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Abstract. Non-malleability of a cryptographic primitive is a fundamental security property which ensures
some sort of independence of cryptographic values. The notion has been extensively studied for commitments,
encryption and zero-knowledge proofs, but it was not until recently that the notion—and its peculiarities—
have been considered for hash functions by Boldyreva et al. (Asiacrypt 2009). They give a simulation-based
definition, basically saying that for any adversary mauling hash values into related ones there is a simulator
which is as successful in producing such hash values, even when not seeing the original hash values. Their
notion, although following previous approaches to non-malleability, is nonetheless quite unwieldy; it is hard
to achieve and, due to the existential quantification over the simulator, hard to falsify. We also note that
finding an equivalent indistinguishability-based notion is still open.

Here we take a different, more handy approach to non-malleability of hash functions. Our definition avoids
simulators completely and rather asks the adversary to maul the hash value and to also specify a transfor-
mation φ of the pre-image, taken from a fixed class Φ of admissible transformations. These transformations
are usually determined by group operations and include such cases such as exclusive-ors (i.e., bit flips) and
modular additions. We then simply demand that the probability of succeeding is negligible, as long as the
original pre-image carries enough entropy. We continue to show that our notion is useful by proving that,
for example, the strengthened Merkle-Damg̊ard transformation meets our notion for the case of bit flips, as-
suming an ideal compression function. We also improve over the security result by Boldyreva et al., showing
that our notion of non-malleability suffices for the security of the Bellare-Rogaway encryption scheme.

Keywords. Hash function, Non-malleability.

1 Introduction

Non-malleability, first treated formally in [DDN00] for commitments, encryption and zero-knowledge, provides
some level of independence between cryptographic values. That is, a commitment or ciphertext should not
help to generate another commitment or ciphertext of a related message. By this, the adversary should not be
able to produce a meaningful value by flipping some bits in a commitment or ciphertext. Several subsequent
works considered this notion for the aforementioned primitives [DDN00, BS99, Sah99, DIO98, FF00, DDO+01,
Bar02, DG03, PR05a, PR05b, CHS06, PPV08, CD08, CV09, LP09, LPTV10, LPV08, OPV10, OPV08].

Non-Malleability of Hash Functions. Non-malleability of hash functions was scrutinized only recently
by Boldyreva et al. [BCFW09]. They provide a formal treatment of the primitive and discuss applications to
the Bellare-Rogaway encryption scheme and client puzzles. Other applications of non-malleable hash functions
include security proofs for HMAC [Fis08] and for OAEP [BF06]. The idea behind non-malleable hash functions,
put forward in [BCFW09], is similar to other areas but also reveals some differences, originating from the fact
that, unlike commitments and encryptions, hash functions do not have secret randomness.

The definition in [BCFW09] follows the simulation paradigm: For every adversary which is able to transform
hash values into related ones, there should be a simulator which outputs such related values but which is
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denied the original values. This ensures independency of cryptographic values because given the value does not
facilitate the task. However, the definition in [BCFW09] comes with several deficiencies:

• The requirement is quite strong: the hash function must not for instance leak individual bits of the input,
or else the adversary would gain a significant advantage over any simulator by learning the hash value.
While this seems to be a desirable goal for commitments and encryption, and possibly for some hash
function applications, in general leaking some bits may not do harm to the fact that one mauls a hash
value into something meaningful. Hence, it would be preferable to separate the notions of non-malleability
and of pre-image hiding.

• The existential quantification over the simulator makes it hard to falsify (cf. Naor’s work on cryptographic
assumptions [Nao03]) the property for a specific hash function: one would need to show that for some
adversary no appropriate simulator whatsoever exists. This is contrast to other desirable hash function
properties like collision resistance.

• The definition in [BCFW09] covers pathological hash functions like constant functions: since the hash
value does not lend any additional power to the adversary—after all, it is a constant— such a function is
trivially non-malleable. Intuitively, though, for such functions it is easy to find related hash values and to
determine hash values of the pre-image with some bits flipped. One can rule out such pathological func-
tions by demanding collision-resistance or unpredictability, but this would introduce another assumption
(which is somewhat unrelated, as we discuss).

• As discussed in [BCFW09], finding an alternative indistinguishability-based approach as for commitments
and encryption seems to be hard. Very often, though, such a notion is easier to work with for proofs
where the hash functions are used within larger schemes.

Non-Malleability goes Handy. We overcome the above problems by reverting to the core idea behind
non-malleability: it should be hard to modify a given hash value such that the pre-image is affected in a
controlled way. In contrast, the simulation-based approach somewhat guarantees more than this, by ensuring
that the hash values are absolutely useless for doing so; this is formalized by having a simulator approximating
the adversary’s strategy but without learning the hash value.

Typically, the simulator in non-malleability proofs for hash functions runs a copy of the adversary, creates
a fake hash value and presents it to the adversary in order to produce a related output. This, however, inhibits
some designs which may otherwise guarantee the required “mauling resistance”. As an example, if the hash
function leaks a single bit of the input, then this clearly violates the simulation technique above. Nonetheless,
determining a related hash value may still be hard for the adversary, because of the large unknown input
portion. In fact, since practically designed hash functions should ensure that small changes in the input affect
all output bits (“avalanche effect”) it is likely that most hash functions would still withstand such mauling
attacks: the adversary would still need to “control” the effect on the other bits. We note that the avalanche
effect, albeit seemingly necessary, is not known to provide our desired level of non-malleability.1

We formalize the above non-malleability approach following related-key attacks on pseudorandom functions
[Knu92, Bih94, BK04, Luc04]. There, the adversary can query the pseudorandom function with secret key k
on values, but also specify a transformation φ of the key to receive values for related key φ(k). The class Φ of
admissible functions φ is usually restricted, else achieving security in this setting is impossible [BK03].

In our case, we hand the adversary a hash value y of an unknown pre-image x and ask her to specify a
transformation φ ∈ Φ from a class of admissible transformations, together with a hash value y∗. The adversary

1We also note that the idea of reverting to basic modification attacks does not seem to be applicable to non-malleable commit-
ments or encryptions in a reasonable way; the latter primitives are designated to hide the messages, whereas hash functions are
a-priori not meant to provide such a guarantee.
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wins if x∗ = φ(x) hashes to y∗; to avoid trivial copy-attacks, we also demand that x∗ 6= x. Non-malleability now
requires that the probability of the adversary winning is negligible, implying that the (adversarially chosen)
distribution of the unknown pre-image x contains super-logarithmic min-entropy. We denote this notion by
Φ-non-malleability.

Similar to related-key attacks on pseudorandom functions, we cannot hope to achieve our notion of Φ-non-
malleability for arbitrary classes Φ of transformations. Still, it comprises a large set of interesting transfor-
mation. For example, it contains the important class of all “bit flips”, φδ(x) = x ⊕ δ for all δ, for which we
denote the notion by ⊕-non-malleability. More generally, one may consider any operations over groups, like
φδ(x) = x+δ mod 2n to capture modular additions. For a group (G,�) and such group-induced transformations
φ�δ (x) = x� δ we speak of �-non-malleability.

Applying our Non-Malleability Notion. We show that our notion �-non-malleability is strictly weaker
than the simulation-based approach of Boldyreva et al. [BCFW09]. This, per se, would not be an interesting
result, unless we can prove that the notion is still useful or enriches the class of suitable hash functions. We
show both.

Clearly, since simulation-based non-malleability implies �-non-malleability, we can immediately conclude
from the construction in [BCFW09] that �-non-malleable (and thus ⊕-non-malleable) hash functions can be
derived under standard assumptions in principle. However, one of the ideas behind our notion is to give more
guidance on how to design practical hash functions, and we rather envision more practical constructions from
⊕-non-malleable hash functions.

As for positive results, we show that the strengthened Merkle-Damg̊ard, achieves the notion of ⊕-non-
malleability if we assume an ideal compression function, emphasizing that restricting the class of admissible
transformations allows to derive non-trivial non-malleability statements. Some of our results are also negative,
though. We show that, due to length extension attacks, (strengthened) Merkle-Damg̊ard is not Φ-non-malleable
for a large class of transformations, even if we model the compression function as a random oracle. We also
indicate that the Matyas-Meyer-Oseas (MMO) construction where one adds the input message to the output
of a cipher shows some weaknesses when it comes to ⊕-non-malleability. More precisely, our result says that,
if the compression function can be an arbitrary ⊕-non-malleable function, then MMO may not preserve this
property. However, note that MMO itself assumes that the compression function is a block cipher, hence our
result does not immediately apply to hash functions built from MMO like Skein [FLS+08].

We finally show that ⊕-non-malleability suffices to show the Bellare-Rogaway (BR) encryption scheme
[BR93] to be chosen-ciphertext secure, where a message is encrypted via (f(r), G(r)⊕m,H(r||m)) for trapdoor
permutation f , random r and hash functions G and H. Boldyreva et al. [BCFW09] prove that (simulation-
based) non-malleability of H suffices, as long as G is still treated as a random oracle. To be precise, they also
require H to be collision-resistant and perfectly one-way [Can97], hiding all information about the pre-image.
Here we improve over their result and show the BR scheme is chosen-ciphertext secure (for random oracle G),
as long as H is ⊕-non-malleable and perfectly one-way. This is an example where hiding the entire pre-image
is now welcome and made explicit.

Other Related Work. “Bit-flipping” attacks have been known for a long time. It is the achievement of
works like [DDN00] to put them into a general and formal framework and show how to avoid them and how
to apply this security property. As explained above, our definition of Φ-non-malleability follows this line. It is
inspired by the notion of related-key attacks [Bih94, Knu92, BK03] and the fact that the definition of Boldyreva
et al. [BCFW09] is quite bulky.

It should be mentioned that a similar notion to ⊕-non-malleability appeared previously in Shoup’s attack
on the OAEP proof [Sho01]. Shoup gives an ad-hoc definition for XOR-malleable trapdoor permutations, i.e.,
trapdoor permutations which succumb to such bit-flip attacks, and he shows that OAEP is insecure when

3



instantiated with such a permutation. His notion, besides demanding the opposite of non-malleability, is
slightly different (and incomparable) to ours in the sense that the adversary runs on a given difference δ and is
not allowed to choose the distribution of inputs to the permutation. Our work here provides a positive, more
expedient notion of non-malleable hash functions.

2 Preliminary Definitions

Notations. If x is a bit string then |x| denotes its length and xi the ith bit, whereas the least significant
bit is at position i = 0; a bit position i is modulo |x|. By x||y we denote the concatenation of two strings x
and y and assume that it has the lowest evaluation priority. We assume (unless indicated otherwise) that all
algorithms run in “probabilistic polynomial-time”. If A is a set, we write a ← A to indicate that a is picked
uniformly at random from this set. The same syntax is used if A is a distribution (a is then drawn accordingly)
and if A(·) is an algorithm, then a denotes its output. When dealing with a concatenated bit string x0||x1

where |x0| = |x1|, we often write left-hand (or right-hand) side to refer to x0 (or x1) and function split(b, x0||x1)
returns xb. Functions poly(λ) and negl(λ) denote any function that is polynomial in λ and negligible in λ,
respectively. The security parameter is denoted by 1λ. All logarithms are base 2.

The following definition captures a very general notion of hash functions, allowing also probabilistic schemes:

Definition 2.1 (Hash function) A hash function H = (HK,H,HVf) consists of algorithms, where

Ken Generation. HK(1λ) outputs a key K which implicitly defines a domain D(K),

Evaluation. H for inputs K and x ∈ D(K) evaluates to a value y ∈ {0, 1}∗, and

Verification. HVf returns a decision bit for inputs K,x, y.

It is required for any K ← HK(1λ), any x ∈ D(K), and any y ← H(K,x) that HVf(K,x, y) outputs 1.

We often require probability distributions to be non-trivial with regard to predictability. This means that it
should be hard to predict which element is drawn from a given distribution when sampled, even in the presence
of additional information in terms of a hint about the sample. We formalize this requirement as conditional
min-entropy and resort to an equivalent formulation via predictors by [ADW09].

Definition 2.2 (Conditional min-entropy) The conditional min-entropy of a distribution X conditioned
on distribution Z is

H̃∞(X|Z) := − log max
A

Pr [A(Z) = X ]

where the probability is taken over the random coins of A, Z and X .

In our case, the distribution Z is often dependent on X , e.g., a function of X .

3 Defining Non-Malleability

We first present the original definition from Boldyreva et al. [BCFW09], before introducing our notion of
Φ-non-malleability and discussing their relationship.
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3.1 Simulation-Based Non-Malleability

The idea of simulation-based non-malleability originates from [DDN00], where it has been defined, among
others, for private key encryption. It states, intuitively, that for given ciphertext C(x) of a message x, it should
be computationally hard to find C(x∗) where x and x∗ are related in some interesting way. In their recent
work Boldyreva et al. [BCFW09] provide a simulation-based definition of non-malleable hash functions. This
definition constitutes the natural translation of simulation-based non-malleable encryption: For given H(x), it
should be computationally hard to find H(x∗) where x and x∗ are meaningfully related, defined via a relation
R form a class of relations R.

As with any simulation-based definition, the hardness of finding x and x∗ is expressed over the probability
that an efficient attacker is not significantly more successful than a simulator in an idealized version of the same
task. That means, it is required that for any efficient attacker there exists a corresponding simulator that does
just as well. In this specific case, both algorithms have to output x∗ eventually, but the attacker is given H(x)
while the simulator does not have access to H(x). The following definition is almost verbatim from [BCFW09]
with a minor change (discussed afterwards):

Definition 3.1 (NM-Hash) A hash function H = (HK,H,HVf) is called non-malleable (with respect to prob-
abilistic algorithm hint and relation class R) if for any PPT algorithm A = (Ad,Ay,Ax) there exists a PPT
algorithm S = (Sd,Sx) such that for every relation R ∈ R the difference

Pr
[
Expnmh-1

H,A (λ) = 1
]
− Pr

[
Expnmh-0

H,S (λ) = 1
]

is negligible, where:

Experiment Expnmh-1
H,A (λ)

K ← HK(1λ)
(X , std)← Ad(K)
x← X (1λ), hx ← hint(K,x)
y ← H(K,x)
(y∗, sty)← Ay(y, hx, std)
(x∗, r)← Ax(x, sty)
Return 1 iff

R(X , x, x∗, r)
∧ (x, y) 6= (x∗, y∗)
∧HVf(K,x∗, y∗) = 1

Experiment Expnmh-0
H,S (λ)

K ← HK(1λ)
(X , std)← Sd(K)
x← X (1λ), hx ← hint(K,x)

(x∗, r)← Sx(hx, std)
Return 1 iff

R(X , x, x∗, r)

where X denotes a distribution that is chosen by the attacker Ad or simulator Sd and st stands for state
information passed among the algorithms. H is called entropically non-malleable if the above only holds for
algorithms Ad and Sd that output distributions X such that H̃∞(X|HK, hint) ∈ ω(log λ).

A wealth of remarks is presented in the original work; we only comment on the most important details:

• Both experiments provide the algorithms with a hint hx, which reflects information about x that might
have been collected from previous actions, such as other protocol executions that involve x.

• The informal statement that x and x∗ are related in a meaningful way is represented by quantification over
a class of relations R. Ideally, we would want to allow any relation, but subtle technicalities described in
[BCFW09] demand that the set of all possible relations is restricted; the definition becomes unachievable
otherwise. This restriction can be expressed by excluding the problematic relations from R.
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• We introduced a small change concerning the output of Ax and Sx as well as the relation. In particular,
the original definition omits the value r which gives the attacker a little more control over the relation.
By specifying a parameter r along with x∗, the attacker is effectively able to select a specific subset of
the relation. This can be viewed as a decomposition of a corresponding relation that omits r into subsets
where the resulting subsets are indexed by r. Applying this modification will turn out useful later for our
analysis, and does not affect the results in [BCFW09].

• We also define entropically non-malleability as a variant of non-malleability that requires attackers not to
output trivial preimage distributions. This is useful because the attacker could otherwise attempt to guess
the preimage that the experiment samples from the distribution instead of attacking non-malleability. The
original definition does not formalize this explicitly but mentions it as a naturally arising condition.

3.2 Game-Based Non-Malleability

We avoid the drawbacks of the simulation-based approach mentioned in the introduction, by proposing an
alternative definition that does not rely on a simulator. Our goal is to provide a definition that is more compact
and accessible to both cryptanalysts and practitioners while it still captures the idea of non-malleability.

The Idea. One candidate realization of our goal is captured by the following game. After selecting a preimage
distribution of inputs to some hash function h, the attacker is given image H(x) and is required to output H(x∗)
along with a description of how to transform x into x∗ in terms of a function φ. Note that this does not imply
that the attacker knows x or x∗. Consider the following experiment which outlines this idea.

1. Attacker A outputs a preimage distribution X .

2. A random preimage x is picked according to X . Let y = H(x).

3. On input y, the attacker outputs y∗ along with a function φ which maps one preimage to another, e.g.,
φ = φδ may be the function which maps x to φδ(x) = x⊕ δ.

4. The output of the experiment is defined to be 1 if, and only if, H(φ(x)) = y∗ (and we have φ(x) 6= x).

As a natural consequence for a non-malleability definition, we would require the probability that this
experiment outputs 1 to be negligible in the security parameter. Modeling the description of how to transform
the preimage with a function also allows the attacker to output modifications like φ(x) := x+1. Unfortunately,
this broad definition is unachievable. Consider, for example, an attacker that simply picks x∗ at random from
the preimage domain and outputs the constant function φ(·) := x∗ and y := H(x∗). It succeeds unconditionally
in this experiment since H(φ(x)) = H(x∗) = y∗, regardless of the hash function in question. This problem
occurs whenever the adversary can provide a function which significantly reduces the size of the resulting range
of the transformation function. We thus restrict the class Φ of functions φ.

Φ-Non-Malleability. Seeing that the above experiment is unachievable, the question remains if a weaker—
but working—game-based definition exists that still reflects the intuition of non-malleability. We approach this
question with the following idea: If two related values x and x∗ exist, then there is a difference δ := x ⊕ x∗
that essentially describes how to modify one value in order to obtain the other. Yet, given the difference only,
no information in absolute terms about x (or x∗, separately) can be inferred. We can view an attacker that
outputs δ as a specialization of the experiment above by fixing φ(x) = x⊕ δ. The practical impact of this idea
would be that an attacker has an understanding of how bit flips in the output affect bit flips in the input of
the function (or vice versa).
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It is possible to generalize this concept by allowing any group operation instead of bitwise differences. We
note that a similar issue of specifying such a transformation function has been already used in the formal
treatment of related-key attacks on pseudorandom functions, where the adversary is allowed to provide a key
transformation. Here, Lucks [Luc04] proposes the class of group-induced transformations, a class which is
neither too powerful nor too restrictive: It is the set of functions which apply the group operation to their
argument and a fixed group element. Subsequent work in the area by Bellare and Cash [BC10] advocates the
use of this class and strengthens our confidence that this is a “natural” choice for related key attacks. Since
the requirements and issues seem to be very similar, we adopt this class in our definition of non-malleability.

We now turn this idea into a general formal definition that is similar to the simulation-based experiments.
First, HK generates a key K which implicitly contains the security parameter λ. On input K, the first stage of
the attacker Ad outputs a valid distribution of preimages X in the sense that it has a sufficient min-entropy.
A random element x is drawn from this distribution and mapped to image y. The function hint outputs hint
hx about x. The attacker in the second stage then receives image y and hint hx. It is required to output a
modified image y∗ and a preimage transformation function φ ∈ Φ (where Φ is known to the adversary). The
output of the experiment is defined to be 1 if, and only if, HVf(K,φ(x), y∗) = 1 and φ(x) 6= x.

Definition 3.2 (Φ-NM-Hash) A hash function H = (HK,H,HVf) is called Φ-non-malleable (with respect
to probabilistic function hint) if for any PPT algorithm A = (Ad,Ay) the probability Pr[ExpΦnm

H,A (λ) = 1] is
negligible in λ, where:

Experiment ExpΦnm
H,A (λ)

K ← HK(1λ)
(X , st)← Ad(K)
x← X (1λ), hx ← hint(K,x)
y ← H(K,x)
(y∗, φ)← Ay(y, hx, st)
Return 1 iff

HVf(K,φ(x), y∗) = 1
∧φ(x) 6= x

where φ ∈ Φ. It is required that algorithm Ad only outputs efficiently sampleable distributions X such that
H̃∞(X|HK, hint) ∈ ω(log λ).

We requireAd to output a non-trivial distribution X in this experiment that is not predictable by demanding
a conditional min-entropy strictly greater than logarithmic in λ. This requirement makes sense because,
otherwise, an attacker can choose a distribution such that it succeeds to predict the most likely event of this
distribution with high probability. In the context of our experiment, this would imply that the attacker guesses
x with non-negligible probability and trivially succeeds.

Group-Induced Non-Malleability. Note that we let the adversary choose from a set of predetermined
transformation functions. From this general version we get the aforementioned group-induced transformations
by letting Φ = {φ�δ : δ ∈ G} where φ�δ (x) = x � δ for some group (G,�) for which group operations can be
efficiently performed. Although this definition allows us to model even richer classes of transformation functions
(e.g. many different group operations in the same experiment), one must take care to exclude cases where the
definition becomes unachievable. In practice, one will likely want to work with one specific group. In fact,
for this paper, we restrict ourselves to group-induced transformations. The following definition captures two
special cases of group-induced transformations and the ⊕ operation:
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Definition 3.3 ((G,�)-NM-Hash and ⊕-NM-Hash) Let (G,�) denote a group. A hash function H is
called (G,�)-non-malleable if H is Φ�-non-malleable where Φ� = {φ�δ : δ ∈ G} and φ�δ (x) = x� δ. We omit
G if it is clear from the context. In particular, we call a ({0, 1}∗,⊕)-non-malleable function simply ⊕-non-
malleable.

It should be observed that Definition 3.3 is weaker than the original simulation-based definition. We discuss
this in depth in the next section. Nevertheless, despite this limitation, we feel that Definition 3.3 is suitable to
capture an essential aspect of non-malleability and a broad class of transformation functions. The absence of
a simulator makes it relatively easy to work with and relates well to a practical view of an attacker.

3.3 Relations Between Simulation-Based and �-Non-Malleability

In this section, we show that every simulation-based non-malleable hash function is also �-non-malleable but
�-non-malleable hash functions exist that are not simulation-based non-malleable.

3.3.1 Simulation-Based Non-Malleability ⇒ �-Non-Malleability

We show by black-box reduction that every function which is not �-non-malleable is also not entropically
non-malleable in the simulation-based sense.

Proposition 3.4 Let R�(X , x, x∗, r) denote any relation that outputs 1 if, and only if, r = x � x∗. If H is
an entropically non-malleable hash function with respect to arbitrary hint and relation class R 3 R�, then H is
�-non-malleable with respect to hint.

Our proof shows the equivalent proposition that if H is not �-non-malleable then H is not entropically
non-malleable.

Proof. Suppose thatH is not�-non-malleable. Then PPT algorithmA = (Ad,Ay) exists such that Pr[Exp�nm
H,A (λ) =

1] = 1/poly(λ). Construct A′ = (A′d,A′y,A′x) against entropical non-malleability of H as follows. Let A′d := Ad
and A′y := Ay. On input (x, sty) = (x, φ), A′x outputs (φ(x), x� φ(x)).

All stages of A′ are obviously efficient. The view of algorithm A in this construction is identical to its view
when run in Exp�nm

H,A . If, and only if, A succeeds in Exp�nm
H,A we have φ(x) 6= x and HVf(K,φ(x), y∗) = 1.

But since sty = φ and x∗ = sty(x) in Expnmh−1
H,A′ it follows that (x, y) 6= (x∗, y∗) and R(X , x, φ(x), x� φ(x)) =

R�(X , x, x∗, r) = 1. Hence A′ succeeds if and only if A succeeds under relation R�, i.e.,

Pr
[
Expnmh−1

H,A′ (λ) = 1
]

= Pr
[
Exp�nm

H,A (λ) = 1
]

=
1

poly(λ)
.

It remains to show that any simulator S is successful in Expnmh−1
H,S (λ) with negligible probability at most.

First, note that any successful simulator in this experiment is also an algorithm that successfully predicts which
value is drawn from X . This follows from the fact that Sx outputs (x∗, r) and r� (x∗)−1 = x. However, since S
does not have any information on x besides HK and hint, it follows from the high conditional min-entropy that
S can only predict x with negligible probability. Thus, any simulator S which is successful in Expnmh−1

H,S (λ)
with non-negligible probability is a contradiction to this argument and cannot exist.

Altogether it then follows that∣∣∣Pr
[
Expnmh−1

H,A′ (λ) = 1
]
− Pr

[
Expnmh−1

H,S (λ) = 1
]∣∣∣ = |1/poly(λ)− negl(λ)|

is not negligible in λ and thus H is not entropically non-malleable. �
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We remark that the implication actually holds in a more general sense, beyond group-induced transforma-
tions. Namely, assume that for every φ ∈ Φ there exists φ−1 ∈ Φ such that φ−1(φ(x)) = x for all x. Now define
the relation R−1(X , x, x∗, r) (instead of R�) which outputs 1 if and only if r(x∗) = x for r ∈ Φ. Then any suc-
cessful adversary against Φ-non-malleability could still be turned into a successful adversary against entropical
non-malleability, whereas a simulator could output (x∗, r) predicting r(x∗) = x with negligible probability only.
As an example consider the class Φ|| of concatenation transformation consisting of function φδ(x) = x||δ and
such that φ−1

δ (x||δ) = x (or equals the input, in case the input string does not end on δ). This example will be
useful when showing that Merkle-Damg̊ard does not preserve Φ-non-malleability.

3.3.2 Φ-Non-Malleability ; Simulation-Based Non-Malleability

We show that if Φ-non-malleable functions exist, then there is one which is not (simulation-based) non-
malleable. In particular, Construction 3.5 below is one example for such a function.

Construction 3.5 Let F = (FK,F,HVf) denote a hash function. Define G := (GK,G,GVf) where

• GK := FK,

• G(K,x) := F(K,x)||x1, and

• GVf(K,x, y) := HVf(K,x, y1y2 . . . yn−1) ∧ (yn = x1).

Lemma 3.6 For any class Φ it holds that, if F is Φ-non-malleable, then G is Φ-non-malleable.

The proof follows straightforwardly by a black-box reduction as an adversary against G can simply guess
the extra bit and still succeed with non-negligible probability. The proof is in Appendix A.

Proposition 3.7 Let R1(X , x, x∗, r) denote any relation that outputs 1 if, and only if, x1 = x∗1 and X is the
uniform distribution. Then Construction 3.5 is not (simulation-based) non-malleable with respect to hint = ∅
and relation class R 3 R1.

For the proof of Proposition 3.7 we consider the specific relation R1 consisting of inputs x, x∗ which are equal
in the first bit. In addition, this relation rejects distributions if they are not the uniform distribution. Since
an attacker against Construction 3.5 is given the first bit as part of the image, it succeeds unconditionally. On
the other hand, the simulator does not have this information and is forced to guess, but it succeeds only with
a probability that makes the difference non-negligible. To complete the picture we finally note that relation
R1 is in the set of relations for which Boldyreva et al. [BCFW09] derive (simulation-based) non-malleable hash
functions.

See again Appendix A for the full proof where we also show that non-malleability is not implied by collision-
resistance or one-wayness.

Finally, we point out that it is an open question to identify precisely how much weaker Definition 3.2 is in
contrast to the original definition. In particular, it is unclear if a Φ-non-malleable hash function that also hides
all preimage information is also non-malleable in the simulation-based sense.

4 Constructions

As explained in the introduction, the Merkle-Damg̊ard construction does not preserve (Φ-)non-malleability
because of length-extension attacks, even if the compression function is modeled as a random oracle. Clearly,
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this is the case for the class of transformations Φ|| with φδ(x) = x||δ first appending the padding and then
arbitrary data.2 It follows that Merkle-Damg̊ard is not simulation-based non-malleable either.

Merkle-Damg̊ard, Random Oracles, and ⊕-Non-Malleability. Somewhat surprisingly, we show that
Merkle-Damg̊ard does provide ⊕-non-malleability (for fixed-length messages) if the compression function is
modeled as random oracle. This again shows the advantage of restricting the class of transformation Φ: while
Merkle-Damg̊ard is not simulation-based non-malleable and not Φ||-non-malleable according to the discussion
above, it is for another class of transformation which suffices to show security of the BR encryption schemes
(see Section 5).

Construction 4.1 (MD) Let pad(M) be a padding function which maps messages to multiples of the block
length such that the final 64 bits contain the message length. Then

MDh
iv(M) = h∗iv(M1|| . . . ||Mk) = h(· · ·h(h(iv,M1),M2) · · · )

where M1|| . . . ||Mk = pad(M).

In the following we usually denote by yi the value h∗iv(M1|| . . . ||Mi), i.e., the i-th intermediate value when
iterating h.

Proposition 4.2 For a random oracle h the hash function MDh in Construction 4.1 is ⊕-non-malleable (with
respect to arbitrary hint).

Proof. Consider an adversary A against ⊕-non-malleability. Assume that this adversary for random M ← X
and the hash value y = h∗iv(pad(M)) eventually outputs (y∗, δ). Note that, with overwhelming probability, if
the adversary has not queried all pairs (M∗i , y

∗
i ) of M∗1 || . . . ||M∗k = pad(M ⊕ δ) and intermediate values y∗i in

the hash computations to h, then the final output y∗ does not constitute a valid hash value. This holds because
if the adversary simply copies y∗ = y this would contradict the collision-resistance for δ 6= 0; in any other case
the adversary would otherwise be able to predict random oracle values.

Hence, given that the adversary has queried about all intermediate values, and since they are unique with
overwhelming probability, we can deduce the adversary’s message M∗ and together with the output δ thus the
original message M . This, however, would contradict the super-logarithmic min-entropy of X (because the
additional hash value of M can only decrease this entropy by a logarithmic term for the efficient adversary
making at most polynomial many queries to h). �

We are not aware if one can show that Merkle-Damg̊ard is ⊕-non-malleable under standard assumptions.
However, we note that ⊕-non-malleability of the compression function alone is not sufficient, but that collision
resistance of the compression function is necessary. Consider for example a given �-non-malleable compression
function h and modify it into a compression function

h′(w, x) =

{
h(w, x) if x 6= 1 . . . 1
h(w, 0 . . . 0) if x = 1 . . . 1

Then h′ inherits �-non-malleability from h because the non-trivial min-entropy of the input distribution guar-
antees that x hits 1 . . . 1 and that the adversary outputs φδ with φδ(x) = x � δ = 1 . . . 1 only with negligible
probability. In any other case breaking non-malleability of h′ requires breaking the non-malleability of h.

2Note that an attacker is not even limited to fixed-length preimage distributions, since the length is polynomial and can simply
be guessed.
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Now consider the MD construction based on h′. It is easy for the adversary to specify a distribution X
which outputs λ message blocks, and each block consists of 0 . . . 0 or 1 . . . 1 with probability 1/2 each. Clearly,
this distribution has super-logarithmic min-entropy. But, the adversary can now output the same hash value
y∗ = y and δ = (1 . . . 1)λ 6= 0 and win the ⊕-non-malleability game (because x∗ = x⊕ δ maps to the same hash
value).

The Matyas-Meyer-Oseas-Construction. A common technique to build hash functions—more precisely
compressions functions—is to start from a block cipher. Preneel et al. [PGV94] discuss 64 such variants which
all rely on one call to a block cipher. One of these variants, proposed earlier by Matyas et al. [MMO85], is
the Matyas-Meyer-Oseas (MMO) scheme given by h(k,m) = C(g(k),m) ⊕m where g an arbitrary function.
Amongst others, the SHA-3 candidate hash function Skein [FLS+08] is known to adopt this scheme.

In this section, we deal with a construction called hash-⊕-composition which is quite similar to the MMO
scheme and show that it does not sustain ⊕-non-malleability. The difference is that, instead of using a cipher
C (and function g), we substitute this part with an inner function h′, i.e. h(k,m) = h′(k,m) ⊕m. This may
be a hash function or, more general, any compression function. We then construct a ⊕ non-malleable h′ and
show that the overall construction becomes ⊕-malleable. The general idea is presented below; for a full formal
treatment see Appendix B.

Consider a hash function u, an ⊕-non-malleable hash function f and define

h′(x0||x1) = (u(x0)⊕ (f(x0)||f(x1)))||(x0 ⊕ x1).

Function h′ is then ⊕-non-malleable under certain assumptions, namely that (a) an attacker against ⊕-non-
malleability outputs only uniform distributions and (b) function u is modeled as a random oracle. Intuitively,
the second assumption assures that the first half of h′ is padded by true randomness and the first assumption
guarantees that the second half of h′ is uniformly random. These two properties combined ensure that h′ is
⊕-non-malleable. However, it becomes completely insecure in the above scheme. Since x1 is canceled out, the
attacker learns x0 and is thus able to recompute u and f for arbitrary new values. It is easy to see that this
breaks (⊕-)non-malleability.

How does the above result affect hash functions constructed by the MMO paradigm such as Skein? Strictly
speaking, it is not applicable, because the MMO schemes uses a cipher whereas the hash-⊕-composition (and
the counterexample above) assumes a hash function. Yet, we feel that it is not far-fetched to consider a cipher
with unknown key and a hash function functionally similar. For example, collision resistance is implied by
the necessary permutation property of a cipher. Likewise, one-wayness is closely related to the security of the
cipher: If one is able to invert an “image” of the cipher without knowing its key, then the cipher is blatantly
broken.

5 Application

In this section we revisit the proof in [BCFW09] that (simulation-based) non-malleability of the hash function
H in the Bellare-Rogaway encryption [BR93] scheme f(r), G(r) ⊕m, H(r||m), together with some form of
perfect one-wayness hiding the entire pre-image, suffices to achieve chosen-ciphertext security (as long as G is
still modeled as a random oracle). Exploiting the fact that the component G(r)⊕m uses the exclusive-or we
show that ⊕-non-malleability (and perfect one-wayness) is sufficient for H.

Preliminaries. We first recall the BR encryption scheme BRG,H[F ] = (K, E ,D) and the instantiation of the
random oracle H through a hash function H = (HK,H,HVf) formally. The key generation algorithm K of the
encryption scheme outputs a random F-instance f and its inverse f−1 as the public and secret key, respectively.
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It also runs HK to generate a key K ← HK(1k) for a hash function and puts K into both the public and
secret key. The encryption algorithm E on inputs f,K and m picks random r in the domain of f and outputs
(f(r), G(r)⊕m,H(K, r||m)). The decryption algorithm on inputs f−1,K and (y, g, h) first computes r ← f−1(y),
then m← g ⊕G(r), and outputs m iff HVf(K, r||m,h) = 1 (and ⊥ otherwise).

We would like to show that the encryption is IND-CCA, meaning that for any adversary with access to a
decryption oracle and receiving the public key as input, the adversary cannot distinguish encryptions for chosen
messages m0,m1 (of equal length) better than by guessing. It is understood that the adversary, after receiving
the challenge ciphertext of mb for random bit b cannot query the decryption oracle about this ciphertext.

Next, we define the hiding property of the hash function H formally. We start by recalling the definition of
a perfectly one-way hash function [Can97]:

Definition 5.1 (POWHF) A hash function P = (POWK,POW,POWVf) is called a perfectly one-way hash
function (with respect to probabilistic function hint) if for any PPT algorithm B = (Bd,Bb), where Bb has binary
output, the following random variables are computationally indistinguishable:

K ← POWK(1k)
(X , std)← Bd(K) ;x← X (1k)

hx ← hint(K,x) ; y ← POW(K,x)
b← Bb(y, hx, std)
return (K,x, b)

K ← POWK(1k)
(X , std)← Bd(K) ;x← X (1k)
x′ ← X (1k)
hx ← hint(K,x) ; y′ ← POW(K,x′)
b← Bb(y′, hx, std)
return (K,x, b)

Security Proof. As in [BCFW09] we also assume for technical reasons that the hash function H is ⊕-non-
malleable when a random instance of F is included with the key output by HK. Let H = (HKF ,H,HVf) denote
the modified hash function for which key generation outputs a random instance of F together with the original
hash key. Then we can include side information about the sample in terms of f, i.e., we too need that H is
⊕-non-malleable with respect to the hint function hintBR((K, f), r||m) = f(r).

Theorem 5.2 Let F be a trapdoor one-way permutation and H = (HKF ,H,HVf) be a perfectly one-way hash
function with respect to hintBR which is also ⊕-non-malleable with respect to hintBR. Then BRG,H[F ] =
(K, E ,D) for messages of length ` = ω(log λ) is IND-CCA secure (for random oracle G).

The proof in Appendix C proceeds in game hops, starting with the original attack scenario and transforming
this into a game where the adversary has no advantage. Letting (y∗, g∗, h∗) denote the challenge ciphertext of
message mb, we have:

Game0: Corresponds to the original attack of the adversary A.

Game1: Reject all ciphertexts (y, g, h) submitted to the decryption oracle, where y 6= y∗ and A has never
queried G about r = f−1(y) before (including the case that y is not in the range of f). (This cannot
change the adversary’s success probability significantly; else the adversary would need to predict a hash
value for an unknown random input, which can be shown to contradict ⊕-non-malleability.)

Game2: Reject all ciphertexts (y, g, h) submitted to the decryption oracle before receiving the challenge ci-
phertext, where y = y∗. (Happens with negligible probability only.)

Game3: Reject all ciphertexts (y, g, h) submitted to the decryption oracle, where y = y∗, g = g∗ and h 6= h∗

(queries after receiving the challenge ciphertext, where also h = h∗, are not allowed). (The hash value
must be invalid then.)
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Game4: Reject all ciphertexts (y, g, h) submitted to the decryption oracle, where y = y∗ but g 6= g∗, and A
has never queried G about r = f−1(y) before. (Would contradict the ⊕-non-malleability, since g ⊕ g∗
essentially determines the difference between the pre-images under H.)

Game5: Replace the computation of h∗ ← H(K, r||mb) in the challenge ciphertext by h∗ ← H(K, r′||0|mb|). (Is
a valid hop because of the perfect one-wayness.)

Game6: Replace the computation of g∗ ← G(r) ⊕mb in the challenge ciphertext by picking g∗ uniformly at
random. (Can only be detected by the adversary if she queries G about r∗ at some point, which would
contradict the one-wayness of f.)

Acknowledgments

We thank the anonymous reviewers for valuable comments. The authors are supported by the Emmy Noether
Grant Fi 940/2-1 of the German Research Foundation (DFG).

References
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A Φ-Non-Malleability ; Simulation-Based Non-Malleability

A.1 Proofs

Recall that we would like to show that non-malleability of F implies non-malleability of G which leaks one
input bit:

Proof. Assume F is Φ-non-malleable, but G is not Φ-non-malleable, then some PPT algorithm A = (Ad,Ay)
exists such that Pr[ExpΦnm

G,A (λ) = 1] = 1/poly(λ). We construct A′ = (A′d,A′y) by A′d := Ad and A′y as follows.
On input (y, hx, st), it runs Ay(y||b, hx, st) as a black-box, where b ∈ {0, 1} is chosen uniformly at random. The
output of A′y is defined to be the output of Ay with the difference that the rightmost bit of y∗ is truncated.

Both stages of A′ are clearly efficient since they run PPT algorithms A plus one coin toss. Independently
of distribution X , the probability that b = x1 is exactly 1

2 . In this case, y||b is in the range of G under X , which
is precisely what Ay expects. Furthermore, since HVf(K,x, y) = HVf(K,x, y) ∧ (b = x1) = GVf(K,x, y||b) it
follows that ExpΦnm

F ,A′(λ) = ExpΦnm
G,A (λ) in this case. Hence, we have

Pr
[
ExpΦnm

F ,A′(λ)
]
≥ 1

2
· Pr

[
ExpΦnm

G,A (λ) = 1
]

=
1

2 · poly(λ)
.

This contradicts our assumption that F is Φ-non-malleable, thusA cannot exist and G must be Φ-non-malleable.
�

The proof of Proposition 3.7 now shows that G can be used to separate Φ-non-malleability from simulation-
based non-malleability.
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Proof. Fix some relation R1 ∈ R as in the proposition and construct A = (Ad,Ay,Ax) as follows. Algorithm Ad
on input K outputs the uniform distribution X and the empty state. On input (y, hx, std) algorithm Ay samples
x∗ ← X and manipulates the first bit such that x∗1 = yn. It then eventually outputs (G(K,x∗), x∗) = (y∗, sty).
Finally, algorithm Ax outputs (sty, r) = (x∗, 0) for input (x, sty).

Algorithm A is obviously efficient. We now analyze the probability that Expnmh−1
G,A (λ) returns 1. It is easy

to see that R1(X , x, x∗, r) holds since we have x1 = yn = x∗1 and Ad always outputs the uniform distribution; the
value r can be ignored for this relation. The verification, GVf(K,x∗, y∗) = GVf(K,x∗,G(K,x∗)) = 1, holds by
correctness since Ay calculates y∗ by evaluating the hash function. Lastly, the probability that (x, y) = (x∗, y∗)
is negligible in λ since λ− 1 bits of both x and x∗ are selected independently and uniformly at random. Hence,
it follows that Pr[Expnmh−1

G,A (λ) = 1] = 1− negl(λ).
Consider now any simulator S for attacker A. Since the simulator does not have any information about

x, its success to find a valid x∗ (in terms of relation R1) depends solely on the ability that Sx correctly
guesses x1. But since X is required to be the uniform distribution, this probability is exactly 1

2 and thus
Pr[Expnmh−0

G,S (λ) = 1] = 1
2 . For the difference we then have∣∣∣Pr
[
Expnmh−1

G,A (λ) = 1
]
− Pr

[
Expnmh−0

G,S (λ) = 1
]∣∣∣ =

∣∣∣∣12 − negl(λ)
∣∣∣∣

which is not negligible. Hence G is not non-malleable. �

A.2 Collision Resistance and One-Wayness

As mentioned in the introduction, collision resistance does not necessarily imply ⊕-non-malleability. More
precisely, if ⊕-non-malleable hash functions exist, then there exists a function which is ⊕-non-malleable but
not collision resistant. For example, one such function is G(x||b) := H(x)||b for b ∈ {0, 1}. Intuitively, this
function leaks one bit of the input which it does not use for the actual evaluation of H.

It is easy to verify that if H is a collision-resistant hash function, then G is still collision-resistant. Assume
towards contradiction that G is not collision resistant and an attacker exists which is able to generate a collision
with preimages x1||b 6= x2||b. Note that last bit is identical since it is part of the output. Hence we have
H(x1) = H(x2), but this is a collision under H. This contradicts our assumption that H is collision resistant
and thus the attacker cannot exist.

On the other hand, G is trivially malleable. Given any image, an attacker may simply flip the last bit,
knowing that this also flips the last bit of the according preimage. In the case of ⊕-non-malleability this
translates to an attacker that outputs (y∗, δ) = (y ⊕ 00 . . . 01, 00 . . . 01) and succeeds unconditionally in the
experiment.

A similar argument applies to the one-way property of hash functions. Using the same idea as above, it is
possible to show that one-way hash functions are not necessarily non-malleable.

B Results for Matyas-Meyer-Oseas

The section presents the formal analysis of the counterexample claim in Section 4 about MMO not necessarily
providing ⊕-non-malleability. We first define hash-⊕-composition and give the technical construction of h′.

Construction B.1 (Hash-⊕-Composition) If F = (FK,F,FVf) is a hash function, then the hash-⊕-composition
(with respect to F) is constructed by F⊕ := (FK,F⊕,FVf⊕) where F⊕(K,x) := F(K,x)⊕x and FVf⊕(K,x, y) :=
FVf(K,x, y ⊕ x).

Construction B.2 Let F = (FK,F,FVf) and U = (UK,U,UVf) denote hash functions where F : {0, 1}2n →
{0, 1}n and U : {0, 1}2n → {0, 1}2n for some n ∈ N. Construct G = (GK,G,GVf) as follows.
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• GK on input 1λ outputs FK(1λ)||UK(1λ).

• G parses input (K,x) as (KF||KU, x0||x1) where |x0| = |x1|
and outputs U(KU , x0)⊕ (F(KF , x0)||F(KF , x1))||x0 ⊕ x1.

• GVf parses input (K,x, y) as (KF||KU, x0||x1, y0||y1||y2) where |x0| = |x1| and 2|y0| = 2|y1| = |y3|. It
outputs 1 if, and only if,

UVf(KU, x0, y0||y1 ⊕ F(KF, x0)||F(KF, x1))
∧ FVf(KF, x0, split(0,U(KU, x0)⊕ y0))
∧ FVf(KF, x1, split(1,U(KU, x0)⊕ y1))
∧ y3 = (x0 ⊕ x1).

This construction is ⊕-non-malleable under certain assumptions, most notably if the distribution of preim-
ages is uniform. We capture this by defining a class of uniform attackers that, when prompted to output
a distribution, always output the uniform distribution. We furthermore assume that all algorithms of the
⊕-non-malleability experiment have access to the Random Oracle used in the proposition.

Proposition B.3 For a uniform attacker the following holds. If F is a ⊕-non-malleable hash function with
respect to hint = ∅ and U is modeled as a Random Oracle, then Construction B.2 is ⊕-non-malleable with
respect to hint = ∅.

Proof. Assume towards contradiction that an efficient uniform attacker A against G (as in Construction B.2)
exists such that Pr[ExpG,A(λ) = 1] is non-negligible in λ. Construct A′ = (A′d,A′y) as follows.

Algorithm A′d on input K runs PPT algorithm Ad(K||UK(1λ)) and processes its output (X , std) by dis-
carding distribution X . A′d then outputs (Xu, std), where Xu denotes the uniform distribution over the domain
of F, i.e. over {0, 1}2n.

On the second stage of the attack, A′y receives an image y of F and hint hx. It samples two values x′0, x′1
from Xu and calculates y′ in the following way. A decision bit b ∈ {0, 1} is picked uniformly at random. If
b = 0, let y′ = U(KU , x

′
0)⊕ (y||F(KF , x

′
1))||x′0 ⊕ x′1, otherwise, if b = 1, let U(KU , x

′
0)⊕ (F(KF , x

′
0)||y)||x′0 ⊕ x′1.

A′y then runs Ay(y′, hx, std) to obtain (y∗, δ) and finally outputs (split(b, y∗), split(b, δ)).
It is evident that both stages of A′ run in probabilistic polynomial time since they run one stage of PPT

algorithm A and execute efficient operations only. Since we assume that the preimages of G and F are both
uniformly distributed (but different in size), A′d may simply discard X over {0, 1}4n and output the uniform
distribution Xu over {0, 1}2n.

For Ay, image y′ is distributed exactly as it expects: The first half of y′ is padded by oracle U and thus
truly random unless given x′0; the second half, x′0⊕x′1, is sampled from the uniform distribution. Since the first
half of y′ contains F(KF , x0) = y instead of F(KF , x

′
0), algorithm Ay may fail if it guesses the padding. But

since U is a random oracle, this only happens if Ay queries the oracle for x′0. The probability for this event is
negligible since Ay learns nothing about x′0 from x′0 ⊕ x′1 given that x′1 is picked uniformly at random.

Furthermore, A′y may fail to output a valid difference δ′ = split(b, δ) if all 1-bits are located in the split-off
half. In this case we have δ′ = 0λ and A′y cannot succeed because the experiment rejects the trivial empty
difference. We provide a conservative worst case bound for the probability of this event. Assume that the
hamming weight of δ is 1, i.e., the difference is given by one bit only. This reflects a worst case in the sense
that it is the minimum number of 1-bits in the difference; adding more 1-bits can only sustain or increase
the probability that these bits spread over both halves of δ. Let left denote the event that the difference is
contained in the left half of δ (and ¬left in the right half). Algorithm A′y receives a usable difference with
probability Pr[left|b = 0] + Pr[¬left|b = 1] from Ay. However, Ay does neither know b nor is it able to deduce
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its value from image y′: value b only affects the left half of y′, but it is padded by oracle U. Thus we may view
this probability unconditional and have Pr[left] Pr[b = 0] + Pr[¬left] Pr[b = 1] = 1

2 . The overall lower bound on
the probability for A′ to succeed is then

Pr
[
ExpF ,A′(λ) = 1

]
≥ 1

2
Pr
[
ExpG,A(λ) = 1

]
,

which is not negligible in λ. But this contradicts the assumption that F is ⊕-non-malleable.

To complete our example, it remains to show that G becomes ⊕-malleable once used as the inner function
of the hash-⊕-composition. We omit a formal proof here, since G is constructed in a way that makes it rather
trivial.

Proposition B.4 Let G, as defined in Construction B.2, denote an ⊕-non-malleable function. If G is used
within the hash-⊕-composition, then the resulting function H is not ⊕-non-malleable.

To see why this proposition holds, consider that the images of H are of the following form:

y = H(KH , x)
= G(KG, x)⊕ x
= x0 ⊕ U(KU , x0)⊕ (F(KF , x0)||F(KF , x1))||x0 ⊕ x1 ⊕ x1

This design is clearly insecure, because x1 on the right-hand side is canceled out and thus x0 is disclosed.
While this disclosure is not a problem with regard to collision resistance or one-wayness in a theoretical sense
(x1 is still unknown and “secured” by F), it is fatal for ⊕-non-malleability. Since the second stage Ay of an
attacker against ⊕-non-malleability learns x0 from y in this scheme, it may also cancel out x0 in the left half
and evaluate U. Then, Ay is able to calculate y′ by discarding F(KF , x0) and replacing it by F(KF , x0 ⊕ δ) for
some arbitrary δ 6= 0λ. Adding U and x0 ⊕ δ again yields

y′ = x0 ⊕ δ ⊕ U(KU , x0 ⊕ δ)⊕ (F(KF , x0 ⊕ δ)||F(KF , x1))||x0 ⊕ δ.

An attacker then simply outputs Ay outputs (y′, δ||02n) in the ⊕-non-malleability game and succeeds uncon-
ditionally. The function H is therefore not ⊕-non-malleable even though it is built from a ⊕-non-malleable
function.

C Proof of Theorem 5.2 (BR Encryption)

Proof. Fix an arbitrary adversary A against IND-CCA of the scheme. We consider a sequence of games
Game0,Game1, . . . , starting with the original attack in Game0, and slightly changing the adversary’s environ-
ment in each game hop such that the adversary’s output behavior does not change significantly. We eventually
reach a game where the adversary cannot perform better than by guessing the secret bit b, concluding that the
adversary cannot have a significant advantage in the original attack.

In all games we denote by (y∗, g∗, h∗) the components of the challenge ciphertext returned toA on submitting
two equal-length messages m0,m1 (even if the ciphertext is not computed according to the scheme’s description
in some games). The games are then given as follows:

Game0: Corresponds to the original attack of the adversary A.

Game1: Reject all ciphertexts (y, g, h) submitted to the decryption oracle, where y 6= y∗ and A has never
queried G about r = f−1(y) before (including the case that y is not in the range of f).
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Game2: Reject all ciphertexts (y, g, h) submitted to the decryption oracle before receiving the challenge ci-
phertext, where y = y∗.

Game3: Reject all ciphertexts (y, g, h) submitted to the decryption oracle, where y = y∗, g = g∗ and h 6= h∗

(queries after receiving the challenge ciphertext, where also h = h∗, are not allowed).

Game4: Reject all ciphertexts (y, g, h) submitted to the decryption oracle, where y = y∗ but g 6= g∗, and A
has never queried G about r = f−1(y) before.

Note: At this point we can simulate decryption queries by table-lookups in A’s queries to oracle G.

Game5: Replace the computation of h∗ ← H(K, r||mb) in the challenge ciphertext by h∗ ← H(K, r′||0|mb|).

Game6: Replace the computation of g∗ ← G(r) ⊕mb in the challenge ciphertext by picking g∗ uniformly at
random.

Next we show that each transition does not change the adversary’s output behavior significantly.

From Game0 to Game1. The only difference in the games can origin from a valid ciphertext which the
decryption oracle would decrypt correctly in the attack (and where in particular r = f−1(y) exists), which we
now reject in Game1.

Note that this cannot decrease the adversary’s advantage significantly, because the probability that for
such queries h is a valid hash value is negligible. This can be seen as follows. If the probability was not
negligible, we could devise an algorithm against ⊕-non-malleability. This algorithms initially receives a key K
of the hash function, including some f ′ which it ignores, and instead picks a new f. With the help of the self
generated f−1 it runs a simulation of the adversary up to point where the adversary submits the first of such
decryption queries. Then our algorithm recovers r and outputs the distribution X returning r||m for random
m ∈ {0, 1}` with super-logarithmic min-entropy. Ignore hintBR = f ′(r) and instead output the hash value h in
the decryption query together with δ = 0|r|||z for random z ← {0, 1}`. Note that, since the adversary has not
queried G about r so far, it follows that m = G(r)⊕ g is random, and so is the m-part in m⊕ δ. It follows that
the non-malleability adversary here wins with non-negligible probability, by assumption about the encryption
adversary making such a valid decryption query with non-negligible probability.

From Game1 to Game2. The next transition is easily shown to essentially preserve the adversary’s behav-
ior. The probability that any of the at most polynomial decryption queries before the challenge ciphertext
already contains y∗ is negligible. Else inverting y∗ under f for random input would succeed with non-negligible
probability.

From Game2 to Game3. This change is rather syntactical. Since we assume the hash function verification
to recompute the has value and to compare it to a given value, any ciphertext with h 6= h∗ for the same
m = m∗, r = r∗ (because y = y∗, g = g∗) must be invalid.

From Game3 to Game4. Suppose now that the adversary in Game3 submits a valid ciphertext with y = y∗

but g 6= g∗ without having queried G about r before. Let m = G(r)⊕ g. In particular, it must then hold that
HVf(K, r||m,h) = 1. We construct a successful adversary B against ⊕-non-malleability as follows. In the first
stage Bd receives a key K (and a description f) as input. It runs adversary A in Game3 up to the point where
the adversary outputs m0,m1. Algorithm Bd uses lazy sampling to simulate G and answers all decryption
queries by looking up the right values r in the list of G-queries; if for some query algorithm Bd does not find
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an appropriate entry then it rejects the ciphertext (as Game3 would; also note that, if there is an entry, then
it must be unique because y uniquely determines it).

Algorithm Bd then picks b ← {0, 1} and outputs a distribution X which picks r∗ at random and returns
r∗||mb. Algorithm By then receives the hash value h∗ and the auxiliary information y∗ = f(r∗), and continues
the simulation by implicitly defining G(r∗) as a random value (note that we can easily keep up a consistent
simulation by checking for G-queries r if they match y∗ = f(r) and return this random value). Algorithm By
sets g∗ = G(r∗) ⊕mb for the challenge ciphertext (y∗, g∗, h∗) returned to A. It also tries to predict the first
query of A to the (simulated) decryption oracle for a valid ciphertext for which y = y∗ but g 6= g∗. This can be
done by picking an index between 1 and the number of queries at random. When A later submits a ciphertext
(y, g, h) with y = y∗ and g 6= g∗ to the (simulated) decryption oracle without having queries G about r before,
then By rejects if it does not match the predicted query. Else it computes δ = g⊕g∗ 6= 0` and outputs (h, 0k||δ).

The simulation of A’s attack is perfect up to the point when A submits its first decryption query for a valid
ciphertext y = y∗ and g 6= g∗ without having queries G about r = r∗ before (or if By stops before). In this case
By has correctly guesses this query within a polynomial factor, and now succeeds in outputting a related image:
Since y = y∗ it must hold r = r∗ and δ = g⊕ g∗ = G(r)⊕m⊕G(r∗)⊕mb = m⊕mb. For a valid ciphertext it
must also hold that HVf(K, r||m,h) = 1 and thus that h is a valid hash value of r||mb||0k||δ. In other words,
if the probability that A’s output behavior changes noticeably when hopping from Game3 to Game4, then we
would obtain a successful attacker against the ⊕-non-malleability (losing a polynomial factor in the difference
for the guessing).

From Game4 to Game5. As mentioned before we can now replace the decryption oracle by a procedure
which simply checks for entries in the G-list and answers accordingly. Hence, we can now show that we can
replace the hash value h of r∗||mb in the challenge ciphertext by a hash value of independent values r′||0`.
That is, we construct an attacker against perfect one-wayness similar to the previous attacker B against non-
malleability (but simulating the decryption oracle completely with table-lookups). Actually, this step somewhat
combines two game hops where, in the first hop, we have the adversary against perfect one-wayness output
distributions X returning r||mb for the challenge message mb, and in the second step moving from there to
distributions of the form r||0`. It follows analogously to the previous case that any noticeable change in the
adversary’s output behavior would yield a successful attacker (for each hop) against the perfect one-wayness.

From Game5 to Game6. In the final game we replace g∗ in the challenge ciphertext by an independent
random value, making A’s view independent of bit b. We note that this does not change A’s output distribution
unless A at some point queries G about r∗. However, this would straightforwardly contradict the one-wayness
of f because one could easily simulate the attack and inject y∗ into the challenge ciphertext (and define G(r∗)
implicitly at random), simulate the decryption oracle via table-lookups, and wait for A to make the g-query in
order to invert y∗ with non-negligible probability.

Conclusion. We now have that the adversary wins in Game6 with probability at most 1/2. Since each
transition from Game0 to Game6 decreases the adversary’s success only negligibly, it follows that the success
probability in the original attack cannot exceed 1/2 significantly. �
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