then there exists a bijection τcrs,PK,x between the set Πcrs,PK(x) and the set Wcrs,PK(x) =
{w | (x,w) ∈ Rcrs,PK } of witnesses.

If, in addition, C(1n) generates uniformly distributed bit strings then the proof is said to be
in the common random string model. If the proof system is for an NP-complete relation R
then we say that the proof system is for NP. If we drop the requirement for uniqueness then
we simply speak of a (regular) non-interactive zero-knowledge proof system.

Below we present a scheme which is zero-knowledge for a single proof, i.e., where the
zero-knowledge property holds with respect to distinguisher D querying oracle O only once.
By a well-known technique due to Feige et al. [FLS99] we can turn such proof into a multiple
zero-knowledge system assuming the existence of one-way functions. It is not hard to see
that this transformation preserves uniqueness (as we will discuss briefly at the end). Since
the technique already applies if the starting protocol is witness-indistinguishable instead of
zero-knowledge, i.e.,

Witness Indistinguishability. For any efficient algorithm D the following holds. Let crs←
C(1n), (PK,SK)← P(key, crs), (x,w0, w1, δ)← D(crs,PK) such that w0, w1 ∈Wcrs,PK(x),
b← {0, 1}, π ← P(prove, crs, x, wb,SK), and d← D(δ, π). Then the probability that d = b
is negligibly close to 1/2.

it suffices to prove our protocol to be a single-theorem unique witness-indistinguishable non-
interactive proof system.

A.2 Construction Idea

Our solution is influenced by the construction in [BDMP91] and [LMS05], yet relies on two
important differences:

The first difference is to use Damgȧrd’s construction [Dam93] based on CircuitSAT instead
of relying on the 3SAT protocol of [BDMP91,LMS05]. The CircuitSAT problem is to decide
whether a circuit C is satisfiable or not. Switching to this problem gains us an important
advantage, based on the NP hardness proof of this problem. Let M be a Turing machine of
anNP language L which on input (x,w) verifies that w is a valid witness for x. Then the Karp
reduction from LR to CircuitSAT transforms M into a circuit Cx with x hardwired into the
circuit’s description. The circuit Cx itself is basically a description of M ’s program, mapping
inputs w to M ’s decision M(x,w) ∈ {0, 1}. Instead of fixing x with Cx we now contemplate x
to be part of the input, and consider circuit Cn (for some bounded input length n) which takes
(x,w) as input and computes M(x,w). In particular, Cn now depends only on the language
LR but not the actual statement. This enables us to build a “scrambled” circuit computation

21

as in [Dam93] before x is actually known. A similar idea has been applied in the case of 3SAT
in [DMP88].

The second important difference, allowing us to base our protocol on general assump-
tions instead of quadratic residuosity as in [BDMP91,Dam93,LMS05], is to use an equivocal
commitment scheme under general assumptions. Such an equivocal commitment scheme is
binding for any (possibly malicious) prover, but allows a simulator to open the commitment
in any arbitrary way. This idea is implicit in [BDMP91,Dam93,LMS05] where the prover is
given a quadratic non-residue y and commits to a bit b by r2yb mod N for random r. If
the zero-knowledge simulator chooses y as a square instead then such a commitment can be
opened correctly for any value b ∈ {0, 1}.

The same functionality as in the quadratic residuosity construction can be achieved with
the equivocal commitment scheme of Di Crescenzo et al. [DIO98]. There, a random string t
of length 3n is put in the common random string and the committer chooses a random r ←
{0, 1}n and computes G(r) for b = 0 and G(r)⊕ t for b = 1, where G : {0, 1}n → {0, 1}3n is a
one-way function based pseudorandom generator. The simulator simply sets t = G(r0)⊕G(r1)
and commits by G(r0) such that it can be opened with any value b by disclosing rb. Instead
of using a one-way function based generator as in the original scheme here we use one-way
permutation based pseudorandom generator, enforcing a unique random string such that a
commitment can be opened correctly (as in the quadratic residuosity construction).

Definition 5 (Equivocal Bit Commitment Scheme). A (non-interactive) equivocal bit
commitment scheme with unique openings in the common reference string model is a pair
(C,Com) of efficient algorithms such that

Unique Opening. With overwhelming probability over the choice of crs ← C(1n) there do
not exist (b0, r0) 6= (b1, r1) ∈ {0, 1} × {0, 1}n with Com(crs, b0; r0) = Com(crs, b1; r1).

Secrecy. For any efficient distribution B on bits the following random variables are compu-
tationally indistinguishable:
– Let crs ← CCom(1n), b ← B(crsCom), r ← {0, 1}n and C ← Com(crs, b; r). Output

(crs, b, C).
– Let crs← CCom(1n), b← B(crsCom), r ← {0, 1}n and C ← Com(crs, 1− b; r). Output

(crs, b, C).
Equivocality. There exists an efficient algorithm EQ such that for any efficient distribution
B on bits the following random variables are computationally indistinguishable:
– Let crs ← CCom(1n), b ← B(crs), r ← {0, 1}n and C ← Com(crs, b; r). Output

(crs, C, b, r).
– Let (crs, C, r0, r1)← EQ(1n) and b← B(crsCom). Output (crs, C, b, rb).

As sketched before such equivocal commitments can be built from one-way permutations
(although each commitment requires a separate part of the common random string):

Lemma 1 ([DIO98]). Non-interactive equivocal bit commitments with unique openings in
the common random string model exist if one-way permutations exist.

A.3 Construction of Unique Zero-Knowledge System

Our construction follows the one by Damgȧrd [Dam93] closely. Yet some slight changes
are necessary, due to the fact that we do not use the homomorphic quadratic residuosity

22

Figure 4. Given circuit Cn : {0, 1}3 → {0, 1} (top), example construction of “scrambled” circuit with
some pointers omitted for sake of readability (lower left corner), and proof through decommitments
(dark color) for x1 = 0, x2 = 1 and w1 = 1 (lower right corner).

encryption scheme. As explained above, we only consider the construction of a witness-
indistinguishable proof; zero-knowledge follows from the [FLS99] transformation. We write
sUNIZKC for the following proof system.

We assume wlog. that the circuit Cn : {0, 1}χ(n) × {0, 1}ω(n) → {0, 1} consists of binary
NAND gates only (any other complete gate works as well, NAND gates are chosen here for
sake of concreteness). We also suppose that each of the G gates, among which are I input
gates, is enumerated in some fixed order and that no constant gates exists (these can be easily
replaced by using appropriate NAND gates for an input bit). We also assume that there is
some fixed order in which the circuit is computed, once the input gates are assigned values.

We remark that the construction below is certainly not optimized; this is in order to
simplify the description. A toy example for a circuit Cn : {0, 1}2 × {0, 1} → {0, 1} is given in
Figure 4, with two bits x1x2 for the public input and a single witness bit w1. The reader is
invited to consult this example in support of the description below.

Generating the Common Random String. The common random string generator C(1n) con-
sists of two parts. First it runs the generator CCom(1n) of the equivocal commitment scheme
12G + 8G2 + 6I times to generate strings crscom,i ← Ccom(1n). These strings will be divided

23

by assigning 12 + 8G strings to each of the G gates and 6 additional strings to each of the I
input gates. The subdivisions for each gate will become clear below. When saying that the
prover commits to a bit it is understood that the prover uses the corresponding string in
crscom,i.

The second part of the common random string consists of a random string crsC gener-
ated for a (possibly ambiguous) non-interactive zero-knowledge proof system (CC,PC,VC) to
prove correctness of the scrambled circuit (see below). The combined output equals crs =
(crscom, crsC).

Preparing Keys. To prepare the public key PK the prover first does the following.

– For each NAND gate i the prover first prepares a 4 × 3 truth table tti describing the
input/output behavior of a NAND gate, where each input combination 00, 01, 10 and 11
appears in random order. He commits to all bits tti[a, b] for a ∈ {0, 1, 2, 3} and b ∈ {0, 1, 2}
individually. We denote by Com(tti) the committed table. An example might look like
this:

tti Com(tti)
left input 0 1 1 0 Com(0) Com(1) Com(1) Com(0)
right input 0 0 1 1 Com(0) Com(0) Com(1) Com(1)
output 1 1 0 1 Com(1) Com(1) Com(0) Com(1)

– Next, the prover “connects” the two input gates of each gate to the output. That is, if gate
i computes the NAND of (left) gate j and (right) gate k then the prover prepares for each
output bit ttj [a, 2] in the truth table of the left gate j two distinct pointers ppj [i, 0, b]
for b ∈ {0, 1} (the 0-entry indicates that this is a pointer for a left input).3 This pointer
points to the column numbers in tti matching the input bit of the first row in gate i.
That is, the output bit ttj [a, 2] of gate j equals the input bit tti[ppj [i, 0, 0], 0] of gate i
and and also ttj [a, 2] = tti[ppj [i, 0, 1], 0] (see lower left part of Figure 4). The distinct
pointers values are arranged in random order and committed to (since the pointer can be
described by a number between 0 and 3 one can commit to this pointer bitwise with two
bits). The same is also done for the right input gate where we connect according to the
second row of gate i and where we use “right” pointers ppk[i, 1, b]. Since each gate may
be connected to other gates as a left or right input (possibly even for the same gate), for
each gate j we obtain a G× 2× 2 matrix ppj of pointers with values from {0, 1, 2, 3}. We
denote by ppj this set of pointers of gate j and by Com(ppj) the commitments.

– It remains to specify how to connect the input gates of the circuit. For an input gate i
the prover has already prepared a (committed) truth table Com(tti). Then the prover
commits to both input possibilities vvi(b) = b⊕ $i for a random bit $i and associates to
each of these two commitments a random pointer ppi(b) such that the pointer links the
possible input value to the corresponding output value in tti.

– Each unspecified matrix entries are set to 0 and committed to.

The public key PK of the prover now consists of all the commitments of the “scrambled”
circuit Com(Cn), plus a non-interactive zero-knowledge proof by PC (with respect to part crsC)
that the circuit is formed correctly. Specifically, this means that each truth table describes a
NAND gate, that the pointers are connected correctly, and that for each input gate both input
possibilities 0 and 1 are connected correctly to the truth table. We denote this proof by πC. The
prover’s secret key SK contains all the decommitments to Com(Cn), while PK = (Com(Cn), πC).
3 This distinction between left and right pointers is necessary for the case that one gate serves as

both inputs to another gate.

24

Proving Statements. To prove a statement x = x1x2 . . . xχ(n) ∈ {0, 1}χ(n) for witness w =
w1w2 . . . wω(n) ∈ {0, 1}ω(n) the prover first decommits to the input values in the x-part of the
input gate i of circuit Cn, i.e., to vvi(b) = xj and to the corresponding pointer ppi(b). The
prover also reveals the decommitments of the pointers ppi(b) of the witness bit wj (but not
the actual values vvi(b) = wj). We say that the corresponding gates have been evaluated to
tti[ppi[b], 2].

Then, the prover goes through the computation in the prescribed order such that only
evaluated gates serve as inputs to other gates. For each NAND gate i with inputs from left
gate j and right gate k (possibly j = k) the prover decommits to a pointer pair ppj [i, 0, a],
ppk[i, 1, a′] for the input gates j, k such that

– gate j has been evaluated to ttj [a, 2] before, i.e., the pointer ppj [i, 0, a] is in the same
column as the value of the gate j, and

– gate k has been evaluated to ttk[a′, 2] before, i.e., the pointer ppk[i, 1, a′] is in the same
column as the value of the gate k, and

– ppj [i, 0, a] = ppk[i, 1, a′], i.e., both pointers point to the same column in the truth table
of the output gate i.

Finally, the prover opens the commitment of the output gate i for the value tti[a, 2] it has been
evaluated to. The proof π consists of all decommitments of the pointers, the decommitments
of the x-input part and of the output gate (see lower right corner in Figure 4).

Verifying Proofs. To verify a proof π for statement x with respect to crs = (crscom, crsC) and
public key PK = (Com(Cn), πC), the verifier checks with VC that πC is correct with respect to
crsC, that the decommitment to the circuit’s output bit is a valid decommitment to 1, and
that all pointers have been opened correctly, i.e., that each outgoing pointer is in the same
column as both incoming pointers. If all tests succeed then V returns 1.

Lemma 2. Let (CCom,Com) be a non-interactive equivocal bit commitment scheme with unique
openings in the common random string model, let (CC,PC,VC) be a regular NIZK proofs sys-
tem for NP, and let C = (Cn)n∈N be a sequence of circuits Cn : {0, 1}χ(n)×{0, 1}ω(n) → {0, 1}.
Then the scheme sUNIZKC is a single-theorem unique non-interactive witness-indistinguishable
proof system for RC =

{
(x,w) ∈ {0, 1}χ(n)+ω(n)

∣∣ Cn(x,w) = 1
}

in the common random string
model.

Proof. Completeness is clear. It remains to show soundness, witness indistinguishability and
uniqueness.

Soundness. For soundness assume that a malicious prover, on input crs ← C(1n), outputs
(PK, x, π) such that x /∈ LRC(crs,PK) but the verifier accepts. Since the verifier tests the proof
πC in the key PK (with respect to crsC) we can assume that the commitments are formed
correctly and describe the circuit Cn (the cheating probability that this is not the case is
negligible by the soundness of the regular NIZK). Since the proof π must contain the opening
to x it follows together with the correctness of the commitments that π contains openings to a
valid computation of Cn(x,w∗) for some w∗ ∈ {0, 1}ω(n). Because x /∈ LRC(crs,PK), however,
any w∗ ∈ {0, 1}ω(n) evaluates to 0 and the proof π cannot contain a valid 1-decommitment
to the circuit’s output.

25

Witness Indistinguishability. We show that the distribution of the generated proof does not
depend in a significant way on the actual witness. Consider an attacker D on the witness
indistinguishability, getting as input a common random string crs and a key PK generated by
the prover. The attacker outputs (x,w0, w1) and the prover generates π for input (x,wb) for
random bit b, and D tries to predict b through bit d. We denote this experiment by Game0(n).

In the sequel we condition on the choice of b = 0 or b = 1. For a fixed bit b consider a
slightly modified attack, Game1(n), in which instead of generating the circuit’s correctness
proof πC for random crsC, we now run the zero-knowledge simulator of the regular NIZK to
produce the part crsC of the reference string and a simulated proof πC. By the zero-knowledge
property of the regular proof system the probability for d = b for fixed b remains negligibly
close to the one of the original attack. Hence, for a negligible function ν(n),

Prob[d = b in Game1(n)] = 1
2 · Prob[d = b in Game1(n) | b = 0]

+ 1
2 · Prob[d = b in Game1(n) | b = 1]

= 1
2 · (Prob[d = b in Game0(n) | b = 0]± ν(n))

+ 1
2 · (Prob[d = b in Game0(n) | b = 1]± ν(n))

= Prob[d = b in Game0(n)]± ν(n)

Next, in the slightly changed attack, Game2(n), we also modify how the prover works. We
assume that, instead of using strings crsCom ← CCom(1n), we run algorithm EQ to generate
all strings crsCom in crs (together with ambiguous openings r0, r1 for each string). Then we
let the prover generate the scrambled circuit as before, but each time the prover is supposed
to commit to a bit a we compute this commitment as Com(crsCom, a; ra) for the given values
r0, r1. As in Game1(n), the circuit’s correctness proof πC is generated by the simulator of the
regular NIZK, i.e., without the decommitments. Similar to the previous case it follows from
the equivocality that the probability for d = b in this experiment Game2(n) is negligibly close
to the one in Game1(n).

Because of the equivocality of the commitments and the simulation of the circuit’s cor-
rectness proof the distribution of the prover’s data PK and π in Game2(n) now is independent
of the witness. The probability for d = b is thus exactly 1/2 in this case, and the claim follows
for the original attack Game0(n).

Uniqueness. Finally, we show that the proof above is unique. We claim that the bijection
between proofs and witnesses is defined by the commitments and openings of the witness part.
That is, with overwhelming probability the revealed pointers of the witness parts (together
with the corresponding value) give rise to a mapping τcrs,PK,x (not necessarily efficiently
computable) from proofs to the witnesses.

We call crscom good if there does not exist a commitment with ambiguous openings. This
happens with overwhelming probability and from now on we condition on such crscom. We
furthermore presume that the scrambled circuit Com(Cn) is correctly formed; this is true for
accepted proofs with overwhelming probability (over the choice of crsC) by the validity of the
proof πC. The latter is also implied with overwhelming probability if the set of accepted proofs
Πcrs,PK(x) is non-empty.

Under the conditions above the openings of the x-part and the pointers for the witness part
uniquely determine subsequent openings. Hence, any difference in two valid proofs π 6= π′ is
due to the opening of the pointers of the witness part. It follows that these proofs describe two
distinct witnesses w 6= w′ as well. Vice versa, different witnesses entail openings to different
pointers and thus to different proofs. ut

26

As explained above, we now apply the technique of [FLS99] to go from a witness-indis-
tinguishable proof to a multiple zero-knowledge proof system. For parameter n assume that
the witness length ω(n) is super-logaritmic (e.g., by padding all witnesses to n bits) and let
`(n) = 2 ·ω(n). The transformation takes a part crsFLS ∈ {0, 1}`(n) of the reference string crs
and evaluates the circuit CFLS

n : {0, 1}χ(n)+`(n) × {0, 1}ω(n) → {0, 1} defined through

CFLS
n (x||crsFLS, w) = Cn(x,w) ∨ [G(w) = crsFLS]

for a pseudorandom generator G : {0, 1}ω(n) → {0, 1}`(n). Note that the input size of the
derived circuit slightly enlarges, but only as a function of n. Also note that our witness-
indistinguishable proof system allows dependencies of theorems x of such bounded parts of
crs.

For possibly malicious provers the probability that there exist a pre-image of the truly
random string crsFLS under G is at most 2−`(n)/2 and thus negligible, preserving soundness
as well as uniqueness. On the other hand, the zero-knowledge simulator can now pick crsFLS

as the pseudorandom value G(w) for random w and then uses this witness w to give proofs.
Hence, we obtain:

Theorem 5. Single-theorem unique non-interactive zero-knowledge proof systems for NP
in the common random string model exist if (regular) non-interactive zero-knowledge proof
systems for NP in the common random string model and one-way permutations exist.

The theorem holds for both bounded and unbounded provers. For efficient provers it
follows that sUNIZK proofs exist if trapdoor permutations exist, and for unbounded provers
they can be built from any one-way permutation [FLS99].

27

