
Composability of Bellare-Rogaway
Key Exchange Protocols

Christina Brzuska
Darmstadt University

Marc Fischlin
Darmstadt University

Bogdan Warinschi
University of Bristol

Stephen C. Williams
University of Bristol

ABSTRACT
In this paper we examine composability properties for the
fundamental task of key exchange. Roughly speaking, we
show that key exchange protocols secure in the prevalent
model of Bellare and Rogaway can be composed with arbi-
trary protocols that require symmetrically distributed keys.
This composition theorem holds if the key exchange protocol
satisfies an additional technical requirement that our analy-
sis brings to light: it should be possible to determine which
sessions derive equal keys given only the publicly available
information.

What distinguishes our results from virtually all existing
work is that we do not rely, neither directly nor indirectly,
on the simulation paradigm. Instead, our security notions
and composition theorems exclusively use a game-based for-
malism. We thus avoid several undesirable consequences of
simulation-based security notions and support applicability
to a broader class of protocols. In particular, we offer an ab-
stract formalization of game-based security that should be
of independent interest in other investigations using game-
based formalisms.

1. INTRODUCTION

1.1 Background
Typical security proofs of modern-day cryptography in-

volve sophisticated reductions based on probabilistic argu-
ments that are error prone and often difficult to verify. One
of the few available approaches to make the analysis of com-
plex systems even remotely possible is compositional design
and analysis. Here, one concludes the security of a larger
system from the security of individual components via gen-
eral composition principles. This paper is a contribution to
this line of research. Our work is focused on the compos-
ability of one of the most fundamental cryptographic tasks,
secure key exchange.

There are two main approaches to capture security of
protocols. One is based on the simulation paradigm such
as the universal composition (UC) framework and related
models [8, 2, 17]. The other approach uses games to model
security. Simulation-based security offers structured, intu-
itively appealing means for defining security, and often allow
to conclude security of composed protocols automatically.
At the same time, the resulting frameworks can be com-
plex and involve hard to grasp subtleties. Additionally, the
strong security requirements imposed by simulation prevent

efficient secure realisations for many important tasks. Fur-
thermore, and in some sense this is the main motivation for
the present work, simulation frameworks (e.g. [11]) are of-
ten simply not suitable for the analysis of existing protocols
of practical importance, mainly because such protocols do
not meet the highly stringent requirements that simulation-
based security demands. The only remaining alternative is
to then use game-based formalisms (e.g. [6, 7, 4, 10, 19]).
Their requirements are less onerous, yet the level of security
for the keys that are derived is usually quite high: they are
indistinguishable from random keys. Unfortunately, while
we have a good understanding of the level of security that
standard game-based models entail for key-exchange proto-
cols when these are executed stand-alone, there are no rig-
orously demonstrated —or even defined!— guarantees for
their composition with other tasks. Our work fills this gap.

In this paper we study composability of key exchange pro-
tocols with arbitrary tasks that use symmetric keys. A typ-
ical example to which our results apply is the use of a key
exchange protocol to establish symmetric keys used later in
a secure channel protocol. The security definitions that we
consider, for both stand alone and composed protocol are
within the traditional game-based setting. Our main re-
sult is a theorem that allows composition of key exchange
with arbitrary protocols that use symmetrically shared keys.
Perhaps surprisingly, the main requirement on the key ex-
change is a mild refinement of the original security definition
suggested by Bellare and Rogaway [5] (BR model). We note
that one can, for instance, easily incorporate the eCK deriva-
tive [19] of the BR model into our framework by adapting
the corresponding stronger corruption type accordingly. An
additional requirement for our composition result is a tech-
nical condition on matching sessions which we also show to
be (in a formal sense) necessary.

1.2 Summary of results
Abstract framework for games. We first develop a
framework for specifying cryptographic games (for two-party
protocols). Our formalization reflects standard definitional
ideas in cryptography that originate in the work of Bellare
and Rogaway [5]. Here, an adversary controls all communi-
cation between the participating parties and interacts with
the algorithms that define the protocol, through an interface
offered by the cryptographic game. The goal of the adver-
sary is to trigger a specific event that the game considers
“bad”. We model this goal as a predicate on the complete
state of the execution. This abstract way of defining secu-

1

rity is sufficiently flexible to generalize most, if not all, ex-
isting game-based security definitions. Our abstract model
for games should be of independent interest.

Security of key exchange protocols. Interestingly,
the crucial security notion we demand from the key ex-
change protocol is based on the original proposal of Bel-
lare and Rogaway [5], as refined by Blake-Wilson et al. [7]
for the public-key setting. Recall, their model ensures that
an adversary cannot distinguish keys derived via the pro-
tocol from random strings (selected from the key space).
Additionally, their definition identifies the two local “part-
ner” sessions involved in an execution of the protocol via
the concept of matching conversations. They demand that
at most two sessions can have the same matching conversa-
tion. As a stepping stone towards our result we show how to
cast the BR security definition in our abstract framework.
Our formulation maintains the key-indistinguishability re-
quirement. However, we pair local sessions via the more
general concept of session identifiers as introduced by Bel-
lare, Pointcheval and Rogaway [4]. These identifiers are gen-
erated on the fly during protocol execution and their use
matches more closely how real world protocols define their
partners. For example the TLS [15] and SSH protocols [21]
both have some session identifier set during the course of
execution. We demand that at most two local sessions agree
on the same (global) session identifier.

Public session matching. In the above definition we match
sessions via session identifiers. Since these are locally com-
puted on the fly by sessions they may be unknown to third
parties, in particular to the adversary. However, we were
only able to prove general composability for key exchange
protocols which satisfy an additional technical requirement,
namely the existence of a public session matching algorithm.
Roughly, such an algorithm is able to determine which ses-
sions have derived equal session identifiers, only using in-
formation publicly available. Notice that this requirement
is not as strong as it may seem at a first glance: protocols
where sessions are defined via the matching conversation re-
quirement [5] satisfy this requirement.

Defining composition. We study the composition of key
exchange protocols with arbitrary protocols from a class that
we call symmetric key protocols. These protocols are two-
party protocol, where the execution of the protocol relies
only on a shared secret key.

Given a game Gke defining the security of the key exchange
protocol, ke, and given the game Gπ defining the security of
the symmetric key protocol, π, we show how to generically
define a game Gke;π. This game fixes the execution of the
composition of ke with π and specifies the security required
of this composition. The execution model of the composi-
tion closely follows the intuition: Each session first runs an
instance of the key exchange protocol and uses the derived
key to execute the symmetric protocol. No other informa-
tion flows from the key exchange stage to the symmetric key
protocol. The game Gke;π allows the adversary to interact
with the ke and π simultaneously: at any given point some
sessions may be in the key exchange stage, while others are
in the symmetric key protocol stage. The security require-
ment on the composition is inherited from Gπ: the adversary
wins against the composition if it breaks the symmetric pro-
tocol. The game Gke;π does not place any explicit security
requirement on the key exchange protocol.

Composition theorem. Our main result is that key ex-
change protocols that are BR-secure, and for which a session
matching algorithm exists, can be securely composed with
arbitrary symmetric key protocols. In practice, assume you
want to run a key exchange protocol to use the keys for a
secure channel. To conclude security of the whole protocol,
one would usually need to analyse the protocol as a whole.
Instead, with our theorem, one can now analyse the single
components seperately, and more importantly, if one uses
an existing provable secure key exchange protocol (i.e. BR-
secure), one can simply re-use the existing security analysis
without further investigation; and the same applies to secure
channels.

We notice that secure channel protocols usually fall into
the class of so-called single session reducible protocols, a
notion we introduce in this paper. For protocols in this
class, it suffices to analyse a single session of the protocol
and security for concurrent execution follows automatically.

Overall, in the case of a composed protocol consisting of
a key exchange part and a secure channel part, the analysis
boils down to a single session analysis of the secure channel
protocol and a (possibly existing) BR-analysis of the key
exchange part. For clarity, we emphasise that single session
reducibility is not a requirement of our framework, but a
useful tool to shorten a complex analysis if applicable.

We now take a closer look at the public session match-
ing requirement we assume to exist. At a superficial look,
one might think that this requirement is a necessary artifact
for our proof to work. However, this is (provably) not the
case. In Appendix D we show that if a key exchange algo-
rithm is composable with arbitrary symmetric key protocols
and security is shown via a specific kind of black-box reduc-
tion, then (a weak form of) a session matching algorithm
must exist. Secondly, we emphasize that the public session
matching requirement is only on the key exchange protocol,
and not on the subsequent uses of the key; the requirement
does not impact the protocol with which the key exchange
is composed.

We finally note that it is tempting to assume that se-
cure composition of key exchange protocols with arbitrary
symmetric key protocols is impossible. The seemingly intu-
itive counter argument is that, if the symmetric key protocol
“misbehaves” in the sense that it duplicates some steps of the
key exchange protocol in a bad way, then the composition
would easily become insecure. As an example assume that
the key exchange somehow involves (in a secure way) a step
in which a nonce is encrypted under the new session key,
and that the first step of the subsequent protocol is that
a party, exceptionally receiving such an encrypted message,
would immediately disclose the session key. Then replaying
the previous message from the key exchange phase should
violate the security of the overall protocol. This line of rea-
soning, however, is incorrect. Key indistinguishability of a
key exchange protocol essentially says that one can replace
the actual key by an independent random key, more or less
decoupling the two phases. This is even true in presence
of key leakage in the symmetric key protocol, as such leak-
age can be already captured in the Bellare-Rogaway model
through special key reveals the adversary can enforce. This
implies that the “misbehaving” symmetric key protocol ei-
ther contradicts the indistinguishability of the key exchange
protocol, or that the duplication of steps is harmless because
the derived key is essentially independent of the information

2

flow in the key exchange phase. We note that carrying out
this argument formally requires some care, especially with
the session matching, but our theorem shows that general
composition indeed holds.

1.3 Related work
The work of Canetti and Krawczyk on session-key (SK)

security [10, 11] is probably closest in spirit and motivation
with ours. They spell out why game based techniques may
sometime be preferable to simulation based ones. Their for-
malization of SK security uses game-based techniques (ex-
plicitly avoiding the simulation paradigm). The main tech-
nical result of that work is a limited form of composition:
SK-secure protocols can be composed with secure channels.
Notice that this result is specific to secure channels and does
not apply to other tasks.

In follow-up work Canetti and Krawczyk obtain more gen-
eral composability properties for the SK-security notion [11].
The approach is however not direct: they show that proto-
cols that satisfy a variant of SK-security implement, in a UC
sense an ideal functionality for key exchange. They therefore
conclude that SK-security is composable. The crucial differ-
ence between this composition result and ours is the compos-
ability properties that SK-security enjoys are still obtained
(indirectly) via a simulation-based framework (and thus in-
herit the associated problems). Furthermore, the equiva-
lence with UC key exchange functionality is imperfect. One
either requires that protocols conform to a particular form
(requirement not met by practical protocols), or equivalence
is proven with respect to a weaker version of UC.

Shoup [20], in a technical report, presents a security frame-
work for key exchange which resembles the BR model, even
though it is cast as a simulation-based approach. Shoup
takes into account protocol interference of the subsequent
symmetric key protocol with the key exchange protocol.
That is, his notion of a secure key exchange protocol re-
quires key indistinguishability in presence of arbitrary ap-
plications using the keys. Still, his model does not allow
to reason about the security of the composed protocol, i.e.,
when the symmetric key protocol uses keys derived from the
key exchange protocol.

The work of Datta et al. [13] is also aimed at compositional
analysis of protocols. They use the logical framework called
Protocol Compositional Logic [14]. One can regard this line
of research as an effort to add some structure to a game-
based formalism. In this case, the structure is in the form of
an additional layer of logical formalism: formulas in the logic
express security properties specified in a game-based frame-
work. By working directly within the game-based framework
we present a more general framework where the language for
specifying protocols is left unspecified. We therefore impose
no restrictions on the primitives used in the construction of
our protocols. In contrast, adding new primitives to the for-
malism of [13] would require re-proving the validity of many
of the axioms and inference rules from scratch.

2. PROTOCOLS
It is standard in cryptography to model the security of

a scheme via cryptographic games. Such games consider an
arbitrary adversary that interacts with the algorithms which
define the protocol, via some set of queries. The queries cap-
ture the use of the protocol in a real system. The adversary
sends them to the game, which computes its responses with

the help of the algorithm under attack. The goal of the
adversary is to trigger an event which the game deems bad.

In this section we first give a general abstract definition
for cryptographic games and then specialise it in two ways.
First we explain how key exchange is an instance of our
abstract framework. Then we identify a class of protocols,
which we call “symmetric key protocols”.

Identities. We fix an integer ni of size polynomial in the
security parameter. Identities, used to model the users of a
system, are identified by some integer i, with 0 ≤ i < ni.

Protocols. A protocol is a pair of algorithms (kg, ξ), where
kg is a randomized key generation algorithm taking as input
the security parameter and outputting keys from some key
space. The algorithm ξ is the algorithm executed locally by
a party that executes the protocol.

Local sessions of a protocol are identified by local session
identifiers lsid ∈ Z× Z× Z, where the local identifier lsid =
(i, j, k) refers to the k-th local session of the identity i, where
the intended partner identity is j. We restrict k so that
0 ≤ k < ns, where ns is an integer of size polynomial in the
security parameter. These identifiers allow the adversary to
uniquely identify each session within the game and are not
used by the protocol.

Games. Formally, a game is a probabilistic Turing machine
with an input tape to receive queries from the adversary, an
output tape to return responses to the adversary, a random
tape and internal state. The internal state consists of the
following:

• LSID: The set of all local session identifiers valid for use
within the game. This set is assumed to be hardwired
in the model.

• SST : LSID → {0, 1}∗: This function provides session
state information for a given session lsid ∈ LSID. Ses-
sion state information is specific to the type of protocol
being executed and usually denotes user-specific data.

• LST : LSID → {0, 1}∗: The local session state is the
state for a specific session containing the game-relevant
variables for this session.

• EST ∈ {0, 1}∗: The game execution state stores infor-
mation needed for the execution model which is not
used on a session-by-session basis. For example this
may contain long term keys of identities.

• MST ∈ {0, 1}∗: The model state for the security re-
quirement being modeled provides information to the
game which is not session specific. For example this
may be some bit which the adversary is attempting to
discover.

Many previous models for protocols do not separate the
session state and local session state. We do this to pro-
vide a clear boundary between variables used and updated
by the protocol’s algorithm and those used by the game to
model various security requirements. For example, the ses-
sion state may contain the session key computed by running
a key exchange algorithm, while the local session state would
consist of flags to mark individual sessions as corrupted or
revealed. Naturally, this local session information shall nei-
ther be used by, nor be available to the algorithm that de-
fines the behaviour of a session. Note, although we require

3

the internal state to consist of these components, one may
still model any arbitrary game via these requirements: if any
arbitrary variable is used directly by the protocol it is stored
in either SST or EST, otherwise it is stored in LST or MST.
For example, if the game’s security requirement required a
history of all queries made, this would be stored in MST.

Consequently we use two setup algorithms for initialising
these two separate sets of state within the game. The first
initialises the state specific to the execution model of the
protocol, while the second initialises the state used for the
security requirement being modelled.

• (SST,EST)← setupE(LSID, kg, 1η): Initialises the ses-
sion state and game execution state, where kg is the
protocol’s key generation algorithm and 1η is the se-
curity parameter.

• (LST,MST) ← setupG(LSID, SST,EST, 1η): Initialises
the local session state and model state.

An adversary is a probabilistic polynomial time algorithm
that interacts with a game through a finite number of well
defined queries in a set Q. The game processes each query
in a given way, using its current internal state and the query
provided; a response is then passed back to the adversary.
The game processes queries using the behaviour defined by
an algorithm χ. The game behaviour χ makes calls to under-
lying protocol algorithms, i.e. for a query to a left-or-right
oracle in a typical encryption game, χ computes the appro-
priate response with the help of the underlying encryption
algorithm.

As usual, not all queries are valid at all points within a
game’s execution. We model this possibility via a predicate,
Valid, which the game tests each time it receives a query.
The Valid predicate takes as input the entire game state
and the query received; either true or false is returned, in-
dicating whether the game processes or ignores the query.
It is required that all Valid predicates check that any lo-
cal session identifiers are in the set LSID, and if a query
has no specified Valid predicate we assume this is the only
check made. Throughout the paper we give only informal
descriptions for all Valid predicates. However the formal
descriptions are available in Appendix E.1.

When the game receives a query q ∈ Q it executes in the
following way:

• If Valid(q, (LSID,SST, LST,EST,MST)) returns false
then do nothing and return invalid to the adversary.

• Else execute ((SST′, LST′,EST′,MST′), response) ←
χ(q, (LSID, SST, LST,EST,MST), (kg, ξ), 1η)

• and set SST ← SST′, LST ← LST′, EST ← EST′ and
MST← MST′.

• Return response to the adversary.

Definition 1. A game G is a Turing machine param-
eterised by (kg, ξ) maintaining state (LSID, SST, LST,EST,
MST) with setup algorithms setupE, setupG, some behavior
χ and predicates defined by Valid.

The set of queries, Q, always includes a Send query, taking
as input lsid ∈ LSID and message msg ∈ {0, 1}∗. Typically
for a Send query, the behaviour χ executes the algorithm ξ
on the local session state of session lsid and message msg.

This algorithm then returns an updated session state and
a response to be passed back to the adversary. Formally
this is defined as follows; note for brevity we omit the full
notation of χ taking as input the game’s state, and assume
this implicitly.

• Send(lsid,msg):

– SST′ ← SST

– (sst′, response)← ξ(SST(lsid),msg)

– SST′(lsid)← sst′

– Return ((SST′, LST,EST,MST), response)

The Send query is used to allow the adversary to simu-
late messages being sent over a network. It receives back a
response which is computed by running the protocol algo-
rithm. This gives the adversary complete control over the
network so it can alter, delay, create or delete messages.

The goal of the adversary is to trigger some event which
is deemed “bad”, i.e. the adversary has in some sense broken
the security of the protocol. In order to test for such an event
there exists a predicate P associated to the game G which is
an algorithm of the form b← P(LSID, SST, LST,EST,MST),
where b ∈ {0, 1}, and b = 1 if and only if the adversary has
succeeded in its goal.

The entire process of the adversary interacting with the
game, through to the predicate being applied, is called the
experiment, which is executed in the following way.

1. The game runs (SST,EST)← setupE(LSID, kg, 1η)

2. and (LST,MST)← setupG(LSID, SST,EST, 1η).

3. The adversary now proceeds to send queries from the
set Q to the game.

4. When the adversary terminates the predicate b ← P
(LSID, SST, LST,EST,MST) is run.

5. Output b.

Note that the game may pass some information of the ini-
tialisation phase to the adversary, like the users’ public keys,
by introducing a special query to Q which can be made only
once, at the beginning.

We write ExpGπ,A(1η) for the experiment where A is the
adversary, π is the protocol and G is the game. We write
ExpGπ,A(1η) = b for the event that the predicate P associ-
ated to G outputs bit b. Note that our notion of protocols
and games is general enough to subsume distinct protocols
and their games under a single one, with the parties using
some identifier to address different sub protocols, and usu-
ally demanding that the adversary only needs to win some
of the games to break the composed game. This is partic-
ularly interesting for our composition theorem, because it
immediately allows one to conclude security even if pairs of
parties subsequently run different protocols.

3. KEY EXCHANGE PROTOCOLS
A key exchange protocol allows two local sessions, which

use long term keys of identities, to agree upon a short term
session key. We consider identities who have asymmetric
long term keys. In order to“partner” two sessions we use the
notion of a session identifier value. This value is computed
by the key exchange protocol. Using a session identifier still
allows one to base partnering on notions such as matching
conversation as done by Bellare et al. [5]; using the message

4

transcript one can achieve a similar, while not equivalent no-
tion. Partnered sessions are required to compute the same
session key, and this session key must be indistinguishable
from random. Further, as we consider two party protocols at
most two sessions should ever share the same session iden-
tifier.

The session identifier is distinct to the local session iden-
tifier lsid. The former is computed by the key exchange al-
gorithm to determine which sessions are partners, whilst the
latter is simply a unique label for the adversary to address
queries to a particular session.

We assume that when a key exchange protocol session
agrees upon or rejects a key, the adversary knows this has
taken place. We require this property explicitly, but one can
see that in the models of [5, 7], by sending a ‘Reveal’ query
after every ‘Send’ query it is possible for an adversary to
learn when sessions accept or reject a key.

To model the above requirements of a key exchange proto-
col we introduce two security games. The first requirement,
secrecy, is modelled using the methods of Bellare-Rogaway
security: the adversary tests some session of the game and
receives either a random key or the real session key agreed.
The adversary wins the game if it determines correctly with
which it was provided. We model only protocols which pro-
vide forward security, i.e. if a long term key is corrupted by
an adversary, any session keys (including those computed
using the corrupted long term key) already agreed will still
be considered secure. Note, by slightly modifying our def-
initions one may model non-forward secure key exchange
protocol, and provided corruptions are modelled correctly,
our overall composition result holds. The second security
game places restrictions on the partnered sessions: The ad-
versary attempts to cause partnered sessions to agree upon
different keys, or force at least three sessions to agree upon
the same session identifier.

Both security games have the same execution model, and
share many of the same characteristics in terms of game
state. Therefore we first introduce the common elements
and introduce game-specific properties later. In particular,
both games share Send, Corrupt and Reveal queries. The
two games have different winning conditions, and the BR-
secrecy game allows the adversary the additional Test and
Guess queries.

Game execution state. The execution state for key ex-
change games consists of a list Lkeys consisting of tuples
(i, pki, ski, δi), where i is some identity, pki ∈ {0, 1}∗ is the
public key of the identity i, ski ∈ {0, 1}∗ is the secret key of i
and δi ∈ {honest, corrupted} denotes whether i has been cor-
rupted by the adversary or not. This model assumes there
is some secure PKI to distribute keys to identities.

Session state. For key exchange protocols the session state
for the local session identified by lsid = (i, j, k) consists of
the following:

• (pki, ski) ∈ {0, 1}∗×{0, 1}∗: This is the long term key
pair for the identity i to whom this session belongs.

• pkj ∈ {0, 1}∗: This is the public key, for the identity
j, who is the intended partner of this session.

• sid ∈ {0, 1}∗∪{⊥}: This is the session identifier for the
session. We say that two sessions are partners if they
share the same session identifier and sid 6=⊥. Once

sid is set to a value different from ⊥, it may not be
changed.

• κ ∈ {0, 1}∗ ∪ {⊥}: This is the session key for the pro-
tocol, where ⊥ indicates no session key has yet been
agreed.

• γ ∈ {running, accepted, rejected}: This provides the
current execution state of the protocol, indicating the
session’s acceptance (or rejection) of a session key. It is
required if κ 6=⊥ then γ = accepted and if γ = accepted
then sid 6=⊥. Furthermore if γ 6= running then execu-
tion for this session has “finished”, therefore no further
updates to the session state are allowed.1

• sinfo ∈ {0, 1}∗ ∪ {⊥}: This is any additional session
state required for specific key exchange protocols.

We write SST(lsid) = ((pki, ski), pkj , sid, κ, γ, sinfo) for the
session state of the session identified by lsid. For clarity we
provide notation for accessing individual elements of the ses-
sion state. For example we write SST(lsid).κ for the session
key κ of local session lsid. Individual elements of a game’s
state are also updated via similar notation.

Local session state. The local session state for key ex-
change protocols is composed of:

• δ ∈ {honest, corrupted}: Details whether the identity
associated to this session was corrupted before the ses-
sion was completed (i.e. while γ = running).

• δpnr ∈ {honest, corrupted}: Details whether the identity
of the partner associated to this session was corrupted
before the session was completed.

• ω ∈ {fresh, revealed}: Shows if the session key for this
session has been revealed to the adversary.

Although we keep track of the value δi for each identity
within the execution state, keeping track of δ for each ses-
sion allows sessions that have completed before an identity
is corrupted, to continue being thought of as not corrupt.
In turn, this is used to model forward secrecy2. We write
LST(lsid) = (δ, δpnr, ω) for the local session state of the ses-
sion lsid.

Setup. To initialise the games for key exchange protocols
the setupE algorithm is used to generate all asymmetric keys
for identities. Each session is then initialised with the correct
asymmetric keys, while all other variables are initially set to
be undefined. This is shown in Figure 1.

Queries. For the Send query in key exchange protocol
games, we require that as a response, the algorithm ξke
outputs a response, response, composed of the two parts
(γ,msg′). This explicitly tells the adversary when a session
accepts or rejects a key.

1Note, our requirements listed here mean, in the final step
of a key exchange protocol (in response to a Send query), the
value κ is set to some value and γ is set to accepted before
a response is returned to the adversary.
2In forward secure protocols, sessions that accepted a key
before the corresponding user gets corrupted are still con-
sidered honest after the corruption occurs. When modelling
non-forward secure protocols all sessions of a user are con-
sidered corrupted when the adversary makes a corruption
query for this user.

5

setupE(LSID, kg, 1η):

• Lkeys ← []

• For i = 1 to ni do

– Run (pki, ski)← kg(1η)

– Add (i, pki, ski, honest) to the list Lkeys

• For each (i, j, k) ∈ LSID do

– SST((i, j, k))← ((pki, ski), pkj ,⊥,⊥, running,⊥)

• EST← Lkeys

• Return (SST,EST)

Figure 1: The setup algorithm for the execution
model of key exchange algorithms.

Additionally to the Send query, the adversary may make
Corrupt and Reveal queries. The Corrupt query allows the
adversary to take control of all sessions of an identity by
receiving its long term secret key. This query marks the
identity as corrupt and all sessions of this identity which
have not completed are also marked as corrupt. Notice that
because completed sessions are not set to be corrupt means
we only consider key exchange protocols which provide for-
ward security. The Reveal query returns the derived session
key to the adversary and marks the session as revealed. The
Corrupt and Reveal queries are given in Figure 2.

Corrupt(i):

• LST′ ← LST

• For (i, pki, ski, δi) ∈ Lkeys do

– δi ← corrupted

• For all lsid ∈ LSID s.t. lsid = (i, ∗, ∗) do //set all running

executions of party i to corrupted

– If SST(lsid).γ = running then LST′(lsid).δ ← corrupted

• For all lsid ∈ LSID s.t. lsid = (∗, i, ∗) do //set pointer to i

in all running partner executions to corrupted

– If SST(lsid).γ = running then set LST′(lsid).δpnr ←
corrupted

• Return ((SST, LST′,EST,MST), ski)

Reveal(lsid):

• LST′ ← LST and LST′(lsid).ω ← revealed

• Return ((SST, LST′,EST,MST), SST(lsid).κ)

Figure 2: The queries for key exchange protocols.

Using a Valid predicate, we restrict adversaries to only
be able to make Send queries to non-corrupt, un-revealed
sessions where the key has not been accepted or rejected.
The formal Valid predicate is given in Figure 27.

BR-secrecy game. To provide secrecy guarantees of the
session key we ask an adversary to decide whether it received
the real session key, or a random value, for a session of its
choice. It is assumed any random value is drawn from some
key distribution D (often the uniform distribution for bit

strings of length |κ|). We write κ
$←− D for the value of κ

drawn randomly from the distribution D. We call this game
the BR-secrecy game and use the execution model of key
exchange protocols as described so far. We now set out the

additional details of the model for the secrecy property.
The model state for the BR-secrecy game contains two

bits, btest ∈ {0, 1} and bguess ∈ {0, 1,⊥} along with a ses-
sion identifier lsidtested ∈ LSID ∪ {⊥}. We write MST =
(btest, bguess, lsidtested) for the model state in the BR-secrecy
game. The bit btest determines whether the adversary is
given the real session key, or random value in response to
the Test query.3 The bit bguess stores the adversary’s guess
for the value of btest. The session identifier lsidtested is the
local session identifier for which the Test query was made.

The setup algorithm setupG initialises the model state by
selecting the random value for btest. Upon initialisation bguess

and lsidtested are undefined, so set to ⊥. This is shown in
Figure 3.

setupG(LSID, SST,EST, 1η):

• Draw btest
$←− {0, 1}

• Set bguess ←⊥ and lsidtested ←⊥
• For each lsid ∈ LSID set LST(lsid)← (honest, honest, fresh)

• Return (LST, (btest, bguess, lsidtested))

Figure 3: Model state setup algorithm for BR-
secrecy game.

There are two additional queries required to model the
BR-security of a key exchange protocol, namely Test and
Guess. The Test query provides the adversary with either
the real session key for a given session, or a random value.
The Guess query provides the game with the adversary’s
guess to the value btest. The queries are given in Figure 4.

Test(lsid):

• If MST.btest = 0 then κ
$←− D

• Else κ← SST(lsid).κ

• MST′ ← MST and MST′.lsidtested ← lsid

• Return ((SST, LST,EST,MST′), κ)

Guess(b):

• MST′ ← MST and MST′.bguess ← b

• Return ((SST, LST,EST,MST′), okay)

Figure 4: The Test and Guess queries for the BR-
secrecy game.

In order to prevent trivial attacks, we place restrictions on
when the adversary is allowed to make the Test query. An
adversary is not allowed to Test a session which is corrupt,
has not accepted, or whose partner is corrupt, or to test
more than a session. In these cases, the Valid predicate
for the Test query returns false. Note that these cases are
publicly verifiable. Clearly, the Valid predicate is able to
check if a session (or partner session) is corrupt by checking
the value of δ or δpnr stored in the local session state, LST.
Moreover, the adversary should not Test a session which is
revealed or where the partner session has been revealed. In
these cases though, the Valid predicate does not return false
but instead lets the adversary continue. This is in order to

3We assume that the adversary only makes a single Test
query. Security with respect to many Test queries then fol-
lows by a hybrid argument [5].

6

prevent leakage of partnering information through the Test
query. The adversary may not be aware this has occurred;
however at the end of execution the predicate checks for
this, and causes the experiment to be lost if such an action
has occurred. We also forbid Reveal queries on the tested
session or its partner. Again, the adversary is later declared
to lose if such a Reveal query happens (but again without
being informed immediately). Furthermore we only allow
the adversary one Guess query. To do this we set the Valid
predicates in Figure 28.

The predicate for the BR-secrecy game checks to see if the
adversary’s guess for the value of btest is correct. Further-
more, the predicate causes the adversary to lose the game
if the tested session (or its partner) have been revealed.
No checks relating to corruption are required here, as we
only consider protocols which are forward secure; hence if
an identity is corrupted after the Test query is made, key
indistinguishability should still hold. The predicate PBR is
defined in Figure 5.

PBR(LSID, SST, LST,EST,MST):

• If MST.lsidtested =⊥ then return 0. //No Test query made

• For each lsid ∈ LSID s.t. SST(lsid).sid = SST(lsidtested).sid
do //Test for exposure of partner key or key itself

– If LST(lsid).ω = revealed then return 0.

• If MST.btest 6= MST.bguess then return 0. //Wrong guess

• Else return 1.

Figure 5: Predicate for the BR-secrecy game.

We write the BR-secrecy game as GBR,D, where D is the
key distribution from which random keys are chosen during
the Test query. Furthermore we denote the game GBR,D with
the secret bit btest as GbtestBR,D.

Definition 2. We define the advantage of the adversary
A against the BR-secrecy property as

Adv
GBR,D
ke,A (1η) =

˛̨̨̨
Pr

»
Exp

G0
BR,D

ke,A (1η) = 0

–
− Pr

»
Exp

G1
BR,D

ke,A (1η) = 1

– ˛̨̨̨
where ke is the key exchange protocol analysed.

Partnering security game. In the partnering security
game the adversary attempts to cause the session identifiers
within the game to be considered invalid in some way. This
is done by causing more than two sessions to share the same
session identifier, making a session accept a key without set-
ting the session identifier, or causing two sessions to hold
the same session identifier, but where the intended partner
identity of such sessions are incorrect. Moreover, the ad-
versary wins if two sessions have the same session identifier
and different keys. All these properties are modelled via the
winning condition of the partnering which is defined through
Psid, see Figure 6.

The partnering security game requires no model state or
additional queries to those required for general execution of
a key exchange protocol. The setupG algorithm sets the LST
function and leaves the model state undefined. We give the
formal description in Figure 7.

Psid(LSID, SST, LST,EST,MST):

• For each lsid = (i, j, k) ∈ LSID do

– If SST(lsid).sid 6=⊥ then for all triples (j′, i′, k′) ∈
LSID with SST((j′, i′, k′)).sid = SST(lsid).sid do

∗ If i 6= i′ or j 6= j′ then return 1. //distinct

intended partners

∗ If i = i′ and j = j′ but SST(i′, j′, k′).κ 6=
SST(lsid).κ then return 1. //distinct keys

– If the number of triples (j′, i′, k′) ∈ LSID with
SST((j′, i′, k′)).sid = SST(lsid).sid is strictly larger
than 2, then return 1. //Too many partners

– If SST(lsid).sid =⊥ and SST(lsid).γ = accepted then
return 1. //accepted, but no partner

• Return 0.

Figure 6: Predicate for the partnering key exchange
game.

setupG(LSID, SST,EST, 1η):

• For each lsid ∈ LSID set LST(lsid)← (honest, honest, fresh)

• Return (LST,⊥)

Figure 7: Model state setup algorithm for BR part-
nering game.

The partnering security game is written as Gsid, and the
advantage of the adversary A against the partnering security
property as

Adv
Gsid
ke,A(1η) = Pr

h
Exp

Gsid
ke,A(1η) = 1

i
.

Definition 3 (BR-secure protocol). We call a key
exchange protocol ke BR-secure w.r.t. D if for all adver-

saries A, Adv
GBR,D
ke,A (1η) and Adv

Gsid
ke,A(1η) are negligible func-

tions in the security parameter.

Session Matching. For composability, we need an ad-
ditional property, called session matching. Roughly, this
means that an eavesdropper on the communication between
the BR-adversary and the BR-secrecy game should be able
to deduce which sessions are partnered, i.e. at any time,
the eavesdropper should be able to produce a list of pairs of
all partnered (accepted) sessions. Note that this is trivially
satisfied when defining session identifiers through matching
conversations. However, when using abstract session identi-
fiers, sid, this need not be the case. For instance, consider
a BR-secure key exchange that uses matching conversations
as the session identifier. We now transform the protocol
as follows: The participants encrypt all messages they send.
The session identifiers are now defined as matching conversa-
tions on the plaintexts. First note that the resulting key ex-
change protocol is as secure as the original, assuming secure
encryption. But the protocol has an interesting property:
Assume the encryption scheme is re-randomizable. Then,
an eavesdropper on the communication is unable to deduce
which sessions between two parties are partnered, as the
BR-adversary may re-randomize all messages sent.

We therefore define an efficient session matching algorithm
M which can deduce from the communication between the
BR-secrecy adversary and BR-secrecy game which sessions
are partnered. AlgorithmM is allowed to see all queries and

7

answers exchanged between a key exchange and an adversary
A; this includes all public parameters of the system. The
requirement on M is independent of the winning condition
of A in the game; algorithm M needs to provide correct
matchings constantly. We illustrate the communication of
the algorithms in Figure 8.

A
//

M GBRoo

Figure 8: The session matching algorithm.

More formally, a session matching algorithm M for the
key exchange protocol is defined as an efficient algorithm
that receives all information exchanged between a key ex-
change game GBR and an adversary A against GBR. We
require that each time the key exchange game sends a re-
sponse to the adversary A, algorithm M is able to output
two sets LSIDpartner and LSIDsingle, where LSIDpartner consists of
pairs (lsid0, lsid1), and LSIDsingle consists of session identifiers
lsid. We define the predicate Ppartner to specify correctness of
these sets by checking all pairs (lsid0, lsid1) are sessions which
share the same session identifier, and all identifiers in the set
LSIDsingle are sessions which are currently unpartnered. This
is formally described in Figure 9.

Ppartner(LSID,SST, LST,EST,MST, LSIDpartner, LSIDsingle):

• For each lsid ∈ LSIDsingle do //Alleged single parties don’t

have partners

– If SST(lsid).γ 6= accepted then return 0.

– Else if there exists lsid′ ∈ LSID \ {lsid} with
SST(lsid′).sid = SST(lsid).sid then return 0.

• For each (lsid, lsid′) ∈ LSIDpartner do //Alleged partners

have accepted and are really partnered

– If (SST(lsid).γ, SST(lsid′).γ) 6= (accepted, accepted)
then return 0.

– If SST(lsid).sid 6= SST(lsid′).sid′ then return 0.

• For each lsid ∈ LSID do //Each accepted session is as-

signed as single or partnered

– If SST(lsid).γ = accepted, lsid /∈ LSIDsingle and for
all (lsid0, lsid1) ∈ LSIDpartner, one has lsid0 6= lsid and
lsid1 6= lsid then return 0.

• Return 1.

Figure 9: Session matching predicate.

Definition 4 (Session matching algorithm). A ses-
sion matching algorithm M : {0, 1}∗ → {0, 1}∗ for a key
exchange protocol ke is an efficient algorithm such that the
following holds for any adversary A playing against GBR:
After each response of the key exchange game, the algorithm
M is given an ordered list of all queries and responses made
between A and GBR,D, along with the public parameters of
the system. Algorithm M then outputs sets LSIDpartner and
LSIDsingle such that, for the current state (LSID, SST, LST,
EST,MST) of the game, the sets LSIDpartner, LSIDsingle al-
ways satisfy the predicate Ppartner(LSID,SST, LST,EST,MST,
LSIDpartner, LSIDsingle).

We remark that the idea of a session matching algorithm
has already appeared in different forms in the literature.

As mentioned above, in the original paper [5] the notion of
matching conversations via the communication transcripts
(and their order) supports a straightforward session match-
ing algorithm. In [6] Bellare and Rogaway introduce a part-
ner function which resembles our notion of a session match-
ing algorithm, but their function does not need to be effi-
ciently computable. Finally, in [4] the authors require the
session identifiers, defining essentially the partners, to be
given to the adversary upon acceptance of a session, again
yielding a session matching algorithm straightforwardly. As
we show in Appendix D a weak form of session matching
algorithm is in fact necessary to ensure secure composition.

4. SYMMETRIC-KEY PROTOCOLS
We now introduce a class of protocols we refer to as sym-

metric key protocols. These are protocols which use a sym-
metric session key shared between pairs of sessions, i.e. these
are the protocols which run after a key agreement protocol
has completed. Games for these protocols allow the adver-
sary to initialise sessions, thus causing the game to generate
a new session key. The adversary can partner sessions, caus-
ing two sessions to share the same key. Finally the adversary
is able to choose session keys, and initialise sessions with its
chosen key. This final method of initialising sessions forces
any model to cope with sessions where the adversary knows
certain session keys. For example an adversary should not
be considered to have broken the security requirement if it
does so against a session for which it has chosen the key. The
adversary has access to additional queries. However these
depend on the precise requirements of the protocol being
modeled.

As for all protocols a symmetric key protocol π = (kg, ξ)
consists of a randomized key generation algorithm and pro-
tocol algorithm. We write Dkg as the distribution of keys
output from the key generation algorithm. The key genera-
tion algorithm of π is used to generate the session keys.

We consider arbitrary protocols π and so the security re-
quirements depend on the protocol being analysed. We now
provide the minimum requirements of games for symmetric
key protocols.

Game execution state. The game execution state EST
is not required for the execution of a symmetric key proto-
col and so is assumed to be undefined for the duration of
execution.

Session state. The session state for symmetric key proto-
cols consists of two variables:

• κ ∈ {0, 1}∗ ∪ {⊥}: This is the symmetric session key
for the protocol.

• sinfo ∈ {0, 1}∗ ∪ {⊥}: This is any additional session
state required for specific symmetric key protocols.

Local session state. The local session state for symmetric
key protocols consists of two variables.

• ψ ∈ {secret, known}: This denotes whether a key is
“known” by the adversary.

• lst ∈ {0, 1}∗ ∪ {⊥}: This contains any other local ses-
sion state required to model the security required of a
symmetric key protocol.

8

Setup. The setupE algorithm to initialise the session states
simply sets all initial values to be undefined, running as given
in Figure 10.

setupE(LSID, kg, 1η):

• For each lsid ∈ LSID set SST(lsid)← (⊥,⊥)

• Return (SST,⊥)

Figure 10: Execution state setup algorithm for sym-
metric key protocols.

The setupG algorithm is required to initialise the model
state and local session state. The value of ψ in the local
session state must be set to secret initially. However as other
details of model state and local session state are unknown
due to the generic nature of our model, we do not specify
the setupG algorithm here.

Queries. There are a minimum of four queries available to
the adversary in symmetric protocol games. The Send query
is available and behaves as described previously. There are
three queries to allow the adversary to initialise sessions.
The first, InitS, causes the game to generate a new session
key using the key generation algorithm. The second, InitP,
partners two sessions by keying the second session with the
key of the first one. The third, InitK, allows the adversary to
choose a key, which is then used as the session key. This final
method of initialisation sets the value of ψ for the current
session to known.

These different initialisation methods correspond to what
can happen in situations where protocols are composed with
key exchange: Sometimes, keys known to the adversary are
used in the protocol, so that this needs to be reflected in
the syntax. Also, initialisation of two parties never happens
simultaneously as parties accept keys one after the other.
Now, formally the initialisation queries are given in Fig-
ure 11. Additionally to the output okay, the game is allowed
to output further information.

InitS(lsid):

• SST′ ← SST

• Run κ← kg(1η)

• SST′(lsid)← (κ,⊥)

• Return ((SST′, LST,EST,MST), okay)

InitP(lsid1, lsid2):

• SST′ ← SST and LST′ ← LST

• SST′(lsid2)← (SST(lsid1).κ,⊥)

• LST′(lsid2).ψ ← LST(lsid1).ψ

• Return ((SST′, LST′,EST,MST), okay)

InitK(lsid, κ):

• SST′ ← SST and LST′ ← LST

• SST′(lsid)← (κ,⊥)

• LST′(lsid).ψ ← known

• Return ((SST′, LST′,EST,MST), okay)

Figure 11: Initialisation queries for symmetric key
protocol games.

Sanity checks are required for the Send, InitS, InitP and
InitK queries. The Valid condition for Send checks the ses-

sion key κ has been initialised to some value and can be used.
This is the minimum check required and may be augmented
for specific games. The checks for initialisation queries en-
sure that one cannot change the keys for sessions already
initialised with a session key. Also when performing the
InitP query a check is made that the first session already has
a session key. Figure 29 formally describes these checks.

Predicate. The predicate for the symmetric key protocol
game depends on the security model required for the proto-
col π. However we note it may be necessary for the predicate
to take into account the value of ψ in the local session state.

We typically denote the game of the protocol π asGπ. The
advantage of an adversary against a symmetric key protocol
may depend on some constant ∆ (typically 0 for computa-
tional games or 1/2 for decisional games) and we define the
advantage by

AdvGππ,A(1η) =
˛̨̨
Pr
h
ExpGππ,A(1η) = 1

i
−∆

˛̨̨
.

We say that the protocol π is secure with respect to Gπ
if the advantage AdvGππ,A(1η) is a negligible function in the
security parameter for all PPT adversaries A.

We remark that, at a superficial glance, the session match-
ing algorithm for the key exchange protocol seems to impose
some restrictions on the communication privacy or anonymity
for the symmetric key protocol. This, however, is not true,
as session matching for key exchange does not refer to the
actual usage of the derived keys in the subsequent protocol.
In particular, the symmetric key protocol and its security
game may well cover anonymity-related properties such as
the key-hiding property [16, 1], i.e. which of two keys has
been used to encrypt messages.

Single session game. Usually, game based notions of pro-
tocol security require one to consider multiple sessions exe-
cuted concurrently in order to draw conclusions about the
security of the scheme. Notice that when different sessions
of the protocol depend only on independent, efficiently sam-
plable states, then it may be possible to reduce the security
of the many session scenario to that of a single session. This
greatly simplifies the analysis of the protocol and thus allows
one to conclude security of the composed protocol more eas-
ily.

In symmetric key protocol games, all unknown keys are
independent. Thus, in many cases one is able to analyse only
the security of a single pair of sessions and, provided this
is secure, may conclude the standard multi-session scenario
is secure. For example, consider an authenticated channel.
An adversary is required to cause any one session to accept
some invalid (non-authenticated) message. It is clear, any
adversary who is able to do this when there are multiple,
concurrently executing sessions, will be able to achieve the
same goal when there is only a single run of the protocol
being executed. We note that for key exchange protocols,
individual runs are not independent due to the session keys
depending upon the shared long term asymmetric keys in
some way.

The single session game is a symmetric key game where
the adversary is allowed to query at most one InitS query
and one InitP query, i.e. the adversary is given access to
at most one pair of “honest” sessions. The Valid predicate
is modified to restrict the number of InitS and InitP queries.
We denote this game byGπ−1. Note that any (multi-session)
symmetric key game Gπ has a single session version Gπ−1.

9

A symmetric key game is called single session reducible if
its (multi-session) security can be reduced to the security of
the corresponding single session game.

Definition 5 (Single-Session Reducibility). A se-
curity game Gπ is single session reducible if for any PPT
adversary A against Gπ where AdvGππ,A(1η) is non-negligible,
then there exists a PPT adversary B against Gπ−1 such that

Adv
Gπ−1
π,B (1η) is non-negligible.

We stress again that single-session reducibility is not a
prerequisite for our general composition theorem to work.
This class of protocols only supports a simpler analysis.

In Appendix B, we treat necessary conditions for single
session reducibility. We show that the game of authenticated
channels satisfies this condition. Hence, a single session se-
cure authenticated channel remains secure when putting the
protocol into a multi-session setting where the symmetric
key generation of the protocol is replaced by a BR-secure
key exchange protocol.

5. DEFINING COMPOSITION
In this section we discuss the composition of key exchange

protocols with symmetric key protocols. First, we look at
how the composition of the two protocols is achieved; a ses-
sion first executes the key exchange protocol, and then the
agreed session key is used by an execution of the symmetric
key protocol. Our model allows an adversary to interact si-
multaneously with (distinct instances of) the key exchange
and symmetric key protocol where the symmetric key pro-
tocol uses the keys derived in the key exchange phase. Sec-
ondly, we define security for the resulting composition. This
is achieved by constructing a game where the adversary in-
teracts with the composed protocol. The goal of an adver-
sary playing the composed game is to break the security
of the symmetric key protocol, not the security of the key
exchange.

5.1 Syntax of composed protocols
We begin by considering how to compose a key exchange

protocol with a symmetric key protocol. The composition
of a key exchange protocol and symmetric key protocol is as
expected: Intuitively, once a session of the key exchange is
successfully finished, the derived key is used to initialise and
run a session of the symmetric key protocol.

Given the key exchange protocol ke = (kgke, ξke) and the
symmetric key protocol π = (kgπ, ξπ) we write the composed
protocol as ke;π = (kgke;π, ξke;π). The key generation algo-
rithm of the composed protocol generates the (long-term)
keys for the key exchange protocol, so we set kgke;π = kgke.
We now detail the construction of the composed protocol’s
algorithm, namely ξke;π.

Composed algorithm. Recall, a session of the key ex-
change protocol (resp. symmetric key protocol) executes by
running the algorithm ξke (resp. ξπ). We describe a com-
posed algorithm ξke;π, which, for each session, first runs using
ξke, and upon a session key being accepted, then runs using
ξπ. To decide which sub-algorithm to call, the composed
algorithm ξke;π examines the value γ. If the key exchange
session has not yet accepted (γ 6= accepted) it calls ξke, other-
wise it calls ξπ. In either case, ξke;π passes only the required
variables, and updates the variables of the composed game
in a consistent way. Formally, the composed algorithm ξke;π
is defined in Figure 12.

ξke;π(((pki, ski), pkj , sid, κke, γ, sinfoke, κπ , sinfoπ),msg):

• If γ 6= accepted then //Hand message to key exchange

– Run (((pki, ski), pkj , sid
′, κ′ke, γ

′, sinfo′ke), response) ←
ξke(((pki, ski), pkj , sid, κke, γ, sinfoke),msg)

– If γ′ = accepted then set κπ := κke

– (κ′π , sinfo′π)← (κπ , sinfoπ)

• If γ = accepted then //Pass message to symmetric protocol

– Run ((κ′π , sinfo′π), response)← ξπ((κπ , sinfoπ),msg)

– (sid′, κ′ke, γ
′, sinfo′ke)← (sid, κke, γ, sinfoke)

• Return (((pki, ski), pkj , sid
′, κ′ke, γ

′, sst′ke, κ
′
π , sst

′
π), response)

Figure 12: Algorithm for composed game, running
using ξke and ξπ.

5.2 Syntax of composed games
We define the security of the composed protocol via a

game derived from those defining the security of the key
exchange and that of the symmetric key protocol. The com-
posed game allows the adversary to simultaneously interact
with multiple sessions of the composed protocol; some of
these sessions may be executing the key exchange, while oth-
ers are executing the symmetric key protocol. The composed
game is constructed using the internal state and queries of
the games for key exchange and symmetric key protocols.
Finally, the adversary’s goal within the composed game is
to “break” the security of the symmetric key protocol and
not the key exchange protocol. We now discuss each of these
components of the composed game in detail.

We use the following notation, given the partnering game
Gsid for the key exchange game and Gπ for the symmetric
key protocol we use an index notation to distinguish between
the states of the different games, e.g. SSTke (resp. SSTπ)
for the session state of the key exchange partnering game
(resp. symmetric key protocol game).

Game state. The composed game contains all the internal
state of the key exchange and symmetric protocol games.
The session state function for the composed game SSTke;π

is defined as the pair of key exchange session state, SSTke,
and symmetric key protocol state, SSTπ. Thus, SSTke;π :=
(SSTke, SSTπ), i.e. for all lsid ∈ LSID, SSTke;π(lsid):= (SSTke

(lsid),SSTπ(lsid)). Similarly, the composed local session state
is defined by the pair LSTke;π := (LSTke, LSTπ). The ex-
ecution state for the composed game, ESTke;π, equals the
execution state of the key exchange game, ESTke, since the
execution state of the symmetric key protocol game is al-
ways undefined. The model state in the composed game is
the model state of the symmetric key protocol game, i.e.
MSTke;π := MSTπ, since the model state for the partnering
key exchange game is undefined. When it is clear from con-
text, we also write SST instead of SSTke;π and LST instead
of LSTke;π.

The session state SST(lsid) of a session lsid then is a tu-
ple ((pki, ski), pkj , sid, κke, γ, sinfoke, κπ, sinfoπ), and the local
session state LST(lsid) of a session lsid is a tuple (δ, δpnr, ω, ψ,
lstπ). We omit additional brackets one could use to separate
LSTke(lsid) from LSTπ(lsid).

Setup. To set the composed game’s initial state we use
the setup algorithms for key exchange and symmetric key
protocols described in Figure 13. We use the key exchange

10

setup algorithms to initialise the key exchange portions of
the composed game’s state (e.g. SSTke), and similarly use
the symmetric key protocol’s setup algorithm for the remain-
der.

setupEke;π(LSID, kg, 1η):

• (SSTke,ESTke)← setupEke(LSID, kgke, 1
η)

• (SSTπ ,⊥)← setupEπ(LSID, kgπ , 1
η)

• Return ((SSTke, SSTπ),ESTke)

setupGke;π(LSID, (SSTke, SSTπ),ESTke, 1
η)

• (LSTke,⊥)← setupGke(LSID, SSTke,ESTke, 1
η)

• (LSTπ ,MSTπ)← setupGπ(LSID, SSTπ ,ESTπ , 1η)

• Return ((LSTke, LSTπ),MSTπ)

Figure 13: Setup algorithms for composed games.

Queries. The adversary has similar abilities as previously
described. The adversary can send messages to sessions, cor-
rupt long-term keys as well as interact with the symmetric
key protocol in any way described by the game Gπ (exclud-
ing the InitS, InitP and InitK queries). Notice that we do not
allow the adversary access to the Reveal query from the key
exchange game in the composed game. The Reveal query
was used in the BR-secrecy game to ensure if a session key
was compromised, it did not compromise the BR-security
of other keys, and to model potential key leakage through
the deployment in a potential subsequent protocol (which is
now actual in our case). However, we are now considering
the security of the symmetric key protocol (in the composed
setting), thus the Reveal query is no longer allowed. How-
ever, should the symmetric key protocol have an equivalent
query, then this would be allowed in the composed game.

We modify the Send query slightly to set the value of ψ
to known if a key exchange session accepts when its partner
is corrupted. The rest of the behaviour of the Send query
remains unchanged.

If we denote the behaviour of the partnering key exchange
game as χke and the behaviour of the symmetric protocol
game as χπ, then the behaviour of the composed game is
given in Figure 14. Remember that SST′ke;π := (SST′ke,SST′π)
and LST′ke;π := (LST′ke, LST′π). Informally, the behaviour
χke;π processes key exchange queries by calling the behaviour
χke, and symmetric key protocol queries by calling χπ. The
Send query constitutes an exception, as it is used by both
the ke and π stage of the composition. Here, the behaviour
χke;π uses the composed algorithm ξke;π to process the Send
query, noting the above modification, where the value ψ is
set appropriately when a session accepts a key at the key
exchange stage.

The Valid predicate for the InitS, InitP, InitK and Reveal
queries always return false to make these queries invalid.
The Valid predicate for the Send query either calls the
Valid predicate from the key exchange state, namely Validke,
or the Valid predicate from the symmetric key protocol
state, Validπ. This depends on the value γ. If the queried
session has not accepted a key yet then Validke is used. Oth-
erwise, the game evaluates Validπ. This is formally given
in Figure 30.

Predicate. We consider that an adversary breaks the se-
curity of the composition if it breaks the security of the
symmetric key protocol (as captured by the predicate Pπ).

χke;π(q, (LSID, (SSTke,SSTπ), (LSTke, LSTπ),ESTke,MSTπ)):

• If q is a Send query then //Call ξke;π, if the session ac-

cepts a key then mark this key as ‘known’ if appropriate

– Parse q into Send(lsid,msg)

– SST′ke;π ← SSTke;π and LST′ke;π ← LSTke;π

– (SST′ke;π(lsid), response)← ξke;π(SSTke;π(lsid),msg)

– If SSTke;π(lsid).γ 6= SST′ke;π(lsid).γ, SST′ke;π(lsid).γ =

accepted and there exists lsid∗ ∈ LSID \ {lsid} such
that SSTke;π(lsid∗).sid = SST′ke;π(lsid).sid then

∗ LST′ke;π(lsid).ψ ← LSTke;π(lsid∗).ψ

– Else if SSTke;π(lsid).γ 6= SST′ke;π(lsid).γ and

SST′ke;π(lsid).γ′ = accepted then:

∗ If LSTke;π(lsid).δpnr = corrupt then set
LST′ke;π(lsid).ψ ← known

– Return ((SST′ke;π , LST′ke;π ,ESTke,MSTπ), response)

• If q is a Corrupt query then //Corrupt as for key exchange

– Run ((SST′ke, LST′ke,EST′ke,⊥), response) ←
χke(q, (LSID,SSTke, LSTke,ESTke,⊥))

– SST′π ← SSTπ , LST′π ← LSTπ , MST′π ← MSTπ

– Return ((SST′ke;π , LST′ke;π ,EST′ke,MST′π), response)

• If q is a query from Q that is neither a Send nor a Corrupt
query then: //Execute as for symmetric protocols

– Run ((SST′π , LST′π ,⊥,MST′π), response) ←
χπ(q, (LSID,SSTπ , LSTπ ,⊥,MSTπ))

– SST′ke ← SSTke, LST′ke ← LSTke, EST′ke ← ESTke

– Return ((SST′ke;π , LST′ke;π ,EST′ke,MST′π), response)

Figure 14: Behaviour χke;π of composed games.

Therefore Pke;π is defined as Pπ(LSID, SSTπ, LSTπ,⊥,MSTπ),
i.e. we evaluate the predicate Pπ on the state of the sym-
metric key protocol, π, maintained by the composed game.

6. COMPOSITION RESULT
We now present the main results of our paper. In The-

orem 1 we show that a BR-secure key exchange, with the
additional property of having an efficient session matching
algorithm, may be securely composed with a symmetric key
protocol.

Theorem 1. Let ke be a BR-secure key exchange proto-
col w.r.t. D, where an efficient session matching algorithm
exists. Let π be a secure protocol w.r.t. Gπ. If the key gen-
eration algorithm of π outputs keys with distribution D then
the composition ke;π is secure w.r.t. Gke;π and for any effi-
cient A we have

Adv
Gke;π
ke;π,A(1η) ≤ ni2 · ns ·Adv

GBR,D
ke,B (1η) + AdvGππ,C(1

η)

for some efficient algorithms B and C, where ni is the maxi-
mum number of participants and ns is the maximum number
of sessions, and thus ni

2 · ns is the size of the set LSID.

The proof proceeds in two stages. First, we show that
we can replace all the session keys one-by-one with random
keys, where partner sessions are keyed with the same ran-
dom value. This results in a composed game, where keys
used by the symmetric protocol are independent of the key

11

exchange. Next, we show this is then equivalent to the sym-
metric key protocol game Gπ. Intuitively this means a break
against this composition is a break against the symmetric
key protocol, where keys are generated randomly. We for-
malise this intuition via a further reduction. The full proof
of Theorem 1 can be found in Appendix C.

The following corollary is an immediate application of
Theorem 1, for single session reducible protocols. Essen-
tially, if a symmetric key protocol is single session reducible,
then it may be securely composed with a BR-secure key ex-
change protocol.

Corollary 1. Let ke be a BR-secure key exchange pro-
tocol w.r.t. D, where an efficient session matching algorithm
exists. Let Gπ be a single session reducible security game,
and let π be a secure protocol w.r.t. Gπ−1. If the key gen-
eration algorithm of π outputs keys with distribution D then
the composition ke;π is secure w.r.t. Gke;π.

Proof. Since π is secure w.r.t Gπ−1, and Gπ is single
session reducible we have that π is secure w.r.t. Gπ by
definition. Therefore we can now apply Theorem 1 and the
result holds.

7. CONCLUSION
We have developed a formal abstract framework for spec-

ifying cryptographic games, to enable the modelling of two-
party protocols. We specialise our abstract framework to
allow the analysis of key exchange protocols, following the
original security notions of Bellare and Rogaway. Further,
we identify a general class of protocols, called symmetric key
protocols. These are protocols which use the session key ex-
changed by a key exchange protocol. We show that a key
exchange protocol, which is secure in the Bellare-Rogaway
sense, i.e. keys are indistinguishable from random, com-
posed with a symmetric key protocol that is secure when
session keys are generated randomly, results in a secure com-
position. Interestingly, for such a composition, it is required
that there exists a session matching algorithm, which is able
to identify partner sessions of the key exchange protocol.
Conversely, we also show, for any BR-secure key exchange
protocol (a weak form of) such a session matching algorithm
must exist. Yet, exploring the full relationship is an inter-
esting open problem.

Another worthwhile aspect is to consider key confirma-
tion in key exchange protocols. If the parties apply such a
confirmation step during the key exchange phase to check if
they have agreed upon the same key, without performing a
key refresh afterward, then the key exchange protocol can-
not be secure in the model of Bellare and Rogaway. This,
however, is a common technique in protocols like TLS. If
one now considers the key confirmation step to be part of
the symmetric-key protocol then our composition results ap-
plies in principle. It remains open if postponing this step to
the protocol then gives the desired level of key confirmation.

8. REFERENCES
[1] M. Abadi and P. Rogaway. Reconciling two views of

cryptography (the computational soundness of formal
encryption). In IFIP TCS, volume 1872 of Lecture
Notes in Computer Science, pages 3–22. Springer,
2000.

[2] M. Backes, B. Pfitzmann, and M. Waidner. The
reactive simulatability (rsim) framework for
asynchronous systems. Information and Computation,
205(12):1685–1720, 2007.

[3] B. Barak, Y. Lindell, and T. Rabin. Protocol
initialization for the framework of universal
composability. eprint archive:
http://eprint.iacr.org/2004/006.

[4] M. Bellare, D. Pointcheval, and P. Rogaway.
Authenticated key exchange secure against dictionary
attacks. In EUROCRYPT 2000, pages 139–155.
Springer-Verlag LNCS 1807, 2000.

[5] M. Bellare and P. Rogaway. Entity authentication and
key distribution. In CRYPTO 1993, pages 232–249.
Springer Berlin / Heidelberg LNCS 773, 1993.

[6] M. Bellare and P. Rogaway. Provably secure session
key distribution: the three party case. In STOC 1995,
pages 57–66. ACM, 1995.

[7] S. Blake-Wilson, D. Johnson, and A. Menezes. Key
agreement protocols and their security analysis. In
IMA International Conference on Cryptography and
Coding, pages 30–45. Springer-Verlag, 1997.

[8] R. Canetti. Security and composition of multiparty
cryptographic protocols. Journal of Cryptology,
13(1):143–202, 2000.

[9] R. Canetti and M. Fischlin. Universally composable
commitments. In CRYPTO 2001, pages 19–40.
Springer-Verlag LNCS 2139, 2001.

[10] R. Canetti and H. Krawczyk. Analysis of Key
Exchange Protocols and Their Use for Building Secure
Channels. In EUROCRYPT 2001, pages 453–474.
Springer-Verlag LNCS 2045, 2001.

[11] R. Canetti and H. Krawczyk. Universally Composable
Notions of Key Exchange and Secure Channels. In
EUROCRYPT 2002, pages 337–351. Springer-Verlag
LNCS 2332, 2002.

[12] R. Canetti and T. Rabin. Universal Composition with
Joint State. In CRYPTO 2003, pages 265–281.
Springer-Verlag LNCS 2729, 2003.

[13] A. Datta, A. Derek, J. Mitchell, and B. Warinschi.
Computationally sound compositional logic for key
exchange protocols. In CSFW, pages 321–334. IEEE
Computer Society, 2006.

[14] A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and
M. Turuani. Probabilistic Polynomial-time Semantics
for a Protocol Security Logic. In ICALP 2005, pages
16–29. Springer LNCS 3580, 2005.

[15] T. Dierks and C. Allen. The TLS Protocol Version
1.2, 2006. RFC 4346.

[16] M. Fischlin. Pseudorandom function tribe ensembles
based on one-way permutations: Improvements and
applications. In EUROCRYPT, pages 432–445.
Springer-Verlag, 1999.

[17] R. Küsters. Simulation-based security with
inexhaustible interactive turing machines. In CSFW,
pages 309–320. IEEE Computer Society, 2006.

[18] R. Küsters and M. Tuengerthal. Joint state theorems
for public-key encryption and digital signature
functionalities with local computation. In CSF, pages
270–284. IEEE Computer Society, 2008.

[19] B. LaMacchia, K. Lauter, and A. Mityagin. Stronger

12

security of authenticated key exchange. eprint archive:
http://eprint.iacr.org/2006/073, 2006.

[20] V. Shoup. On formal models for secure key exchange.
Eprint archive: http://eprint.iacr.org/1999/012,
1999.

[21] T. Ylonen and C. Lonvick. The Secure Shell (SSH)
Transport Layer Protocol, 2006. RFC 4253.

APPENDIX
A. LIMITATIONS OF THE UC FRAMEWORK

The most popular framework for that aims to offer gen-
eral secure composition is the universal composability (UC)
framework [8] and its variants [2, 17]. Here, security is de-
fined in terms of simulation: a cryptographic system imple-
ments a certain task in a universally composable way if no
environment can determine if it interacts with the system
itself or with an idealized version of the task together with
a simulator. The security analysis of large systems can then
be simplified by replacing individual (universally compos-
able components) with their idealized versions.

While UC provides an excellent framework for designing
new systems, the generality of the framework has some im-
portant downsides when applied to protocols designed out-
side the framework. In particular, mechanisms that are in-
trinsic to the UC framework often duplicate mechanisms
that already exist in the design of protocols. As a result,
analysis of such protocols actually conclude security for mod-
ified, less efficient variants of the original protocols. The
next two examples illustrate the above point, and are espe-
cially relevant for the case of key exchange.

An ingredient of the UC framework are globally unique
session identifiers known to each participant to the protocol,
and strictly speaking such identifiers are needed for the com-
position result of the framework to hold. One can perhaps
brush aside the issue of identifiers as irrelevant, especially
since highly efficient methods for establishing such identi-
fiers do exist [3]. However, the composition theorem relies
on them and thus it would only hold if such identifiers had
been established. Interestingly, existing protocols often al-
ready incorporate in their design, in a rather inextricable
way, the derivation of such identifiers. Since these identi-
fiers cannot substitute (in a rigorous, formal sense) those
needed for the application of the UC theorem, applying the
UC framework implies duplicating the work for obtaining
such identifiers.

A more problematic issue is the treatment of shared states.
The basic universal composition theorem only applies to the
case where the different components of the larger system do
not share any state. Analyzing a single session of the pro-
tocol (as implicitly assumed under the UC framework) thus
does not imply security when sessions share state. This is
clearly a problem in the case of key exchange protocols (and
not only) where it is quite common for the different sessions
of the protocol to make use of the same long-term keys. A
solution to this problem is the joint-state version of the uni-
versal composition (JUC) [12, 18]. Security here is analyzed
for a single session of some protocol with access to some
functionality in a similar way to the basic UC setting. Secu-
rity for the case when multiple sessions that share the same
implementation (and thus the same long term secrets) of
the functionality holds, provided that this implementation
is somehow itself multi-session secure. We note that the use

of multi-session versions of functionalities alter the analyzed
protocol in rather fundamental ways. For example, a multi-
session implementation of a signature functionality, before
signing a message, would concatenate to that message a ses-
sion identifier and thus change the protocol. Furthermore,
constructing multi-session versions of functionalities may be
quite difficult; we only know of few example primitives where
this is possible.

An additional consideration relevant for our results is that
simulation-based definitions à la UC are very stringent. For
example, it is well known that there exist primitives that
have quite natural implementations which are secure for all
practical purposes, but do not have UC implementations [9].
UC security may thus rule-out as insecure, key exchange pro-
tocols that may otherwise be fit for purpose, i.e. may even
enjoy some (potentially) limited composability properties.

B. SINGLE-SESSION REDUCIBLE GAMES
In this section, we define a restriction on queries for sym-

metric key protocols. We prove that if these restrictions are
satisfied then the game is single session reducible. If a game
is single session reducible, then one only has to look at the
security of a protocol for a single pair of honest sessions. In
a nutshell, we specify queries to affect only the session state
of one session without affecting the state of any other ses-
sion. Furthermore, the final predicate is only evaluated on
the state of individual pairs of partnered sessions. Since all
unknown session keys are generated independently at ran-
dom, and with these query and predicate restrictions, the
adversary need only be interested in a single pair of part-
nered honest sessions.

In order to allow for blackbox reduction to a single session,
the predicate may only be evaluated over one pair of part-
nered sessions. To allow the adversary to choose this session,
we add one additional query, the Target(lsid) query. If the
adversary does not query the Target query, it automatically
loses the game.

We augment the tuple LST(lsid) by the target parameter
τ ∈ {⊥, target} such that LST(lsid) now consists of the triple
(ψ, τ, lst). At the start of the game, τ is set to ⊥. All queries
which affect LST are defined to modify the parameters ψ
and lst as specified earlier. They all leave τ unchanged. In
contrast, the Target query only modifies τ . The adversary
may make only one Target query. We provide details of the
Target query in Figure 15.

Target(lsid) :

• LST′ ← LST and LST′(lsid).τ ← target

• Return ((SST, LST′,EST,MST),⊥)

Figure 15: The Target query.

Since all queries and the predicate can only run over pairs
of partnered sessions, we provide an extraction function,
extract, taking as input all the game’s state and a session
identifier. This function then returns only the state of the
session given, and its partner session (i.e. all sessions shar-
ing the same session key). This algorithm runs as shown in
Figure 16.

At the end of the game, the predicate needs to be re-
stricted in order to be evaluated only over a single session.
Therefore, a single session predicate Pπ−1 is introduced. De-

13

extract(lsid, (LSID, SST, LST)):

• LSID′ ← {lsid}, SST′ ← SST and LST′ ← LST

• For all lsid′ ∈ LSID \ {lsid} do:

– If SST(lsid).κ = SST(lsid′).κ then add lsid′ to LSID′

• Return (LSID′, SST′, LST′)

Figure 16: The extract algorithm.

tails of the predicate are given in Figure 17.

Pπ(LSID, SST, LST,EST,MST):

• For all lsid ∈ LSID do

– (LSID′, SST′, LST′)← extract(lsid, (LSID, SST, LST)).

– If LST(lsid).τ = target, then run b ←
Pπ−1(LSID′, SST′, LST′,EST,MST)) and return
b

• Return 0

Figure 17: Predicate for single session reducible
games.

To initialise the game’s state on a session-by-session basis
the algorithm setupGπ−1 must be given. The setupG algo-
rithm then calls this for each session. We restrict setupG and
setupGπ−1 algorithms to be deterministic, and give details
in Figure 18.

setupG(LSID, SST,EST, 1η):

• MST← ⊥
• For each lsid in LSID do:

– LSID′ ← {lsid}
– Run lst← setupGπ−1(LSID′, SST(lsid),EST, 1η)

– LST(lsid)← (⊥,⊥, lst)
• Return (LST,MST)

Figure 18: The model state setup algorithm for sin-
gle session reducible games.

By definition, the InitS, InitP, InitK, Send and Target queries
only affect the state of a single session at a time. The InitP
query uses the state of a single session to initialise a second,
thus partnering them. However it does not alter the state of
the first session. Therefore these queries currently do work
on a session-by-session basis and so do not need to be modi-
fied. For all other queries q the behaviour of the game needs
to be defined by an algorithm χπ−1 which uses information
of only pairs of partnered sessions. To do this all queries
come prepended with a session identifier. We write q, lsid
for this. We define χ, depending on χπ−1, in Figure 19.
Notice that since χ returns EST and MST, queries are not
allowed to modify these values.

We call symmetric key protocol games of the form de-
scribed session restricted games.

A session restricted game would be unable to model tra-
ditional indistinguishably notions as the setupG algorithm is
deterministic, so no random bit may be set. When we allow
the setupG algorithm access to a single bit of randomness we
call these games randomized session restricted games.

Theorem 2. Let Gπ be a session restricted game. Then,
Gπ is single session reducible.

χ(q, lsid, (LSID,SST, LST,EST,MST), (kg, ξ), 1η):

• (LSID′, SST′, LST′)← extract(lsid, (LSID, SST, LST)

• ((SST∗, LST∗,EST∗,MST∗), response) ←
χπ−1(q, lsid, (LSID′,SST′, LST′,EST,MST)))

• For each lsid′ ∈ LSID \ LSID′ do:

– SST∗(lsid′)← SST(lsid′) and LST∗(lsid′)← LST(lsid′)

• Return ((SST∗, LST∗,EST,MST), response)

Figure 19: The behaviour χ of single session re-
ducible games.

Proof. If A is an adversary who wins Gπ with non-
negligible advantage, then we construct algorithm B who
wins against Gπ−1 with non-negligible advantage.

Algorithm B simulates the game Gπ for A by maintaining
state SST, LST, EST and MST, and runs as follows:

• Initialise the game Gπ−1 with set LSID.

• Run (SST,EST)← setupE(LSID, kg, 1η).

• Run (LST,MST)← setupG(LSID, SST,EST, 1η).

• Randomly select lsid0 ∈ LSID.

• Set lsid1 ←⊥.

Now algorithm B calls A using this data. Adversary A
makes queries which B answers as follows:

• When A makes a InitS(lsid) query, if lsid = lsid0 then
B forwards this query to Gπ−1. Otherwise B honestly
simulates this query.

• If A makes a InitP(lsid, lsid′) query and lsid = lsid0,
then B sends this query to Gπ−1. If lsid′ = lsid0 then B
aborts. Otherwise B honestly simulates this query.

• If A makes a InitK(lsid, κ) query, if lsid = lsid0 then B
aborts. Otherwise B honestly simulates the query.

• All other queries made by A include a session identi-
fier lsid (by definition of a session restricted game). If
lsid = lsid0 then the query is forwarded to Gπ−1 and
the response passed back to A. Otherwise B simulates
the query and passes a response to A.

Since queries only modify partnered sessions, namely those
returned from the extract algorithm, and the sessions lsid0

and lsid1 do not have keys known to the adversary, it is only
with negligible probability any further sessions would be ini-
tialised with the same keys as these partnered sessions. And
therefore with overwhelming probability, provided B does
not abort, the simulation of A’s environment is perfect. At
some point A makes the query Target(lsid), and provided
lsid = lsid0 or lsid = lsid1, then B will win the game Gπ−1

if and only if A would win Gπ (i.e. B selected the correct
guess of lsid0). Therefore this gives

Adv
Gπ−1
π,B (1η) =

1

n
·AdvGππ,A(1η),

where n is the size of set LSID.

Theorem 3. Let Gπ be a randomized session restricted
game. Then Gπ is single session reducible.

Proof Proof sketch. We construct a modified game
Grπ from the randomized session restricted game Gπ in the
following way. We move the single random bit b allowed in
the model state MST, and instead store this bit within the

14

local session state. We order the set LSID lexicographically.
When execution of the game Grπ begins, the game randomly
selects a session lsid† ∈ LSID ∪ {(ni, ni, ns + 1)}. For all
sessions lsid ∈ LSID, where lsid < lsid† the bit b is set to 1
within the local session state. For all other sessions the bit
b is set to 0 within the local session state.

Clearly if lsid = (0, 0, 0) then we have the game Gπ where
b = 0, and if lsid† = (ni, ni, ns) then we have the game
Gπ where b = 1. By using a standard hybrid argument we
therefore have that if the adversary is able to guess (better
than a random guess) the value lsid† in the game Grπ, it is
able to correctly guess the value of b in the game Gπ. For the
game Gπ, if we fix b, known to the adversary, this game is
now a session restricted game, and so Theorem 2 applys.

C. PROOFS FOR COMPOSITION RESULT
We give the full proofs for the results of Section 6.

Proof of Theorem 1. To prove Theorem 1, a hybrid
argument is involved, where one by one, the real keys used by
the protocol are replaced by random keys. Each replacement
is reduced to a BR-secrecy game to show that it only triggers
a negligible loss in success probability. The session matching
ensures that we can assign matching keys to partners in these
hybrid games for valid simulations.

We now turn to the definitions needed to prove the hybrid
argument. Let the game Gλ,Dke;π be the game Gke;π where
for the first λ sessions to accept a key (where the partner
session has not yet accepted), the key from the key exchange
session is replaced by a random value for the π stage of
the composition. The random value is drawn according to
distribution D which corresponds to the output distribution
of the key generation algorithm of π.

The game Gλ,Dke;π runs as for the game Gke;π with the fol-
lowing modifications. The game maintains the variable λ∗,
which is set to 0 initially. The behaviour of Gλ,Dke;π , χ∗ke;π,
is defined to act as χke;π of game Gke;π, on all queries ex-
cept the Send query. When a Send query is made the game
performs as described in Figure 20.

Send(lsid,msg):

• If λ ≤ λ∗, then act as χke;π and return χke;π ’s output, else:

• SST′ ← SST

• (SST′(lsid), response)← ξke;π(SST(lsid),msg)

• If SST(lsid).γ 6= SST′(lsid).γ and if SST′(lsid).γ = accepted
and if there exists lsid∗ ∈ LSID \ {lsid} with SST(lsid∗).sid =
SST′(lsid).sid then

– ((pki∗ , ski∗), pkj∗ , sid, κ
∗
ke, γ

∗, sinfo∗ke, κ
∗
π , sinfo∗π) ←

SST(lsid∗) and Set SST′(lsid).κπ ← SST(lsid∗).κπ

• Else if SST(lsid).γ 6= SST′(lsid).γ and SST′(lsid).γ =
accepted and for all lsid∗ ∈ LSID \ {lsid} one has
SST(lsid∗).sid 6= SST′(lsid).sid and LST(lsid).δpnr =
corrupted then

– SST′(lsid).κπ ← SST′(lsid).κke

• Else if SST(lsid).γ 6= SST′(lsid).γ and SST′(lsid).γ =
accepted and for all lsid∗ ∈ LSID \ {lsid} one has
SST(lsid∗).sid 6= SST′(lsid).sid then

– SST′(lsid).κπ
$←− D and λ∗ ← λ∗ + 1

• Return ((LSID, SST′, LST,EST,MST), response)

Figure 20: Send query for the game Gλ,Dke,π.

By using Lemma 1, one transforms the game Gke;π =

G0,D
ke;π into the game Gn,Dke;π for n = ni

2 · ns, where these two
games are indistinguishable to the adversary due to the BR-
security of the key exchange. As an immediate consequence
of Lemma 1, we have˛̨̨̨

Adv
G

0,D
ke;π

ke;π,A(1η)−Adv
G
n,D
ke;π

ke;π,A(1η)

˛̨̨̨
≤ n ·Adv

GBR,D
ke,B (1η).

The game Gn,Dke;π now uses random keys which are inde-
pendent from the keys derived in the key exchange protocol,
and Lemma 2 then tells us that the advantage of an adver-
sary against Gn,Dke;π is equal to the advantage of an adversary
against the Gπ game for the symmetric key protocol. Since
the protocol π is secure w.r.t. Gπ, we therefore conclude the
game Gke;π is secure.

Lemma 1. Let ke be a BR-secure key exchange protocol
w.r.t. D, where an efficient session matching algorithm ex-
ists. Let π be a symmetric key protocol whose key gener-
ation algorithm outputs keys with distribution D. For all
λ = 1, . . . , ni

2 · ns, for any efficient A we have

Adv
G
λ−1,D
ke;π

ke;π,A (1η) ≤ Adv
G
λ,D
ke;π

ke;π,A(1η) + Adv
GBR,D
ke,B (1η)

for some efficient algorithm B = B(λ).

We note that we give λ as auxiliary input to B for sim-
plicity. For the full hybrid argument picking λ at random in
the corresponding range actually suffices.

Proof. Given an adversary A against the game Gλ−1,D
ke;π ,

we construct an algorithm B against the BR-security of ke.
If A has a non-negligible difference in advantage between
the games Gλ−1,D

ke;π and Gλ,Dke;π , then algorithm B will have
non-negligible advantage in the BR-secrecy game of ke.

Algorithm B honestly simulates the π stage of the com-
position, using the keys from the BR-secrecy game, GBR,D,
and all key exchange queries are forwarded to the GBR,D
game. To allow B to simulate the π stage, B simulates the
lists SSTπ, LSTπ and the variable λ∗. It keeps track of
whether sessions have accepted or not using the function
ACC : LSID → {running, accepted, rejected}. Algorithm B
maintains a list of session keys (for accepted sessions where
the key is obtained through a Reveal or Test query) using
the function KST : LSID→ D. Algorithm B also keeps track
of all corrupt sessions within GBR,D, so locally constructs
and updates a copy of LSTke (note that we omit the re-
vealed state of sessions from this list, as B does not require
this information). Algorithm B may also run the session
matching algorithm M, which outputs lists LSIDsingle and
LSIDpartner as described in Section 3.For the session match-
ing algorithm M run by the adversary B, which is playing

the game GBR,D, we write (LSIDsingle, LSIDpartner)←M
GBR,D
A ,

where the sets LSIDsingle and LSIDpartner are the outputs of
the session matching algorithm as previously described.

Upon commencing execution B does the following:

• (SSTπ,ESTπ)← setupEπ(LSID, kg, 1η)

• (LSTπ,MSTπ)← setupGπ(LSID, SSTπ,ESTπ, 1
η)

• λ∗ ← 0

• For all lsid ∈ LSID set ACC(lsid)← running and LSTke(lsid)←
(honest, honest, fresh)

15

Now algorithm B calls A who proceeds to make queries.
When A makes a Corrupt query, B answers as described in
Figure 21 and when A makes a Send query, B answers as
given in Figure 22. All other queries made by A are for the
π stage of the composition, and are honestly simulated by
B using LSTπ and SSTπ.

Corrupt(i):

• For all lsid ∈ LSID with lsid = (i, ∗, ∗) do

– If ACC(lsid) = running then set LSTke(lsid).δ ←
corrupted

• For all lsid′ ∈ LSID where lsid′ = (∗, i, ∗) do

– If ACC(lsid′) = running then set LSTke(lsid
′).δpnr ←

corrupted

• Send Corrupt(i) to GBR,D and receive ski

• Forward ski to A

Figure 21: The response of algorithm B to any
Corrupt query made by A playing the Gλ−1,D

ke;π game.

Remark: In Figure 22, when λ∗ > λ and there exists an
entry for lsid in LSIDpartner, we initialise the session state for
session lsid with the key of its partner session. Since ke is
BR-secure, we have that the partnering game Gsid is secure,
and hence the two partnered completed sessions will share
the same session key with overwhelming probability. Hence
our initialisation of session keys is correct.

Since B’s local copy of LSTke contains identical informa-
tion relating to corruptions as the one maintained by GBR,D,
it is able to correctly initialise sessions at the π stage as ei-
ther known or unknown. Note that B asking Reveal queries
does not affect whether keys are considered known or not
within its simulation of the π stage. Thus the quality of the
simulation is not affected by B’s additional Reveal queries.
Notice that if the Test query made by B to GBR,D returns

the real key then B perfectly simulates the Gλ−1,D
ke;π game,

while if a random key is returned B perfectly simulates the
Gλ,Dke;π game. The advantage of B in game GBR,D corresponds
to the difference in success probability of A upon playing
Gλ−1,D

ke;π or Gλ,Dke;π .
At some point algorithm A terminates. If A wins against

the composed game, B sends the query Guess(1) to GBR,D
and otherwise B sends Guess(0). We have

Pr[Exp
G0

BR,D
ke,B (1η) = 0] = Adv

G
λ−1,D
ke;π

ke;π,A (1η)

and

Pr[Exp
G1

BR,D
ke,B (1η) = 1] = Adv

G
λ,D
ke;π

ke;π,A(1η).

This gives

Adv
GBR,D
ke,B (1η) =

˛̨̨̨
Pr

»
Exp

G0
BR,D

ke,B (1η) = 0

–
− Pr

»
Exp

G1
BR,D

ke,B (1η) = 1

– ˛̨̨̨
=

˛̨̨̨
Adv

G
λ−1,D
ke;π

ke;π,A (1η)−Adv
G
λ,D
ke;π

ke;π,A(1η)

˛̨̨̨
≤ ε(1η),

where ε(1η) is a negligible function in the security parameter,
denoting the advantage against the BR-secrecy game. Thus

Adv
G
λ−1,D
ke;π

ke;π,A (1η) ≤ Adv
G
λ,D
ke;π

ke;π,A(1η) + Adv
GBR,D
ke,B (1η).

Send(lsid,msg):

• If SSTπ(lsid).κπ =⊥, B forwards the query Send(lsid,msg)
to GBR,D and receives the response (γ,msg′).

• ACC(lsid)← γ

• Return (γ,msg′) to A
• If γ = accepted then perform the following:

– SST′π ← SSTπ and LST′π ← LSTπ

– (LSIDsingle, LSIDpartner)←M
GBR,D
B

– If λ∗ = λ, lsid ∈ LSIDsingle and LST(lsid).δpnr 6=
corrupted then

∗ Send Test(lsid) to GBR,D and receive κke

∗ KST(lsid)← κke

∗ λ∗ ← λ∗ + 1

∗ SST′ke(lsid) ← (κke,⊥) and LST′ke(lsid) ←
(honest, honest, fresh)

– Else if λ∗ ≤ λ then

∗ If lsid ∈ LSIDsingle and LST(lsid).δpnr 6= corrupted

then draw a random key κπ
$←− D. Set KST(lsid)←

κπ . Set SST′π(lsid) ← (κπ ,⊥) and LST′π(lsid) ←
(secret,⊥). Increase λ∗ by one.

∗ Else if lsid ∈ LSIDsingle and LST(lsid) =
(∗, corrupted, ∗) then send Reveal(lsid) to GBR,D
and receive back κke. Set KST(lsid) ← κke,
SST′π(lsid)← (κke,⊥) and LST′π(lsid)← (known,⊥
).

∗ Otherwise there exists an entry (lsid, lsid′) ∈
LSIDpartner or (lsid′, lsid) ∈ LSIDpartner. Set κπ ←
KST(lsid′). Set SST′π(lsid) ← (κπ ,⊥) and
LST′π(lsid)← (LST(lsid′).ψ,⊥).

– Else λ∗ > λ and so perform the following:

∗ If there exists an entry (lsid, lsid′) ∈ LSIDpartner

or (lsid′, lsid) ∈ LSIDpartner then set KST(lsid) ←
KST(lsid′), SST′π(lsid) ← (KST(lsid),⊥) and
LST′π(lsid)← (LST(lsid′).ψ,⊥).

∗ Else lsid ∈ LSIDsingle so send Reveal(lsid) to GBR,D
and receive back κke. If LSTke(lsid).δpnr = corrupted
then set ψ ← known, else ψ ← secret. Set
KST(lsid) ← κke, SST′π(lsid) ← (κke,⊥) and
LST′π(lsid)← (ψ,⊥). Increase λ∗ by one.

Figure 22: The response of algorithm B to any Send
query made by A playing the Gλ−1,D

ke;π game.

The final step of Theorem 1 is to show the game Gn,Dke;π ,
where all session keys of the key exchange are replaced by
random keys, can be reduced to the security of the symmet-
ric key protocol game Gπ. We now show this in Lemma 2.

Lemma 2. Let ke be a key exchange protocol, let π be a
symmetric key protocol whose key generation algorithm pro-
duces keys w.r.t. distribution D. Let n = ni

2 · ns. Then for
any efficient adversary A we have

Adv
G
n,D
ke;π

ke;π,A(1η) ≤ AdvGππ,B(1η)

for some efficient adversary B.

Proof. The outline of the proof is as follows: Algorithm
B plays against a game Gπ and internally simulates honestly
the entire composed game Gn,Dke;π . As the keys used in the
protocol stage are independent of the key exchange stage,
B can answer A’s queries to the key exchange stage by its
simulated composed game, while forwarding A’s queries to
the protocol stage to Gπ. The outputs to A are perfectly
identical to the composed game A expects to play against.

16

Formally, given the adversary A against the game Gn,Dke;π

we construct algorithm B playing the Gπ game as follows.
Algorithm B internally simulates SSTke, LSTke and main-
tains ESTke and MSTke as is done in the composed game.
Initially B runs:

• (SSTke,ESTke)← setupEke(LSID, kg, 1η)

• (LSTke,MSTke)← setupGke(LSID,SST,EST, 1η)

Now B calls A, which proceeds to make queries that B
answers. If the query is to the π stage of the composed game,
B forwards this query to Gπ and returns the response to A.
If the query is for the ke stage then B uses its internal data
of SSTke, LSTke, ESTke and MSTke to simulate the actions
of the composed game and create a response to return to
A. Note that for all these queries the simulation is perfect
since B and Gπ run the same algorithms as in the composed
game. The Send query is formally given in Figure 23.

Send(lsid,msg):

• SST′ke ← SSTke.

• If SSTke(lsid).γ = accepted then forward Send(lsid,msg) to
Gπ , receiving back response. Return (accepted, response) to
A. Otherwise continue as follows.

• Run (SST′ke(lsid), response)← ξke(SSTke(lsid),msg).

• If SST′ke(lsid).γ′ = accepted and there exists lsid∗ ∈ LSID \
{lsid} such that SSTke(lsid

∗).sid = SST′ke(lsid).sid then send
the query InitP(lsid, lsid∗) to Gπ .

• Else if SST′ke(lsid).γ = accepted then:

– If LSTke(lsid).δpnr = corrupt then send
InitK(lsid,SSTke(lsid).κke) to Gπ .

– Else send InitS(lsid) to Gπ .

• Return (SST′(lsid).γ, response) to A in response to its Send
query.

Figure 23: Simulation by algorithm B in response to
a Send query of A playing Gn,Dke;π,A.

Keys used by Gπ and the keys used by the protocol stage
of the composed game are identically distributed: In the
case of an InitK(lsid, κ) query, the key is set to κ in both
games. When an InitS(lsid) query is sent, both games ran-
domly draw a key from distribution D. If the adversary
queries InitP(lsid0, lsid1), in both games, the key of session
lsid1 is set equal to the key of session lsid0. Thus, the simu-
lation is sound.

At some pointA will terminate execution and at this point
B also terminates. If A has won against the composed game,
then B will have won against the Gπ game. Hence we have,

Adv
G
n,D
ke;π

ke;π,A(1η) ≤ AdvGππ,B(1η).

D. OBSERVATIONS ON SESSION MATCH-
ING

In Section 2 we defined a session matching algorithm, and
gave an example of a BR-secure key exchange that does
not support such an algorithm (based on re-randomizable
encryption). Moreover, we showed that a BR-secure key
exchange is composable if there exists a session matching
algorithm M which, at any point in the game, outputs cor-
rect lists of partnered sessions. This section is devoted to
prove that the converse also holds, i.e. if a key exchange
protocol is composable in general, then a weak form of ses-
sion matching algorithm exists. In other words, if for all
secure protocols π, there is a black-box reduction from the

composed game (ke;π) to BR-security of the key exchange,
then this black-box reduction can be used to build some
session matching algorithm. This shows that a form of ses-
sion matching algorithm is both necessary and sufficient to
provide general composability for BR-secure key exchange
protocols.

We first specify the notion of a straightline black-box re-
duction, which works for any protocol π, and any adversary
A. The reduction reduces the security of the composed pro-
tocol (ke;π), to the BR-security of ke. The reduction is
black-box and has oracle access to a single copy of A, i.e.
it may only query the oracle A via a certain interface, but
may not set randomness for it, run several copies of A or
re-set A to its initial state, as more powerful definitions of
black-box reduction sometimes allow. We first show the re-
duction in our composition proof is of this type, and then
move on to give the construction of a “weak” session match-
ing algorithm.

We stress that the derived session matching algorithm is
not as powerful as the one defined in Definition 4. Namely,
one of the differences will be that the algorithm only provides
a good session matching for those adversaries A that receive
additional session key information from the key exchange
game. Moreover, the weak session matching algorithm will
produce the correct result, with some non-negligible prob-
ability better than a random guess, i.e. it may not always
succeed. Note that the (non-weak) session matching algo-
rithm must produce the correct result with probability 1.
Finally, the weak session matching algorithm also makes
additional Test and Reveal queries, but only in a strictly
controlled manner. These queries do not make an adver-
sary, playing against the BR-game and using the algorithm,
lose the game.

Definition 6 (Straightline Black-Box Reduction).
Let A be an adversary against Gke;π. The reduction accesses
A via oracle queries. The A oracle is given the secret bit b of
the BR-secrecy game, lists LSIDpartner, LSIDsingle, and the cor-
rect session key, whenever a key exchange session accepts.
This information flow is realized through a special tape be-
tween oracle A and GBR

ke which the reduction is unable to
read. Let π be secure with respect to Gπ. We say that there
exists a straightline black-box reduction from Gke;π to GBR

if there exists a PPT algorithm B against GBR, such that for
all A the following conditions hold:

1. If Adv
Gke;π
ke;π,A(1η) is non-negligible, then Adv

GBR
ke,B(1η) is

non-negligible.

2. Algorithm B has oracle access to a single oracle A.

3. Algorithm B honestly relays any queries A makes to the
ke stage of (ke;π) to the game GBR,

4. and the only other queries made by B to GBR are Test
and Reveal queries.

The above notion may sound restrictive; adversary A re-
ceives information from GBR that is unknown to B. Addi-
tionally, algorithm B is a pure observer as far as queries to
GBR are concerned. However, we can observe that our re-
duction in Theorem 1 is of the above type. In particular, B
does not tamper with queries to the key exchange game.

We now prove that the notion of a straightline black-box
reduction implies the existence of a weak session matching
algorithm.

17

To construct a weak session matching algorithm we now
define a particular protocol π0 with its game Gπ0 . The
protocol π0 consists of two algorithms (kg, ξ) which act as
follows: Algorithm kg outputs a random key from {0, 1}η,
whilst ξ, on input of session state, sst, and a message, returns
an empty message as the response and the same session state
sst.

Besides the Send query, Gπ0 provides the standard queries
InitS, InitK and InitP, as well as one additional query, Target(
lsid, κ). When the adversary has asked Target(lsid, κ), the
game ignores all further queries. The predicate Pπ0 of the
game Gπ0 checks whether lsid corresponds to an honest ses-
sion, i.e. LST(lsid).ψ = secret, and whether κ is the key
corresponding to this session. If so, Pπ0 outputs 1, else Pπ0

outputs 0.
If, before the Target query, Gπ0 receives any of the queries

InitS, InitK or InitP, Gπ0 behaves as described in Section 2.
Additionally, after every such query, the game returns two
lists LSIDpartner and LSIDsingle that contain pairs of partnered
sessions as well as all sessions which are not partnered yet.
At some point, Gπ0 receives a pair (lsid, κ) and outputs 1 if
and only if LST(lsid).ψ = secret and κ equals the session key
of lsid. Note that for random keys κ, the corresponding pro-
tocol π0 is secure (as a standalone protocol), since winning
the game requires the adversary to predict an unknown key,
while the key is information-theoretically hidden.

Algorithm B is required to work for all adversaries sat-
isfying the description of Definition 6. By considering a
particular subclass of those, we will be able to extract in-
formation on B’s ability to provide matching sessions. Let
A be an arbitrary adversary against Gke;π0 that does not
receive the additional key information from GBR. We now
describe the following universal wrapper algorithm A0 for
such adversaries.

AlgorithmA0 receives the additional information and runs
A as a subroutine. Algorithm A0 plays against Gke,π0 . and
does not modify any of A’s queries, except the Target query.
Note that after the Target query is issued, no further queries
need be made by the adversaries. WhenA issues its Target(lsid, κ)
query then let us assume that w.l.o.g. this is always a query
for an honest session lsid. Now, throughout the game, A0

received lists LSIDpartner and LSIDsingle from Gπ0 . Algorithm
A0 checks whether at any time in the game, these lists are
different from those given in the additional information to
A0. If a difference occurs, then A0 does not modify A’s out-
put Target(lsid, κ) but simply forwards it. Else, A0 searches
in its lists for the correct key κ′ and outputs Target(lsid, κ′)
as its final output.

Clearly, the algorithmA0 wins against the composed game
with probability 1, as the lists always match and the key out-
put in the Target session is always correct. However, when
the reduction B performs a simulation and cannot provide
suitable matchings, this may no longer hold. Nevertheless,
as A0 has non-negligible winning advantage in the composed
game, by definition, the reduction B with oracle access to A0

also has a non-negligible advantage in the BR-secrecy game.
To assure that A0 produces useful output for B, the adver-
sary B needs to provide correct lists LSIDpartner and LSIDsingle

in each step. Else, B only observes an execution of a copy of
A, and A does not receive additional information about the
keys. Thus, as A is just an arbitrary adversary without ad-
ditional information, there is an algorithm B, which is able
to break the BR-secrecy of ke, contrary to the assumption

(namely, the algorithm B which runs A as a subroutine).
Therefore, B needs to provide an accurate matching at least
in a significant number of cases.

The last step is to analyse how often B may fail to pro-
vide a good matching or admissible Reveal and Test queries.
Analysis shows that, with high probability B provides admis-
sible Reveal and Test queries and it achieves the correct ses-
sion matching in a significant number of cases. Note that for
the latter, the probability of a random guess for the match-
ing being correct is negligible; therefore, with non-negligible
probability, algorithm B produces a better result than a ran-
dom guess. Thus, the constructed weak session matching al-
gorithm indicates that composability is not achievable with-
out some session matching properties of the key exchange
protocol. We now turn to the analysis.

We now turn to the analysis. We say that B only makes
admissible Reveal and Test queries, if B neither reveals the
partner of a tested session, nor tests the partner of the re-
vealed session. Recall that in either case, B loses in the BR-
secrecy game. As B is only a successful algorithm when win-
ning in the BR-secrecy game with probability significantly
greater than 1

2
, it is obvious that B needs to provide admis-

sible Test and Reveal queries with probability significantly
greater than 1

2
. We now argue that this probability needs

to be negligibly close to 1 by considering modified wrappers
Ap.

Let p(η) be a positive, monotone function in the security
parameter η, and let p(η) be upper bounded by 1. Algo-
rithm Ap flips a weighted coin. With probability 1 − p(η),
algorithm Ap behaves as A0 and provides helpful informa-
tion to B. With probability p(η), Ap only forwards A’s
output, so B does not receive any helpful information in this
case. Note that B cannot distinguish these two cases due to
the BR-security of the key exchange. Thus, B’s probability
of providing admissible queries is equal to some probability
q(η) in both cases.

The reduction B’s success probability is lower bounded by
(1 − p(η)) · (1 − q(η)) + p(η) · 1

2
(1 − q(η)) = (1 − q(η))(1

2
+

1
2
(1−p(η))). Algorithm Ap has non-negligible winning prob-

ability, whenever 1 − p(η) is non-negligible in the security
parameter η. Therefore, in order to exceed 1

2
by a non-

negligible amount, the term (1 − q(η)) must be negligibly
close to 1. Hence, B provides admissible Test and Reveal
queries in almost all cases.

We now argue that B provides matching sessions to its or-
acle A0 with non-negligible probability. Recall that B needs
to provide matching sessions to A0, as else, the oracle A0

does not pass any helpful information to B. Thus, B provides
matching sessions to A with non-negligible probability.

An analysis similar to the one for admissible queries fails,
as providing non-matching sessions does not prevent B from
winning the BR-secrecy game. In particular, when flipping
a coin, B wins the game with probability 1

2
. If, for example,

B can check whether it provides a good session matching to
its oracle, no conclusions can be made. Thus, the match-
ing property is only achieved in a weak flavor. Recall that
B is significantly more successful in identifying partnered
sessions than a purely random guess.

E. EXAMPLE – AUTHENTICATED CHAN-
NELS

We now describe a model to allow one to model the re-

18

quirements of an authenticated channel protocol. We require
that messages sent between parties are accepted only if the
adversary delivers them in order. Furthermore any forged
messages should be rejected.

The adversary drives execution using the Send query to
deliver the authenticated messages to a session. The adver-
sary uses an Auth query to obtain an authenticated message
of its choosing. Security is modelled using two lists, a ses-
sion’s authenticated message list, τauth, (i.e. those messages
it receives from an Auth query), and its accepted message
list, τacc, (i.e. those messages it receives from a Send query
and accepts). Provided for pairs of sessions the accepted
message list is an ordered subset of the partner session’s
authenticated message list, the security of the authenticity
property of a scheme is sound.

Formally, we model this requirement using our game-based
framework as previously described. The local session state
is given by (ψ, τauth, τacc), where τauth and τacc are ordered
list, encoded by some suitable binary encoding.

The local session state initialises ψ to secret as required
by the symmetric key protocol game definition, and sets the
lists τauth and τacc to be empty. This is done through the
setupG algorithm in Figure 24.

setupG(LSID, SST,EST, 1η):

• For each lsid ∈ LSID do:

– LST(lsid)← (secret, [], []).

• Return (LST,⊥).

Figure 24: The setupG algorithm for an authenticated
channels game.

The authenticated channel protocol π = (kg, ξ) consists of
three algorithms, as the algorihtm ξ is split into two parts
(this is achieved by passing some flag to ξ to determine which
mode it is operating in). Algorithm kg generates symmetric
keys, and is dependant on the exact protocol. For simplicity
we write ξ in the form of two distinct algorithms. The first,
ξauth, takes as input some “plaintext” message, and returns
an authenticated message. The second, ξverify, takes as input
an authenticated message, and returns either the “plaintext”
message, or ⊥ if authentication fails.

The adversary is able to make InitS, InitP, InitK, Send
queries, and the additional Auth query. The Init queries
function as described in Section 4. The Auth query calls
the ξauth algorithm to obtain an authenticated version of a
message, and adds the “plaintext” version to the τauth list.
The Send query calls the ξverify to verify an authenticated
message and adds the “plaintext” version to the τacc, only if
authentication succeeded. This is shown in Figure 25.

The Valid conditions for the Send and Auth queries check
that the session has been initialised with a session key, and
that the (authenticated or plaintext) message is not unde-
fined. This is formally given in Figure 31.

Finally in Figure 26 we give the predicate for the authen-
ticated channels game. This predicate checks that the list
of accepted authenticated message, τacc , is an ordered sub-
set for some other τauth list, belonging to a different session
with the same session key. The adversary is only consid-
ered to have achieved its goal for a session with unknown
keys. Therefore if ψ = known for a session, its lists are not
inspected.

Send(lsid,msg):

• SST′ ← SST and LST′ ← LST.

• (SST′(lsid), response)← ξverify(SST(lsid),msg).

• Provided response 6=⊥ append response to LST′(lsid).τacc.

• Return ((SST′, LST′,EST,MST), response).

Auth(lsid,msg):

• SST′ ← SST and LST′ ← LST.

• (SST′(lsid), response)← ξauth(SST(lsid),msg).

• Append msg to LST′(lsid).τauth.

• Return ((SST′, LST′,EST,MST), response).

Figure 25: The Send and Auth queries for authenti-
cated channel games.

PAC(LSID,SST, LST,EST,MST):

• For each lsid ∈ LSID where LST(lsid) = (secret, ∗, ∗) do:

– Find lsid′ ∈ LSID \ {lsid} where SST(lsid′).κ =
SST(lsid).κ.

– If no such lsid′ is found and LST(lsid).τacc is not empty
then return 1.

– Else check if LST(lsid).τacc is not an ordered subset of
LST(lsid′).τauth then return 1.

• Return 0.

Figure 26: Predicate for authenticated channels
game.

Single Session Reducibility. This game for authenti-
cated channels is easily adapted to meet the requirements
of a session restricted game, discussed in Appendix B, and
therefore by Theorem 2 is single session reducible.

The setupG algorithm initialises all session independently,
and therefore it is clearly adaptable to run as required for
a session restricted game. The Send and Auth queries run
only over the state of one session, and therefore again fit with
the behaviour required. If a Send query returns response 6=⊥
for a message which the adversary did not receive from an
appropriate Auth query, then the adversary has successfully
forged a message, and so knows which session to query with
the Target query. Similarly the adversary knows if a session
accepts a message which was delivered in the incorrect order,
and so can target this session. Finally the predicate runs
over the game state for partnered sessions, and so can be
applied as required for session restricted games.

E.1 Valid Predicates

Valid(Send(lsid,msg), (LSID, SST, LST,EST,MST)):

• If LST(lsid).δ = corrupted then return false.

• If LST(lsid).ω = revealed then return false.

• If SST(lsid).γ 6=⊥ then return false.

• Return true.

Figure 27: The Valid predicate for Send queries in
key agreement games.

19

Valid(Test(lsid), (LSID, SST, LST,EST,MST)):

• If MST.lsidtested 6=⊥ then return false.

• If SST(lsid).γ 6= accepted then return false.

• If LST(lsid).δpartner = corrupted then return false.

• If LST(lsid).ω = revealed then return false.

• For all lsid′ ∈ LSID \ {lsid} s.t.
SST(lsid′).sidSST(lsid).sid do

– If LST(lsid′).ωrevealed then return false.

• Return true.

Valid(Reveal(lsid), (LSID, SST, LST,EST,MST)):

• If lsid = MST.lsidtested then return false.

• For all lsid′ ∈ LSID s.t. SST(lsid′).sid = SST(lsid).sid do

– If lsid′ = MST.lsidtested then return false.

• Return true.

Valid(Guess(b), (LSID, SST, LST,EST,MST)):

• If MST.b† 6=⊥ then return false.

• Return true.

Figure 28: The Valid predicates for the BR-secrecy
game.

Valid(Send(lsid,msg), (LSID, SST, LST,EST,MST)):

• If SST(lsid).κ =⊥ then return false.

• Return true.

Valid(InitP(lsid1, lsid2), (LSID, SST, LST,EST,MST)):

• If SST(lsid1).κ =⊥ then return false.

• If SST(lsid2).κ 6=⊥ then return false.

• Else return true.

Valid(InitS(lsid), (LSID, SST, LST,EST,MST)):

• If SST(lsid).κ 6=⊥ then return false.

• Else return true.

Valid(InitK(lsid, κ), (LSID,SST, LST,EST,MST)):

• If SST(lsid).κ 6=⊥ then return false.

• Else return true.

Figure 29: The Valid predicates for symmetric keyed
games.

Valid(Send(lsid,msg), (LSID,(SSTke,SSTπ),(LSTke, LSTπ),
(ESTke,ESTπ),(MSTke,MSTπ))):

• If SST(lsid).γ 6= accepted then run
Validke(Send(lsid,msg), (LSID, SSTke, LSTke,ESTke,
MSTke)) and return the output.

• Else run Validπ(Send(lsid,msg), (LSID,SSTπ, LSTπ,ESTπ,
MSTπ)) and return the output.

Figure 30: The Valid predicate for the Send query in
a composed game.

Valid(Send(lsid,msg), (LSID,SST, LST,EST,MST)):

• If SST(lsid).κ =⊥ then return false.

• If msg =⊥ then return false.

• Return true.

Valid(Auth(lsid,msg), (LSID,SST, LST,EST,MST)):

• If SST(lsid).κ =⊥ then return false.

• If msg =⊥ then return false.

• Return true.

Figure 31: The Valid predicates for authenticated
channel games.

Valid(Decrypt(lsid,msg), (LSID, SST, LST,EST,MST)):

• If SST(lsid).κ =⊥ then return false.

• If msg =⊥ then return false.

• (LSID∗, SST∗, LST∗,MST) ←
extract(lsid, (LSID, SST, LST,MST)).

• For each lsid∗ ∈ LSID∗ do

– If msg is on list LST(lsid∗).τenc then return false.

• Return true.

Valid(Encrypt(lsid,msg0,msg1), (LSID, SST, LST,EST,MST)):

• If SST(lsid).κ =⊥ then return false.

• If msg0 =⊥ or msg1 =⊥ then return false.

• If LST(lsid).ψ = known and msg0 6= msg1 then return
false.

• Return true.

Valid(Guess(b∗), (LSID, SST, LST,EST,MST)):

• If MST.b† 6=⊥ then return false.

• Else return true.

Figure 32: The Valid predicates for the secret chan-
nel games.

20

